
HAL Id: hal-03558836
https://hal.science/hal-03558836

Submitted on 5 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Heuristic Algorithm for the Safety Stock Placement
Problem

Zied Jemai, Abderrahim Bendadou, Rim Kalai, Yacine Rekik

To cite this version:
Zied Jemai, Abderrahim Bendadou, Rim Kalai, Yacine Rekik. Heuristic Algorithm for the Safety Stock
Placement Problem. IFIP International Conference on Advances in Production Management Systems
(APMS), Sep 2021, Nantes, France. pp.465-473, �10.1007/978-3-030-85914-5_50�. �hal-03558836�

https://hal.science/hal-03558836
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 
 
 
This document is the original author manuscript of a paper submitted to an IFIP 
conference proceedings or other IFIP publication by Springer Nature.  As such, there 
may be some differences in the official published version of the paper.  Such 
differences, if any, are usually due to reformatting during preparation for publication or 
minor corrections made by the author(s) during final proofreading of the publication 
manuscript. 
 
 
 



Heuristic algorithm for the safety stock
placement problem

Bendadou Abderrahim1, Kalai Rim1, Jemai Zied1,2, and Rekik Yacine3

1 LR-OASIS, National Engineering School of Tunis,University of Tunis El Manar,
Tunis, Tunisia

bendadou.abderrahim@gmail.com
2 Université Paris-Saclay, CentraleSupélec, Laboratoire Genie Industriel, 3 rue
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Abstract. In this paper, we develop an iterative heuristic algorithm
for the NP-hard optimization problem encountered when managing the
stock under the Guaranteed Service Model in a multi-echelon supply
chain to determine a good solution in a short time. Compared to the
Baron solver that was restricted with a maximum time equal to 20000
seconds, we achieved on average more than 88% reduction in calculation
time and about 0.3% cost reduction.
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1 Introduction

Inventory optimization in the multi-echelon supply chain is achieved by allo-
cating adequate safety stock at each stage to cover the uncertainty of customer
demand. For this purpose, two models are proposed by researchers: The Stochas-
tic Service Model (SSM) and the Guaranteed Service Model (GSM). The number
of investigations dealing with GSM is large and has followed an increasing trend
in recent years. To have a comprehensive view on GSM investigations, the reader
is referred to the literature review in [1]. Papers dealing with methods for solving
the GSM model optimization problem can be classified into two groups: those
who worked on exact methods and others who focused on approximate methods.
Simpson in [16] was the first to formalize the GSM for the multi-echelon supply
chain. He argued that the optimal solution is none other than an extreme point of
the polyhedron formed by the linear constraints of the program. This propriety
entitled by “all or nothing ”. Several other investigations study the properties of
the optimal solution in some specified cases such as type of the network, different
service measures, we refer the reader to visit [2, 6–8,13,14,17]. Particularly, the
founded properties in some of these investigations enabled researches to develop
exact resolution methods. [12] introduces dynamic programming algorithms to
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determine the optimal extreme point for systems with serial, assembly or distri-
bution network. The investigation of [3], which is the first which extend the GSM
model for general multi-echelon supply chains proposes solving the problem by
adopting a dynamic programming algorithm. However, the proposed algorithm
concerns only the systems with spanning-tree networks. [8] shows that the prob-
lem of finding optimal safety stock placement is NP-hard for general acyclic
networks, Consequently, she develops a branch and bound algorithm to deter-
mine the optimal solution. She also improves the complexity of the algorithm
presented by [3]. The authors in [4] develop a dynamic programming approach
under the assumption of an arbitrary cost function that does not respect con-
cavity, monotony, continuity, properties. They mainly concentrate on networks
with clusters of communality, which are a particular case of general networks.
In contrast, in our heuristic algorithm, the demand bound function still main-
tains its properties (concavity, monotonicity and continuity). The authors in [5]
modified the dynamic programming algorithm of [3] for general acyclic network
problem, they considered an arbitrary cost function that can be non-concave or
non-monotone. [11] show that the safety stock placement problem can be for-
malized as a mixed integer programming (MIP) by approximating the concave
cost function by a piecewise linear function. Then, they structure an iterative
algorithm to solve the MIP problem. Resolution techniques based on exact meth-
ods require a high computation time and several researchers have attempted to
reduce this time either by developing techniques for certain types of networks
or by adopting approximate methods for general networks. Therefore, they pro-
pose heuristic algorithms that determine in a short time a suboptimal solution.
In general, these calculation methods differ from each other because they are
generally proposed for specific cases or they are based on specific insights. [15]
provide for instance two heuristics algorithms based on the approximation of
the objective function: the first one is based on the technique of iterative linear
approximation while the second one employs the two-piece linear function as an
approximation. Although they are fast, they often do not reach a good quality
solution as in [11]. [13] proposed metaheuristic and heuristics methods (Linear
Approximation , Simulated Annealing, Threshold Accepting, Tabu Search) to
solve the optimization problem. [9] propose a heuristic algorithm based on ge-
netic algorithm. In this study, we present an iterative heuristic algorithm based
closely on the propriety of all or nothing for the safety stock placement problem
when the supply chain is managed under the GSM model. We show efficiency
numerically in terms of computational time and solution quality.

