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Abstract

Some bowed string instruments such as cello or viola are prone to a parasite phenomenon called the
wolf tone that gives rise to an undesired warbling sound. It is now accepted that this phenomenon
is mainly due to an interaction between a resonance of the body and the motion of the string. A
simple model of bowed string instrument consisting of a linear string with a mass-spring boundary
condition (modeling the body of the instrument) and excited by Coulomb friction is presented.
The eigenproblem analysis shows the presence of a frequency veering phenomenon close to 1 :
1 resonance between the string and the body, giving rise to modal hybridation. Due to the
piecewise nature of Coulomb friction, the periodic solutions are computed and continued using a
mapping procedure. The analysis of classical as well as non-smooth bifurcations allows us to relate
warbling oscillations to the loss of stability of periodic solutions. Finally, a link is made between
the bifurcations of periodic solutions and the minimum bow force generally used to explain the
appearance of the wolf tone.

1. Introduction

Players of bowed string instruments might experience difficulties to produce a steady tone of
good quality for certain ranges of playing parameters, regardless of the quality of the instrument.
This phenomenon, mainly occurring with cellos is generally referred to as the wolf tone in the
musical community and is characterized by a distinct warbling sound. There have been many
attempts to explain the phenomenon. Among the first, White [1] showed that the wolf tone occurs
when the played note coincides with a strong resonance of the body of the instrument. Almost
at the same time, Raman [2] recorded the motion of the string during the wolf tone using optical
lever, and suggested that the sympathetic resonance of the body of the cello takes energy from the
string, causing cyclic alternance of bowed string motion and was the first to introduce the notion
of minimum bow force. This notion was later revisited by Schelleng [3] who formulated maximum
and minimum bow force limits as a function of the playing parameters for which Helmholtz motion
can take place. In order to account for the dynamic of the body, Schelleng introduced a resistance
parameter and showed that the minimum bow force is affected by this resistance. It is however
quite difficult to give a physical interpretation of this resistance parameter and Woodhouse revisited
the formula to incorporate the measured body behavior [4].

Since then, considerable efforts have been made to derive accurate models of bowed string
instruments. Some of the necessary ingredients, such as the string bending stiffness, finite width
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of the bow or the frictional behavior of the rosin are presented in [5]. Inacio [6] developed a modal
model of bowed string instrument able to incorporate measured or simulated body behavior. They
were able to reproduce the behavior of the cello at the wolf region, and showed the dependence
of the beating frequency on the bowing parameters. A linear stability analysis of this model
is presented in [7]. A similar model was used to investigate the effect of wolf killing device in
[8]. Mansour used a digital wave-guide modelling approach to analyze the behavior of plucked and
bowed string instruments [9]. They also revised the minimum bow force [10] formula accounting for
the fact that close to the wolf region, the force transmitted at the bridge departs from the assumed
perfect sawtooth considered in earlier minimum bow force calculation. They revealed that when
the played note is close to the body resonance frequency, the dependence of the minimum bow
force on the playing parameters is complex and deviates from the original Schelleng’s diagram.

The previous mentioned studies involve either strong hypothesis on the behavior of the system
allowing to make analytical predictions or complex model needing intensive numerical calculation.
Although bowed string instruments exhibit strong nonlinear behavior due to the essential nonlinear
nature of friction, very few studies analyzed the bifurcation behavior of these systems. Friedlander
studied a model of non-dissipative string with rigid terminations, bowed at single point at an
integer fraction of the string length and showed that for this simple model, all periodic solutions
are unstable [11]. It has been shown later that this instability was due to the absence of dissipation
on the model [12]. In musical acoustics, methods dedicated to the analysis of nonlinear dynamical
systems such as continuation methods have been mostly used to investigate the behavior of wind
instruments. The software DDE-biftool [13] has been used to investigate the periodic solution and
bifurcations of flute-like instruments in [14]. The oscillation threshold of a clarinet as a function
of model parameters has been investigated in [15]. Properties of saxophone bifurcation diagrams
have been investigated in [16, 17]. A bifurcation diagram based classification of different models of
trumpets has been proposed in [18]. To the authors’ knowledge, the only study investigating the
bifurcation behavior of bowed string instruments is presented in [19]. They used the continuation
software Manlab [20] and a regularized friction model to compute the bifurcation diagram of a toy
model of bowed string instrument consisting of two string modes. They showed the existence of
period doubling bifurcation yielding to a first register Helmholtz motion. Although these methods
are mostly suited to analyze low dimensional, simplified models, they allow one to extract essential
features of the dynamics of the system. A key feature which certainly explains the lack of nonlinear
analysis of bowed string instruments is the discontinuous nature of friction which is generally not
compatible with available software.

