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Abstract
This work presents an analysis of the effect of climate change on surface ozone discussing the
related penalties and benefits around the globe from the global modelling perspective based on
simulations with five CMIP6 (Coupled Model Intercomparison Project Phase 6) Earth System
Models. As part of AerChemMIP (Aerosol Chemistry Model Intercomparison Project) all models
conducted simulation experiments considering future climate (ssp370SST) and present-day
climate (ssp370pdSST) under the same future emissions trajectory (SSP3-7.0). A multi-model
global average climate change benefit on surface ozone of−0.96± 0.07 ppbv ◦C−1 is calculated
which is mainly linked to the dominating role of enhanced ozone destruction with higher water
vapour abundances under a warmer climate. Over regions remote from pollution sources, there is a
robust decline in mean surface ozone concentration on an annual basis as well as for boreal winter
and summer varying spatially from−0.2 to−2 ppbv ◦C−1, with strongest decline over tropical
oceanic regions. The implication is that over regions remote from pollution sources (except over
the Arctic) there is a consistent climate change benefit for baseline ozone due to global warming.
However, ozone increases over regions close to anthropogenic pollution sources or close to
enhanced natural biogenic volatile organic compounds emission sources with a rate ranging
regionally from 0.2 to 2 ppbv C−1, implying a regional surface ozone penalty due to global
warming. Overall, the future climate change enhances the efficiency of precursor emissions to
generate surface ozone in polluted regions and thus the magnitude of this effect depends on the
regional emission changes considered in this study within the SSP3_7.0 scenario. The comparison
of the climate change impact effect on surface ozone versus the combined effect of climate and
emission changes indicates the dominant role of precursor emission changes in projecting surface
ozone concentrations under future climate change scenarios.

© 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1748-9326/ac4a34
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ac4a34&domain=pdf&date_stamp=2022-1-28
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0373-3918
https://orcid.org/0000-0002-8451-2411
mailto:zanis@geo.auth.gr
http://doi.org/10.1088/1748-9326/ac4a34


Environ. Res. Lett. 17 (2022) 024014 P Zanis et al

1. Introduction

Surface ozone is widely recognized as a pollutant hav-
ing an impact on human health, crops, and ecosys-
tems while tropospheric ozone plays a key role in
the oxidizing capacity of the troposphere and is an
important greenhouse gas (Monks et al 2015, Young
et al 2018). Given themultifaceted dependence of tro-
pospheric ozone on several meteorological paramet-
ers and various gaseous precursors, and its varying
lifetime (from a few hours in polluted urban regions
up to several months in the upper troposphere), an
estimation of the climate change impact on future
tropospheric and surface ozone levels is a complicated
task with a regional context.

The future tropospheric and surface ozone
changes at the global scale depend on changes
in chemical ozone production and loss processes,
stratosphere–troposphere exchange (STE), and
deposition (Young et al 2013). The future changes
in chemical ozone production and loss are strongly
related to changes in anthropogenic and natural
emissions of ozone precursors, but also to changes
of meteorological parameters, such as temperature,
water vapour and radiation. During the 21st cen-
tury, changes in climate, ozone depleting substances
(ODSs), and emissions of ozone precursor species
are expected to be the major factors governing ozone
concentration distribution in the stratosphere, the
free troposphere, and at the surface (Fiore et al 2015,
Revell et al 2015).

Focusing solely on the response of surface ozone
to climate-driven changes (instead of the response
to anthropogenic emission-driven changes of ozone
precursor species), the 5th IPCC Assessment Report
(Kirtman et al 2013) assessed that there is high confid-
ence that in unpolluted regions, higher water vapour
abundances and temperatures in a warmer climate
enhance ozone destruction leading to lower baseline
ozone levels, while there ismedium confidence that in
polluted regions surface ozone is expected to increase.
Baseline ozone is defined as the observed ozone at a
site when it is not influenced by recent, locally emitted
or anthropogenically produced pollution (Jaffe et al
2018). The above-mentioned IPCC AR5 assessment
is also supported by several recent studies based on
model projections eitherwith global or regionalmod-
els. The majority of the regional studies are focus-
ing onNorth America (Gonzalez-Abraham et al 2015,
Val Martin et al 2015, Schnell et al 2016, He et al 2018,
Nolte et al 2018, Rieder et al 2018, Gao et al 2020) or
Europe (Colette et al 2015, Lacressonnière et al 2016,
Schnell et al 2016, Fortems-Cheiney et al 2017), but
there are also a few studies focused on East Asia (Lee
et al 2015, Schnell et al 2016) and India (Pommier et al
2018). Over polluted regions of the world, such as in
North America, Europe, and East Asia, model studies