2 Model Description

2.1 Mathematical Formulation

In this section, we briefly discuss the generalization of GSM as introduced by [3]
for supply chains with a complex network. To the best of our knowledge, this
model applies to all types of networks.
Given a multi-echelon supply chain, let A, E be respectively the set of all existing
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arcs in the network and the set of all stages. We define by the following expression
the maximum replenishment time Mj for stage j :

Mj = Lj +max{Mi \ (i, j) ∈ A} (1)

Where Lj defines the lead time corresponding to stage j. Both the classical
model and the generalized one share following assumptions:

– The lead times of all stages are deterministic.
– The lead times does not depend on the order size.
– External demand arrive stationary from i.i.d. process and occurs at stages

facing the end customer.
– The inventory is controlled according to the periodic review base-stock policy

with a common review period.
– Each stage is characterized by two times: the inbound service time SIj which

is the time to wait between placing an order and its receipt. The service time
Sj that stage j offers to its customers. It is the time to wait between the
arrival of an order from a customer and its satisfaction (The service times
that stage j offers to its customers are assumed to be equal).

To face the demand variation, each stage j should have a stock during the net
replenishment time τj ∈ {1, 2, . . . ,Mj} where

τj = SIj + Lj − Sj (2)

Under the GSM model, each demand stage i should satisfy all the received orders
during the net replenishment time which does not exceed the bound Di(τi) where
Di is non decreasing concave function with D(0) = 0. To ensure 100% of service
satisfaction, two conditions should be realized: Fist, each internal stage i should
satisfy the internal order it receives from its immediate successors during the
net replenishment time and which do not exceed the value Di(τi). To do that,
the order-up-to level Bi associated with stage i should be equal to the demand
bound function at the value expressed by the net replenishment time related to
stage i:

Bi = Di(τi) (3)

Second, speed up the satisfaction of orders that exceed the bound by extraordi-
nary measures such as (expedition, production overtime, outsourcing). We ex-
press the inventory level related to stage i at time t by :

Ii (t) = Di (τi)−
t∑

l=t−τi+1

di(l) (4)

Where di(l) is the observed demand at time l at stage i. Referring to µi the mean
of the demand coming to stage i for one period, we can express the expected
safety stock at stage i as :

E [Ii (t)] = Di (τi)− µiτi (5)
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Let the unit holding cost at a stage i denoted by hi, the GSM optimization aims
to determine the optimal safety stock location and quantity that minimize the
total expected holding cost. Such an optimization should satisfy the following
constraints:

– Service times, inbound times, and replenishment times of all stages should
be positive.

– All input items must be available before the beginning of the process, for
this purpose, for each (i, j) ∈ A, we must assume SIj > Si.

– If DS defines the set of stages were the demand take place and SS defines the
set of supply stages, ∀i ∈ SS the inbound service time SIi should be equal
to the time offered by the external supplier which we denote SIi, likewise,
∀i ∈ DS, the service time Si should be equal to time imposed by the end
costumer which we denote Si.

Consequently, the GSM optimization problem is formulated as follows:

Min
∑
i∈E

hi (Di(τi)− µiτi)

(P) subject to τi = SIi + Li − Si ∀i ∈ E
SIi + Li − Si > 0, ∀i ∈ E
SIj > Si, ∀(i, j) ∈ A
SIi = SIi, ∀i ∈ SS
Si = Si, ∀i ∈ DS
SIi > 0, ∀i ∈ E