The present paper is devoted to the analysis of string body interaction in the wolf tone region,
using a simplified model of bowed string instrument. In the second section, the toy model of
cello is presented. The conservative partial differential equation is projected, by using a standard
Galerkin method, on a real modal basis, prior to adding modal damping. In the third section,
numerical simulations are used to demonstrate that this simple model is able to reproduce warbling
oscillations, characteristic of the wolf tone. In the fourth section, we present the mapping procedure
to compute the periodic solutions and their stability. The special case of grazing bifurcation,
encountered for non-smooth dynamical systems is also addressed. In section five, the bifurcation
diagrams obtained for bowing parameters in the vicinity of 1 : 1 resonance between the string
and the body are presented. It is shown that bifurcations of the periodic stick-slip motion are
responsible for beating oscillations. Finally, we show that the bifurcations of periodic solutions
may also be interpreted in term of minimum bow force.
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Figure 1: Simplified model of cello

2. Description of the model

The simplified cello model is depicted in Fig. 1. It consists of a linear string connected at the
origin to a linear oscillator of mass m and stiffness k, representing the dynamic of the body. The
string has a variable effective length xL ∈ [0, L], where L is the distance from the bridge to nut. It
is subjected to a pre-stress tensile force N and its mass per unit length is denoted by ρ. The bow
with constant velocity Vb exerts a friction force at a distance xB from the origin.

2.1. Equation of motion and boundary conditions

Denoting by y(x, t) the transverse displacement of the string, the linearized equations of motion
are given by

Ny′′(x, t)− ρÿ(x, t) + FNµ(ẏ(x, t))δ(x− xB) = 0 (1)

The dots and the primes denote differentiation with respect to time and position, respectively.
δ(x) is the Dirac delta, FN the normal bow force and µ(ẏ) the Coulomb’s friction coefficient defined
by

µ(ẏ)


= µd if ẏ(xB, t) < Vb
∈]− µs, µs[ if ẏ(xB, t) = Vb
= −µd if ẏ(xB, t) > Vb

(2)

where µd and µs refer to the dynamic and static friction coefficient, respectively. The geometric
boundary condition at x = xL (nut) is defined by y(xL, t) = 0. The mechanical boundary condition
at x = 0 (bridge), describing the connection between the string and the body, is given by

Ny′(0, t) = −ky(0, t)−mÿ(0, t) (3)

Non-dimensional quantities are introduced as

x̃ =
x

L
, x̃L =

xL
L
, x̃B =

xB
L
, ỹ =

y

L
, t̃ = ω̃ =

1

L

√
N

ρ
t

m̃ =
m

ρL
, k̃ =

kL

N
, F =

FN

N
, V = Vb

√
ρ

N

(4)

Using Eq. (4), the non-dimensional equation of motion is given by (the tilde have been omitted
for brevity)
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y′′(x, t)− ÿ(x, t) + Fµ(ẏ(x, t))δ(x− xB) = 0 (5)

Now the dots and the primes denote differentiation with respect to the non-dimensional time
and position, respectively. The non-dimensional mechanical boundary condition is given by

y′(0, t) = −ky(0, t)−mÿ(0, t) (6)