project a general increase of surface ozone levels in
a future warmer climate, particularly during sum-
mertime as has been recently reviewed (Fu and Tian
2019). This future surface ozone increase, due to a
warming climate in the absence of changes in anthro-
pogenic polluting activities, reflects a climate change
penalty on ozone (Wu et al 2008, Fiore et al 2015, Fu
and Tian 2019).

However, the response of surface ozone to cli-
mate induced Earth system changes is complex due
to counteracting effects of various processes affected
by a warmer climate. Such processes, including STE,
biosphere interactions, lighting and soil NOx emis-
sions, wildfires, as well as anticyclonic stagnation con-
ditions and heatwaves, can affect and modify future
baseline and regional/local surface ozone levels (Fiore
et al 2012, 2015, Fu and Tian 2019). Studies consid-
ering the individual effects of climate driven changes
in specific precursor emissions or processes show
increases in surface ozone under warmer climate for
certain processes. This is indeed the case for enhanced
STE and stratospheric ozone recovery (Kawase et al
2011, Sekiya and Sudo 2014, Hess et al 2015, Banerjee
et al 2016, Meul et al 2018, Morgenstern et al 2018,
Akritidis et al 2019), and the increase of soil NOx

emissions (Wu et al 2008, Romer et al 2018), which
can each lead to 1 and 2 ppbv increase in surface
ozone.

Other temperature-dependent processes, includ-
ing biosphere interactions affecting biogenic volatile
organic compounds (BVOCs), naturalmethane emis-
sions and ozone deposition (O’Connor et al 2010,
Clifton et al 2014, Fu and Liao 2016, Hollaway et al
2017, Jiang et al 2018, Ma et al 2019, Lin et al
2020), lightning NOx emissions (Banerjee et al 2014,
Murray 2016) as well as wildfires (Lin et al 2017) and
anticyclonic stagnation conditions (Jing et al 2017,
Schnell and Prather 2017, Garrido-Perez et al 2018)
are expected to play a key role in future surface ozone
and even occurrence of high pollution events (e.g. in
the case of wildfires and anticyclonic stagnation con-
ditions) but their effects are difficult to quantify in
isolation. For example, models can disagree on both
the sign and magnitude of changes in surface ozone
due to the individual model’s climate sensitivity and
varying level of complexity in the implementation of
processes like temperature and land-use/land-cover
sensitive BVOC emissions, deposition, CO2 inhibi-
tion of isoprene emissions and model assumptions
on the yields of isoprene nitrates (Squire et al 2015,
Val Martin et al 2015, Schnell et al 2016, Pommier
et al 2018). The direction of change of lightning
activity in the future remains also highly uncertain
(Clark et al 2017, Finney et al 2018), thus indicating
that there is low confidence for the climate-induced
changes of lightningNOx emissions on surface ozone.
For wildfires there are a number of uncertainties to
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be considered as fires modify the structure and dis-
tribution of the terrestrial ecosystem with feedbacks
in albedo, ecosystem properties, and emissions of
BVOCs, GHGs, and other trace species (Voulgarakis
and Field 2015, Hantson et al 2016, Li et al 2017,
Rabin et al 2017) while there is also feedback of
wildfire-induced ozone pollution to global terrestrial
gross primary productivity (Yue and Unger 2018).
Although regional stagnation and heat waves have
been often associated with high ozone concentra-
tions and positive ozone-temperature sensitivity in
a number of studies (Fiore et al 2012, Gao et al
2013, 2020, Jing et al 2017, Schnell and Prather 2017,
Garrido-Perez et al 2018, Zhang et al 2018), weak
correlations between observed summertime surface
ozone and high-ozone events and the air stagnation
index (ASI) or the number of stagnant days over the
US have been reported by others (Oswald et al 2015,
Sun et al 2017, Kerr and Waugh 2018).

It has been also shown that surface ozone changes,
robustly attributable to climate warming alone, may
not emerge above the noise driven by internal vari-
ability until after 2050 and hence a simulation
framework over longer periods is necessary to dis-
entangle climate change from interannual variabil-
ity (Barnes et al 2016, Lacressonnière et al 2016,
Garcia-Menendez et al 2017).