As mentioned in the introduction, previous studies showed that the optimal
solution of such an optimization problem is an extreme point of the feasible
region. Besides, it is proved that problem (P ) is NP-hard (Lesnaia [8]). We point
out that the above mathematical formulation may be modified slightly when the
supply chain is serial. In these systems, a single service time is considered for each
stage, more precisely, given a serial system indexed from the most downstream to
the most upstream which carries the index N . Each stage has only one upstream,
So : ∀i ∈ {1, ..., N} : SIi = Si+1. Under this setting, the optimal solution
remains expressed by the extreme point property as we have always a concave
minimization under a polyhedron. Therefore, ∀i ∈ {1, ..., N} the optimal service
time at the stage i is expressed according to the following relation

S∗i = S∗i+1 + Li or 0

Researchers called this property all or nothing (store or not store), all if S∗i = 0,
nothing if S∗i = S∗i+1+Li (i.e. τ∗i = 0). This property is optimal when the system
is serial. However, researchers did not talk about this property when the supply
chain is with a complex network. We can extend this property for this kind of
system by considering this setting, ∀j ∈ E

SIj = max{Si : (i, j) ∈ A} (6)
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Sj = SIj + Lj or 0 (7)

Under this setting, each stage either has the stock that cover the time related to
the supplier that takes longer to respond to an order or it does not hold stock.
We refer that all solutions inspired by this property are feasible. However, it may
not be optimal when the network of the supply chain is complex.

3 Mathematical Results

In this section, we provide some mathematical results that our algorithms adopt.
In the following, we remind the reader that when we use the term selected stage
(or stages), we indicate that stage holds inventory according to all or nothing
property (equations 6,7).
Let us consider a feasible solution inspired by all or nothing property in a multi-
echelons supply chain with general network, we express this solution by the
set of selected stages that we refer by Y, on the other hand, for each stage i,
we consider that Di−µiτi is non decreasing function. Let B be a subset of stages.

3.1 Notations

c(i) Holding cost incurred at stage i by selecting stages in Y,
cB(i) New holding cost incurred at stage i by selecting stages in B ∪ Y,
C Total holding cost incurred at the system by selecting stages in Y,
CB New total holding cost incurred at the system by selecting stages in

B ∪ Y,
SIi, Si Are respectively the inbound service time and service time at stage i

by selecting stages in Y,
SIBi , SB

i Are respectively the new inbound service time and service time at
stage i by selecting stages in B ∪ Y.

Therefore, according to equations 6 and 7, if v /∈ B ∪ Y then c(v) = 0, else

c(v) = hv(Dv(SI
B
v + Lv)− µv(SIBv + Lv))

Let E1, E2 be two subsets of stages belonging to the same echelon (i.e. stages
in E1 ∪ E2 are located in the same echelon). We assume that E1 ∩ Y = ∅ and
E2 ∩ Y = ∅. we have the following results :

Lemma 1. If E1 ⊆ E2 then :

– ∀v ∈ E1 ∪ Y : cE2(v) 6 cE1(v).
– ∀v ∈ E2 \ E1 : cE2(v) > cE1(v)
– ∀v ∈ E \ E2 ∪ Y : cE2

(v) = cE1
(v)

Now, we assume that E1, E2,Y are two by two disjoint sets. We define E3

by E3 = E1 ∪ E2
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Lemma 2. If CE1
< C then CE3

< CE2

On the other hand, we denote by E4 the set of all stages belonging to the
same echelon. In addition, we suppose that E4 ∩ Y = ∅.
Let us consider the following procedure

Procedure 1.

– V1 = ∅
– Add to V1 each stage v ∈ E4 \ V1 satisfying CV1∪{v} < CV1

If V1 6= ∅ and V2 is a subset of V1 (V2 ⊂ V1) then

Lemma 3. CV1
< CV2

Procedure 1 and lemma 3 constitutes a substrate idea on which we build
the greedy algorithm. More precisely, at each echelon, if the stages are selected
according to procedure 1, then we will be sure that no subset of the selected
stages can be found under which the total cost is lower. Moreover, we can not
select any other stages belonging to the same echelon, because this increases the
total cost according to procedure 1.

3.2 The iterative heuristic algorithm

We reveal in this section the heuristic algorithm for the problem (P ) based on
all or nothing property. It aims to determine on a short time a good solution.
Given a multi-echelon supply chain composed of P echelons and N stages (the
arcs between stages belonging to the same echelon are not supposed to be in the
associated network). This algorithm requires the satisfaction of the following
condition

∀i ∈ DS : Si < Li

Under this condition, we can know in advance that according to the opti-
mal solution the demand stages will always be considered as stock points (i.e.
∀i ∈ DS : τ∗i > 0), and then we can easily build the initial feasible solution. Out-
side this condition, the algorithm may need an extension to be more efficient.
On the other hand. In order to apply this algorithm, stages must be numbered
according to the following way :

– Number the stages belonging to echelon 1 from top to bottom, and continue
to number stages belonging to the next echelons with the same way.