2.2. Modal discretization

The partial differential equation of motion Eq. (5) is discretized using modal decomposition.
Neglecting the contribution of the friction force, the transverse displacement of the string is ob-
tained through the separation of variables

y(x, t) =
Nm∑
n=1

Yn(x)vn(t) (7)

where Nm is the number of modes retained in the modal decomposition, vn(t) the modal dis-
placement of the nth mode and Yn(x) the associated mode shape. The mode shapes are normalized
using the following orthogonality condition

mYn(0)Ys(0) +

∫ xL

0

Yn(x)Ys(x)dx = δns (8)

where δns is the Kroenecker delta. The unknowns of the linear eigenproblem are found by
imposing y(x, t) = Yn(x)ejωnt where j =

√
−1. The mode shapes are given by

Yn(x) = Cn sin(ωnx+ φn), φn = nπ − ωnxL (9)

The natural frequencies ωn are obtained as the solution of the following transcendental equation

(k −mω2
n) sin(ωnxL) + ωn cos(ωnxL) = 0 (10)

For the sake of comparison, neglecting the effect of the bridge (i.e. considering a hinge-hinged
boundary conditions), the natural frequencies and mode shapes satisfies

ωn =
nπ

xL
, φn = 0, Cn =

√
2

xL
(11)

Substituting Eq. (7) into Eq. (5), performing Galerkin decomposition and introducing modal
damping, we obtain the following modal model of the cello

v̈ + 2ζωv̇ + ω2v = Fµ(ẏ(xb, t))Y (xb) (12)

where v(t) = [v1(t), . . . , vNm(t)]T , Y (x) = [Y1(x), . . . , YNm(x)]T and ω = diag([ω1, . . . , ωNm ]),
ζ = diag([ζ1, . . . , ζNm ]) gather the natural frequencies and modal damping, respectively.
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2.3. Slip and stick dynamics

Before describing the dynamics of the system during sliding and sticking phases of the motion,
it is convenient to rewrite Eq. (12) in state space form. Introducing the state vector y = [v, v̇]T ,
Eq. (12) is expressed by

ẏ = Ay + bµ(y) (13)

where

A =

[
0Nm×Nm INm×Nm

−ω2 −2ζω

]
, b =

(
0Nm×1

FY (xB)

)
(14)

The friction coefficient is now expressed by

µ(y)


= µd if hTy < V
∈]− µs, µs[ if hTy = V
= −µd if hTy > V

, h =

(
0Nm×1

Y (xB)

)
(15)

2.3.1. Stick motion

During stick motion, the following condition holds

hTy = V (16)

such that the string and the bow velocity are equal at the bowing location. As indicated by
Eq. (15), the friction coefficient does not take a steady value during sticking phases of the motion.
Instead, the friction coefficient µ(y) varies to counteract the non-friction forces acting on the string.
Multiplying Eq. (13) by hT and substituting hT ẏ = 0 from Eq. (16), we have

µ(y) = Ly, L = − 1

hTb
hTA (17)

The equation governing the dynamics of the system during the sticking phase of motion is
obtained by substituting Eq. (17) into Eq. (13) as

ẏ = Ry, R = A+ bL (18)

Equation (18) is linear and its solution can be expressed using matrix exponential as follows

y(t1) = S(t1 − t0)y(t0), S(t1 − t0) = e(t1−t0)R (19)

Stick-slip transition occurs at t = ti if the friction coefficient expressed by Eq. (17) exceeds the
static friction coefficient µs giving

Ly(ti) = ±µs (20)

2.3.2. Slip motion

We denote by slip motion, motion occurring for hTy 6= V . Eq. (13) becomes

ẏ = Ay ± bµd (21)

Equation (21) is linear and its solution can be expressed using matrix exponential as follows
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Bridge-nut string length L = 0.7m
Open string natural frequency ωstring = 2π × 64.5Hz
String mass per unit length ρ = 14× 10−3kgm−1

Main body resonance frequency ωbody = 2π × 196Hz
Main body resonance damping ratio ζbody = 0.7%
Main body resonance mobility Mbody = 0.163ms−1N−1

Bridge-bow distance 0.04m
Static friction coefficient 0.4
Dynamic friction coefficient 0.2