This study provides, for the first time to our
knowledge, a global multi-model perspective of cli-
mate change penalty and benefit on regional sur-
face ozone based on quantitative estimates from five
CMIP6 models of the spatially distributed ∆O3/∆T
index and the ozone changes for different warming
levels. Section 2 presents the data used and the meth-
odology applied in this study. In section 3 the key res-
ults of this study are presented and discussed, while,
finally, in section 4 themain conclusions are summar-
ized and discussed.

2. Data andmethodology

AerChemMIP (Aerosol Chemistry Model Intercom-
parison Project), which is endorsed by CMIP6, aims
at quantifying the impacts of aerosols and chemic-
ally reactive gases on climate and air quality (Collins
et al 2017). As part of AerChemMIP, the experi-
ments ssp370SST and ssp370pdSST were carried out
with GFDL-ESM4 (Dunne et al 2020, Horowitz et al
2020), UKESM1-0-LL (Sellar et al 2019, Archibald
et al 2020), MRI-ESM2-0 (Yukimoto et al 2019a,
Oshima et al 2020), EC-Earth3-AerChem (van Noije
et al 2021) and GISS-E2-1-G (Bauer et al 2020, Kelley
et al 2020, Miller et al 2021). Tropospheric and sur-
face ozone in the coupled atmosphere–ocean ssp370
experiment, simulated with GFDL-ESM4, UKESM1-
0-LL, MRI-ESM2-0 and GISS-E2-1-G, have been
assessed and discussed by Turnock et al (2020) and
Griffiths et al (2021).

The simulations under AerChemMIP ssp370SST
and ssp370pdSST experiments were used to quantify
the effect of climate change on surface ozone.
The ssp370SST experiment follows the ssp370 scen-
ario with time-varying SSTs from coupled model
ssp370 simulations. The ssp370pdSST experiment
has similar experimental set up as ssp370SST except
that sea surface temperatures (SST) and sea ice
concentrations are taken from a present-day cli-
matology (2005–2014) from each model’s his-
torical simulation and remain constant over the
entire period of the experiment (2015–2100). Both
ssp370SST and ssp370pdSST experiments con-
sider future anthropogenic emissions following
the SSP3_7.0 scenario as described in Turnock
et al (2020) and Griffiths et al (2021). Practically,
ssp370pdSST simulations depict the effect of emis-
sion changes onlywhile ssp370SST simulations depict
the combined effect of climate and emission changes.
Hence, by subtracting ssp370pdSST from ssp370SST
the effect from climate change can be deduced. This
is manifested through changes in chemistry, trans-
port, natural emissions, and deposition with the
latter two depending on the level of interactive-
ness at which these processes are represented in the
models.

For each model the change in surface ozone con-
centrations is calculated as the difference between
the ssp370SST and ssp370pdSST experiments which
can then be averaged to provide the multi-model
mean change. The difference between the ssp370SST
and ssp370pdSST in global mean annual near-surface
temperature was calculated for each model and used
as an index of global warming. To assess the changes
in surface ozone concentrations for each scenario
(ssp370SST and ssp370pdSST), future concentra-
tions from each model have been compared to mean
values calculated over the 2005–2014 period from
the respective historical AerChemMIP experiment
(histSST).

The chemical ozone production and loss terms
are provided as model diagnostics (diagnostic vari-
able names: ‘o3prod’ and ‘o3loss’) for the calcula-
tion of the net chemical ozone production termwhich
can then be related to global warming in the afore-
mentioned model simulations. The ozone produc-
tion term is based on the sum of all the HO2 + NO
and RO2 + NO reactions, while the loss term is
based on the sum of the following ozone loss reac-
tions; O(1D) + H2O, O3 + HO2, O3 + OH and
O3 + alkenes.

Furthermore, the stratospheric ozone tracer dia-
gnostic (diagnostic variable name: ‘o3ste’) available
for two out of the five models (EC-Earth3-AerChem
and GFDL-ESM4) was also used in the analysis (see
models’ description in appendix). In this way, ozone
that originates in the stratosphere can be traced
through the troposphere.
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Table 1. Information on model resolution, vertical levels, type, simulations and references. Each experiment has a variant label
resembled by r<k>i<l>p<m>f<n> where k= realization_index, l= initialization_index,m= physics_index and n= forcing_index.