Let us consider new notations

Fj = set of all stages belong to echelon j.
On = set of selected stages at the iteration n.
eij = stage that belongs to echelon j and numbered by i.
nj = number of the existing stages at echelon j.

As a summary, at each iteration, the algorithm apply procedure 1 from eche-
lon 1 to the penultimate echelon. The algorithm stops only if the selected stages
are identical to those of the previous iteration.
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Algorithm 1: The iterative heuristic algorithm

Initialization :
1. Define the supply chain network.
2. Number the stages as the way described above.
3. Set O0 = φ and O1 = DS.
iteration n :
while On 6= On−1 do

for j = 1 to P − 1 do
On = On \ Fj ;
Let Wn be a different set of On;
while On 6= Wn do

Wn = On;

for i =
∑j−1

k=1 nk + 1 to
∑j

k=1 nk do
if the total cost reduces by choosing the stage eij then

On = On ∪ eij ;

4 Numerical Experiments

This section aims to test the effectiveness of the heuristic algorithm presented
below. We code the algorithm and the optimization program by using Mathlab
R2015b and AMPL respectively on a personal computer with Intel core i3-4005U
processor (1.70 GHz) and 4 GR RAM. The baron solver (version 19.3.22) is
adopted to compare the performance of our algorithm in terms of cost and com-
putational time, since it is suitable for non-convex optimization problems [10].
We have set the Maxtime option of the baron solver to 20000 (s). In each test,
we generate a random network with random lead times and standard deviations.
More precisely, these parameters are chosen randomly in [50, 150], and in [3, 9]
respectively. Regarding the holding cost parameters, we consider for each stage
i that the value of hi is equal to the maximum holding cost of its upstream
stages plus a random scalar U . Furthermore, for the 60 generated problems, all
the supply and customer service times are assumed to be zero while the safety
factor is assumed to be equal to 2.
On the other hand, we consider four types of networks: serial, assembly, distribu-
tion and general acyclic. We do 15 tests for every type of network starting with
a three-stage supply chain, then every time we increase the number of stages
until 30.

Table 1 specifies the average, minimum, and maximum values of the CPU time
observed by applying the iterative heuristic algorithm for each type of network.
Moreover, it is shown in the CPU time gaps column the performance of its com-
putation by comparing with the CPU time reached by the baron solver.
On the other hand, Table 2 shows the algorithm efficiency in terms of cost and
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Network type
CPU Time (s) CPU Time Gaps %
Mean Min Max Mean Min Max

Serial 0.52 0.09 1.48 94.85 64.51 99.99
Assembly 1.03 0.1 2.52 80.03 41.44 96.00

Distribution 0.68 0.09 1.88 91.10 71.7 99.75
General acyclic 0.43 0.03 1.81 86.71 54.83 99.61

Table 1. The efficiency of the algorithm regarding the CPU Time

Network type
Cost Gaps %

Mean Min Max

Serial 0.74 0 4.72
Assembly -0.47 -3.63 7.67

Distribution 0.83 0 8.14
General acyclic 0.24 -6 9.75

Table 2. The efficiency of the algorithm regarding the total cost of detention

quality solution by comparing it with the baron solver. Values with a negative
sign mean that the solution obtained by the baron solver is better than that
obtained by the algorithm, while those without any sign indicate that the solu-
tion obtained by the algorithm is better than the solution obtained by the baron
solver.
Particularly, it is observed from table 1 that for each type of network the aver-
age CPU time is always less than 1.5s while the maximum value is always less
than 3s. On the other hand, through this algorithm we achieved more than 80%
reduction in the CPU time.
Under the table 2, it is showed that the algorithm can reach good solutions with
a reduction of more than 0.2% and more than 9% in best cases, whereas, under
the cases where the baron solver access to good solutions we noted that all the
gaps are less than or equal to 6%.

5 Conclusion

We introduce in this study an iterative heuristic algorithm for the NP-hard
optimization problem that we face when managing the stock under the guaran-
teed service model for a multi-echelon supply chain. The algorithm’s structure is
based closely on the propriety of all or nothing which is not optimal for complex
networks. This algorithm has proved its robustness through numerical experi-
ments for any type of network, on the other hand. As a perspective to this work
we propose to find an extension when Si > Li (i is a demand stage) or to apply
it for general cyclic networks.
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