Table 1: Physical parameters extracted from Inacio, et al.[6]

y(t1) = M (t1 − t0) (y(t0)∓ p)± p, M (t) = etA, p = ∓A−1bµd (22)

Let us assume that at time t = ti we have hTy(ti) = V such that the string velocity at the
bowing point is equal to the bow velocity. Two scenarios are possible depending on the non friction
forces acting on the string [21]. If the non friction forces acting on the string exceed the dynamic
friction force, another slip motion with opposite dynamic friction coefficient takes place. On the
contrary, if the non friction forces acting on the string do not exceed the dynamic friction force,
stick motion is triggered. These conditions are expressed by

Slip-slip transition if Ly(ti) > µd

Slip-stick transition if Ly(ti) ≤ µd
(23)

3. Numerical evidence

The physical parameters of the system, considering the C2 string of the cello extracted from
[6] are gathered in Table 1. The relation between parameters given in Table 1 and the physical
parameters in Eqs. (1-3) is described in Appendix A. For all the calculation, a modal damping
ζ = 0.1% has been used for each string-body coupled modes.

The evolution of the natural frequencies of the coupled system for the parameters given in
Table (1) is depicted in Fig. 2(a). Solid lines (orange) correspond to the natural frequencies
of the coupled system obtained by solving Eq. (10) while dashed lines (blue) correspond to the
natural frequencies of the hinged-hinged string given by Eq. (11), and adimensional frequency
of the body ω =

√
k/m. It is observed that frequency coalescence is avoided by the occurrence

of a frequency veering phenomenon [22]. As depicted in Fig. 2(b,c), where the mode-shapes of
the first two modes are plotted for xL = 0.33 and xL = 0.4, the veering phenomenon gives rise
to modal hybridation. Close to frequency coalescence, for xL = 0.33, the first two modes have
comparable string amplitude and out of phase motion at the origin (i.e. bridge location) having
also comparable amplitude, suggesting modal hybridation. For xL = 0.4, away from frequency
coalescence, the first mode shows large string displacement with small displacement at the origin,
while the second mode shows comparatively small string amplitude with large bridge motion. This
suggests localization of mode, the first one corresponding to string motion and the second one to
body motion.

In order to perform numerical simulation of the equation of motion Eq. (12), the truncation
order of the modal basis needs to be determined. It has been shown in [6] that a high number

6



Figure 2: (a): Evolution of the natural frequencies as a function of xL. Solid lines (orange) refer to the coupled
system and dashed lines (blue) to the uncoupled system. Vertical dot-dashed lines indicate two particular values
xL = 0.33 and xL = 0.4. (b,c): Corresponding mode shapes for xL = 0.33 and xL = 0.4, respectively.

of mode (80) is needed to reach computational convergence. It seems difficult if not impossible
to perform numerical continuation and bifurcation analysis on such a system as suggested by the
intricate bifurcation diagram of a modal model of a bowed hinged-hinged string comprising only two
modes [19]. In order to investigate the effect of modal hybridation, only the first two modes have
been kept in the modal discretization aiming to show the main phenomena involved in the dynamics
of the system. Using the same range of playing parameters as in [6], a numerical bifurcation
diagram computed for a normal bow force of FN = 2N and a bow velocity of Vb = 0.1ms−1 is
depicted in Fig. 3 for increasing and decreasing xL around the 1 : 1 string-body resonance. On the
vertical axis, the points correspond to the trajectory of the bridge (i.e. v(0, t) =

∑
n Yn(0)vn(t))

intersecting the Poincaré section defined by

S = {v ∈ R : v̇(0, t) = 0, v(0, t) > 0} (24)