Model Resolution Vertical levels Model type

ssp370SST
ssp370pdSST
variant label

Simulation
reference

GFDL-ESM4 1◦ × 1.25◦ 49 levels;
top level 0.01 hPa

ESM interactive
chemistry

r1i1p1f1 Horowitz et al
(2018a, 2018b)

UKESM1-0-LL 1.25◦ × 1.875◦ 85 levels;
top level 85 km

ESM interactive
chemistry

r1i1p1f2 O’Connor
(2020a, 2020b)

MRI-ESM2-0 1.125◦ × 1.125◦ 80 levels;
top level 0.01 hPa

ESM interactive
chemistry

r1i1p1f1 Yukimoto et al
(2019b, 2020)

EC-Earth3-
AerChem

3◦ × 2◦ 34 levels;
top level 0.1 hPa

ESM interactive
chemistry

r1i1p1f1 EC-Earth
Consortium
(2020a, 2020b)

GISS-E2-1-G 2◦ × 2.5◦ 40 levels;
top level 0.1 hPa

CCM interactive
chemistry

r1i1p3f1 NASA
(2020a, 2020b)

Three out of the five ESMs have interactive
BVOC emissions (GISS-E2-1-G, GFDL-ESM4, and
UKESM1-0-LL) implying BVOC emission changes
under SSP370 global warming. However, BVOC
emissions are implemented with a varying level of
complexity in the model simulations, as CO2 inhib-
ition of isoprene emissions is considered only in
UKESM1-0-LL. Lightning NOx emissions are calcu-
lated interactively in all models. Wildfire emissions
are prescribed in the model simulations and hence
there is no feedback of wildfire-induced ozone pol-
lution under global warming. Land-use and land-
cover are also fixed for all models in ssp370SST and
ssp370pdSST experiments.

Relevant information for each model and the ref-
erence of the simulation experiments are shown in
table 1. A short description for each one of the earth
system models and chemistry climate models used in
this study is provided in appendix.

3. Results

Based on eachmodel’s historical simulation (histSST)
the multi-model mean global surface ozone con-
centration is 32.3 ± 5.8 ppbv over the period
2005–2014. The respective values over the decade
2015–2024 based on ssp370SST and ssp370pdSST
experiments are 31.7± 4.2 ppbv and 32.0± 4.3 ppbv,
respectively. The annual cycle of surface ozone
(2005–2014) for each model and the multi-model
mean is compared with observations from the Tro-
pospheric Ozone Assessment Report across differ-
ent world regions in figure S1 (available online
at stacks.iop.org/ERL/17/024014/mmedia), following
that done in Turnock et al (2020). Across most
regions, the multi-model mean annual cycle cap-
tures the key features of the observed seasonality but
with commonly positive biases which become lar-
ger in summer than in winter. Especially in oceanic
regions, surface ozone is overestimated in the models

across all seasons. Additionally, the timing of peak
ozone over continental Northern Hemisphere loca-
tions occurs earlier in the observations (springtime)
than in the models (spring and summer), which
is consistent with previous model evaluation stud-
ies (Young et al 2018 and references therein). The
models’ diversity is larger in the continental regions
than in oceanic regions with UKESM1-0-LL and
EC-Earth3-AerChem diverging the most from the
multi-model mean over the Northern Hemisphere.
The possible sources of models’ structural uncer-
tainty that lead to ozone differences are discussed by
Turnock et al (2020) and Griffiths et al (2021). Fur-
thermore, figure S2 shows annualmean surface ozone
concentrations and the associated standard deviation
for each model based on ssp370pdSST simulations
from 2015 to 2100. Despite the diversity among the
models on the absolute annual surface ozone con-
centrations, the models show common patterns in
the spatial distribution with higher values simulated
in the Northern Hemisphere continental regions and
lower over the oceanic regions in the tropics and the
Southern Hemisphere. The models also show similar
patterns in the spatial distribution of the standard
deviation indicating common sources for the simu-
lated ozone variability.