Two branches of periodic solutions are observed. When xL is increasing (blue dots in Fig. 3),
the solution jumps from one stable branch to the other stable branch close to xL = 0.349. The
time history at the jump location is depicted in Fig. 4(a) and it is observed that the jump between
the two stable periodic solutions causes deep amplitude modulation due to the low damping of
the system. When xL is decreasing (orange dots in Fig. 3), the periodic solution loses its stability
giving rise to complex aperiodic motion as depicted in Fig. 4(b). In this case, the motion is weakly
chaotic suggesting the presence of a strange attractor. As xL is further decreasing, aperiodic motion
is annihilated and the motion jumps back to the stable periodic branch close to xL = 0.334. The
above observations yield the following remarks: (i) even considering only two modes, string body
interaction may give rise to stable aperiodic motion, (ii) upward or downward glissando gives rise to
different behavior, (iii) even if no stable aperiodic solution is observed during the forward glissando,
the jump between two stable branches yields deeply modulated motion. Note that the remarks
(ii,iii) are consistent with the results of numerical simulations presented in [6] who mentions that
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Figure 3: Numerical bifurcation diagram for parameters given in Table (1), FN = 2N and Vb = 0.1ms−1. Forward
points (blue) are obtained when xL is increased from 0.32 to 0.36. Downward points (orange) are obtained when
xL is decreased from 0.36 to 0.32

the wolf tone does not arise at exactly the same value for the upward and downward glissando.

4. Computation of periodic solutions

The knowledge of the periodic solution and associated bifurcations gives a deep insight into the
dynamics of the system. Due to the presence of Coulomb friction, the system is piecewise smooth,
which prevents the use of classical methods. This problem can be addressed by using a mapping
procedure [23].

4.1. Mapping

We look for periodic solutions of Eq. (12) with one slip and one stick motion per period denoted
as single slip solution for brevity. It is described by

slip motion from t = 0 to t = t1 given by (21): yI = M(t1)(y0 − p) + p
stick motion from t = t1 to t = t2 given by (18): yII = S(t2)y

I (25)

where y0 is the unknown initial condition vector and the unknown time instants t1 and t2 are
be computed by taking into account slip-stick and stick-slip transition conditions such that

slip stick transition given by (22): h1(y0, t1) ≡ hTyI − V = 0
stick slip transition given by (19): h2(y0, t1, t2) ≡ LyII − µs = 0

(26)

Note that the solution is valid if LyI ≤ µd and of course

Ly(t1) ≤ µd

hTy(t) < V for t ∈ [0, t1[
|Ly(t)| < µs for t ∈ [t1, t2[

(27)
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Figure 4: Time history of the bridge motion corresponding to particular points of Fig. 3. (a) xL = 0.349 for
increasing xL. (b) xL = 0.34 for decreasing xL.

The first condition coming from Eq. (23) ensures that the event is a slip-stick transition and
not a slip-slip transition. The second and third conditions ensure that no secondary events are
present during slipping and sticking phases of the motion. Finally, periodic solutions satisfy the
following condition

g(y0, t1, t2) ≡ yII − y0 = 0 (28)

System (26,28) is solved numerically using a Newton procedure for the triplet (y0, t1, t2).

4.2. Regular bifurcation

In this section, we look for the stability of the single slip periodic solutions. This section
is devoted to the analysis of classical codimension 1 bifurcations. The stability of the periodic
solutions is determined by looking at the Floquet multipliers of the Poincaré return map, computed
using a condensation procedure. Let us denote by (ŷ0, t̂1, t̂2) a set of periodic solution. Adding
perturbations yields to

y0 = ŷ0 + δy0, t1 = t̂1 + δt1, t2 = t̂2 + δt2 (29)

Note that the perturbed solution must also satisfy the event conditions h1 and h2 in Eq. (26),
such that

h1(ŷ0 + δy0, t̂1 + δt1) = 0
h2(ŷ0 + δy0, t̂1 + δt1, t̂2 + δt2) = 0

(30)

Substituting perturbations into Eq. (28), taking into account the previous relation and expand-
ing the result into first order Taylor series gives
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 0
0

g(ŷ0 + δy0, t̂1 + δt1, t̂2 + δt2)

 = J

δy0δt1
δt2

 (31)

where J is the matrix of partial derivatives evaluated at the periodic solution and is given by

J =


∂h1
∂y0

∂h1
∂t1

0

∂h2
∂y0

∂h2
∂t1

∂h2
∂t2

∂g

∂y0

∂g

∂t1

∂g

∂t2

 (32)

Removing dependencies upon δt1 and δt2 (condensation procedure) gives

g(ŷ0 + δy0, t̂1 + δt1, t̂2 + δt2) =
∂g

∂y0
δy0 −

(
∂g

∂t1

∂g

∂t2

)∂h1∂t1
0

∂h2
∂t1

∂h2
∂t2


−1

∂h1
∂y0
∂h2
∂y0

 δy0 (33)

Substituting g(ŷ0 + δy0, t̂1 + δt1, t̂2 + δt2) = ỹII − y0 − δy0, where ỹII is the perturbed return
point of the map, into Eq. (33) and taking the derivative with respect to the perturbation δy0
finally gives

dỹII

dδy0
= I +

∂g

∂y0
−
(
∂g

∂t1

∂g

∂t2

)∂h1∂t1
0

∂h2
∂t1

∂h2
∂t2


−1

∂h1
∂y0
∂h2
∂y0

 (34)

Eq. (34) represents the variation of return point subjected to small perturbations, in other
words, the Jacobian matrix of the Poincaré return map, whose eigenvalues are the Floquet multi-
pliers. The periodic solution is stable when all Floquet multipliers are located inside the unit circle
and unstable otherwise. When a periodic solution loses its stability, the resulting solution depends
on the manner in which the Floquet multiplier leaves the unit circle [24]. A Floquet multiplier
leaving the unit circle through +1 corresponds to a fold bifurcation, a Floquet multiplier leaving
the unit circle through −1 corresponds to a flip (or period doubling) bifurcation and if a pair of
complex conjugate Floquet multipliers leave the unit circle it corresponds to a Neimark-Sacker
bifurcation.

4.3. Grazing bifurcation

In addition to classical bifurcations, system (6) may also encounter grazing bifurcation associ-
ated with non-smooth dynamical systems. A grazing bifurcation occurs when the flow is tangent
to the transition plane. We can distinguish two types of grazing bifurcation. The first one denoted
as velocity grazing bifurcation arise when slip stick transition occurs tangentially or

hTy = V
hT ẏ = 0

(35)

The second type of grazing bifurcation, denoted as force grazing bifurcation and occurs when
stick slip transition is tangent as
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Figure 5: Bifurcation diagram of periodic stick-slip regimes for parameters given in Table (1), FN = 2N and
Vb = 0.1ms−1. Triangles and squares correspond to Neimark-Sacker and Grazing bifurcations, respectively. Solid
and dashed lines correspond to stable and unstable solutions, respectively.

Ly = ±µS

Lẏ = 0
(36)

The computation of periodic stick slip regimes as well as the stability analysis have been
embedded in a pseudo-arclength continuation scheme [25] to track branches of periodic solutions.
The continuation of bifucation points has also been implemented using the minimally extended
system approach described in [25].

5. Bifurcation behavior near the wolf note

The periodic solutions and associated bifurcations near 1 : 1 string body resonance are now
analyzed. The bifurcation diagram of periodic stick slip regimes obtained using the same bowing
parameters as those used for the numerical bifurcation diagram in Fig. 3 is depicted in Fig. 5. Solid
and dashed lines correspond to stable and unstable periodic solution, respectively, and triangles
and squares indicate Neimark-Sacker and velocity grazing bifurcation, respectively. Figures 5(a)
and (b) are two different representations of the same result. Figure 5(a) shows the evolution of
the pulsation of the stick-slip oscillation (ωosc = 2π/(t1 + t2)) while Fig. 5(b) shows the evolution
of the maximum amplitude of the motion at the bridge. Comparison between Fig. 5(a) and Fig.
2(a) shows that the frequency of the stick slip oscillations follows the natural frequency of the
system. Figure 5(b) can be directly compared to Fig. 3. As a first general remark, the periodic
solutions are divided in two distinct branches. A first branch is entirely stable and stops at
xL = 0.35 due to a grazing bifurcation. The second presents a pair of Neimark-Sacker bifurcations
at xL = (0.22, 0.344) between which the periodic solutions are unstable. The branch vanishes at
xL = 0.21 due to the presence of a grazing bifurcation. The presence of these bifurcations explains
the behavior observed with numerical simulations in Fig. 3.

11



(1) (2) (3)

(4) (5) (6) (7) (8)

(9) (10) (11)

(12)

(13)
(14) (15)

(16)
(17) (18)

Figure 6: Locus of the bifurcation points in the (xL, FN ) plane for parameters given in Table (1) and Vb = 0.1ms−1.
Orange lines correspond to velocity grazing bifurcation, blue lines to Neimark-Sacker bifurcation, purple lines to
flip bifurcation and yellow lines to force grazing bifurcation.

A wider picture of the system dynamics is depicted in Fig. 6 where the locus of the bifurcation
points is depicted in the (xL, FN) plane for the parameters given in Table (1) and Vb = 0.1ms−1.
Orange lines correspond to velocity grazing bifurcation, blue lines (bold and thin) to Neimark-
Sacker bifurcation, purple lines to flip bifurcation and yellow lines to force grazing bifurcation.
This bifurcation diagram is more easily understood by making the parallel with classical bifurcation
diagram depicted in Fig. 7 where the same system parameters are used and only the bow normal
force FN is changed, as indicated by the horizontal dashed lines in Fig. 6. The italic numbers
indicate the bifurcation points to facilitate the comparison between Fig. 6 and Fig. 7.

The same notation as in Fig. 5 has been used and cross and circles corresponds to flip and force
grazing bifurcations, respectively. When comparing Fig. 5(b) and Fig. 7(a) (FN has increased
from 2N to 5N), we observe that the small portion of stable branch for xL ∈ [0.21, 0.22] does not
exist any more, and a Neimark-Sacker bifurcation point (labeled (2)) has emerged on the right
stable branch corresponding to large amplitude motion of the bridge. Increasing the bow force
to FN = 7N (Fig. 7(b)), a new pair of Neimark-Sacker bifurcations appears on the lower branch
(labeled (4) and (5)) yielding to a stable portion of periodic stick-slip regime. Increasing the bow
force to FN = 7.2N , a pair of Neimark-Sacker bifurcation is destroyed. The lower branch is now
almost entirely stable and two stable periodic solutions coexist over a large range of xL. Again,
increasing the normal bow force to FN = 8N , the upper branch splits into two branches due to the
appearance of a force grazing bifurcation (labeled (14) and (15)). It is also observed that large
bow force also gives rise to flip bifurcations (labeled (16)).

From the above results, it is tempting to make a parallel between the minimum bow force
that limits the existence of stick-slip periodic oscillations, generally used to explain the occurrence
of the wolf tone, and the bifurcations of periodic solutions. Note that if the dynamic of the
body is ignored by considering one string mode with hinged-hinged boundary conditions, the only
bifurcation that limits the existence of single slip motion is the grazing bifurcation depicted by the
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Figure 7: Bifurcation diagram of periodic stick slip regimes for parameters given in Table (1), Vb = 0.1ms−1. (a):
FN = 5, (b): FN = 7, (c): FN = 7.2 and (d): FN = 8. Triangles and squares correspond to Neimark-Sacker and
velocity grazing bifurcations, respectively, cross and circles to flip and force grazing bifurcations, respectively. Solid
and dashed lines corresponds to stable and unstable solutions, respectively.
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Figure 8: Locus of the bifurcation points in the (xL, FN ) plane for parameters given in Table (1) and Vb = 0.1ms−1.
(a): xB = 0.5 and (b): xB = 0.7. Orange lines correspond to velocity grazing bifurcation, blue lines to Neimark-
Sacker bifurcation and yellow lines to force grazing bifurcation.

orange dash-dotted line in Fig. 6. It is observed that the locus of velocity grazing bifurcation in
the coupled and uncoupled case is similar except close to the frequency coalescence between the
string and the body resonance. The situation changes if we consider the dynamics of the coupled
system. Let us consider that the player is performing a downward glissando, decreasing xL from
0.4. According to Fig. 7, single slip motion will lose its stability subsequent to the Neimark-Sacker
bifurcation indicated by the bold blue line in Fig. 6. However, due to the S-shaped look of the
Neimark-Sacker bifurcation curve, a small increase of the bow force from FN = 7 (Fig. 7(b)) to
FN = 7.2 (Fig. 7(c)) greatly extends the stability range of single slip motion. The bow force at
which this sudden increase of the playability domain occurs can be viewed as the minimum bow
force under which the wolf tone phenomenon takes place.

The classical Schelleng’s minimum bow force diagram, shows that the minimum bow force
increases when the bridge-bow distance (denoted by xB in the present model) decreases [3]. Figure
8, depicting the locus of the bifurcation points (similar as in Fig. 6) for different values of xB,
shows a similar trends. Although the diagrams presented in Fig. 6 and in Fig. 8 clearly present
similarities, interesting changes are noticed. The stable portion of branch observed in Fig. 7(b),
which is due to the horizontal S-shaped Neimark-Sacker bifurcation curve, exists for a larger
range of normal bow force when xB diminishes but vanishes when xB = 0.7, showing a more
complex dependence upon the bow bridge distance than suggested by Schelleng’s diagram, as
already mentioned by Mansour [10].

6. Conclusion

The bifurcation behavior of a simple model of cello played in the wolf region has been inves-
tigated. The model consists of a two mode modal decomposition of a linear string, subjected
to a coulomb friction force, terminated at its end with a mass spring oscillator representing the
dynamic of the body. It is shown that exact frequency coalescence between the frequency of the
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string and the body is avoided by a veering phenomenon. The mode shape at the veering region
shows hybrid mode with comparable string amplitude and out of phase motion of the body. Nu-
merical simulations show the existence of jumps phenomenon close to 1 : 1 string body resonance
as well as the existence of stable quasi-periodic responses. A mapping procedure that allows to
compute the periodic solution and the stability of single slip motion hes been presented. This
mapping procedure has been embedded in a continuation procedure allowing us to track branch
of periodic solutions as well as branch of bifurcation points. Two scenario giving rise to warbling
oscillation are explained by bifurcation of periodic solution. (i) a periodic solution will lose its
stability subsequent to a grazing bifurcation and jump to the competing stable branch, causing
transient modulation. (ii) the periodic solution loses its stability due to the presence of a Neimark-
Sacker bifurcation that can give rise to stable quasi-periodic response. Finally, it is shown that
the presence of these bifurcation limits the range of possible single slip motion giving a novel
interpretation of minimum bow force criterion. Although the model used in this paper is greatly
simplified, the use of dedicated nonlinear tools to analyze the motion of bowed string instruments
can provide interesting information about the behavior of these systems.
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Appendix A. Expression of physical parameters from parameter given in Table 1

The physical parameters of system Eqs. (1-3) are not directly obtained from the identified
parameters of the C2 string of a cello given in Table 1 and extracted from [6]. The pre-stress
tensile force N is related to the natural pulsation ωstring and full length L of the string as follows

ωstring =
π

L

√
N

ρ
(A.1)

In order to obtain meaningful values for the mass m and stiffness k of the body, used in the
expression of the mechanical boundary conditions (3), the main body resonance mobility peak has
been fitted by a damped spring-mass oscillator. The natural pulsation ωbody, damping ratio ζbody
and amplitude of the mobility peak Mbody are related to the mass m, stiffness k and damping c of
the equivalent damped harmonic oscillator as follows

ωbody =

√
k

m
, ζbody =

c

2
√
km

, Mbody =
1

c
(A.2)

Solving Eq. (A.2) for m and k gives

m =
1

2Mbodyζbodyωbody

, k =
ωbody

2Mbodyζbody
(A.3)

The non-dimensional parameters used for computations are then obtained by using Eq. (4).
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