The change in global mean annual near-surface
temperature (figure 1) serves as an index of global
warming for the SSP3-7.0 scenario with respect to the
present day (2005–2014) (ssp370SST-ssp370pdSST)
during the time period from 2015 to 2100 for each
model and the multi-model mean. Among the mod-
els, UKESM1-0-LL presents the highest warming
trend over the 21st century, due to its high equi-
librium climate sensitivity (5.4 ◦C based on the
method of Gregory et al 2004) as documented by
Sellar et al (2019). The smallest warming trend is
simulated by the GFDL-ESM4 due to its smaller
equilibrium climate sensitivity (2.7 ◦C based on the
method of Gregory et al 2004) as documented by
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Figure 1. Time series of global annual surface ozone change (ssp370SST-ssp370pdSST) and global annual surface temperature
change (ssp370SST-ssp370pdSST) during the time period from 2015 to 2100, for the individual CMIP6 models (GFDL-ESM4,
UKESM1-0-LL, MRI-ESM2-0, EC-Earth3-AerChem, GISS-E2-1-G) and the multi-model mean (MMM).

Dunne et al (2020). The global annual surface ozone
change (ssp370SST-ssp370pdSST), shown in figure 1,
depicts purely the climate change effect with a prom-
inent decreasing trend over the period from 2015
to 2100 for each model and the multi-model mean.
As it is illustrated in figure 2, there is a promin-
ent anti-correlation between global temperature and
global ozone changes for each model and the multi-
model mean. The calculated regression coefficients
∆O3/∆T for each model are shown in table 2 with a
value of−0.96± 0.07 ppbv ◦C−1 for themulti-model
mean.

To spatially decompose the regression coefficient
∆O3/∆T during the time period from 2015 to 2100,
we applied this regression methodology for every
model grid point to produce the spatial pattern of
the regression coefficient of annual surface ozone
change (ssp370SST-ssp370pdSST) over annual sur-
face temperature change (ssp370SST-ssp370pdSST)
(figure 3(a)). Similarly, the spatial patterns of the
regression coefficient ∆O3/∆T were also calculated
for the boreal winter/austral summer period includ-
ing the months December, January, February (DJF)
and for the boreal summer/austral winter period
including the months June, July, August (JJA), as
shown in figures 3(b) and (c), respectively.

Figure 3 shows a statistically significant and
robust future climate change signal on surface

ozone over the oceanic regions ranging between
−1 to−2 ppbv ◦C−1 on an annual basis, as well as
for DJF and JJA. Similarly, land-based regions that
are located away from large pollution sources also
show a comparable (but smaller) reduction in surface
ozone due to the climate change signal. However,
it should noted the stronger models diversity over
the continental areas with non-robust signal. Gen-
erally, over regions remote from pollution sources
(except the Arctic), there is a consistent decline in
mean annual surface ozone concentration due to
the global warming associated with ssp370, with the
decrease varying spatially from−0.2 to−2 ppbv ◦C−1

with the strongest decline seen over tropical oceanic
regions. This can be attributed to increased net ozone
chemical destruction by water vapour under increas-
ing global near-surface temperatures over the 21st
century in the SSP3-7.0 scenario. The implication is
that over regions remote from pollution sources there
is a consistent climate change benefit for baseline
ozone due to global warming.

However, over regions close to anthropogenic
pollution sources as assumed in the SSP3-7.0 scenario
(south-eastern China and India) or close to enhanced
natural BVOC emissions sources (e.g. areas in Africa
and south America), there are positive values of the
regression coefficient ∆O3/∆T ranging regionally
from 0.2 to 2 ppbv ◦C−1 implying a regional surface
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Figure 2. Scatter plot of global annual surface ozone change (ssp370SST-ssp370pdSST) versus global annual surface temperature
change (ssp370SST-ssp370pdSST) over the period 2015−2100, for the individual CMIP6 models (GFDL-ESM4, UKESM1-0-LL,
MRI-ESM2-0, EC-Earth3-AerChem, GISS-E2-1-G) and the MMM.

Table 2. Regression coefficient∆O3/∆T and explained variance R2 deduced from linear regression between global annual surface ozone
change (ssp370SST-ssp370pdSST) and global annual surface temperature change (ssp370SST-ssp370pdSST) during the time period
from 2015 to 2100, for each model and the multi-model mean.

Model
Regression coefficient
∆O3/∆T (ppbv ◦C−1)

Explained
variance R2 (%)

GFDL-ESM4 −0.85± 0.02 93.4
UKESM1-0-LL −0.79± 0.03 91.1
MRI-ESM2-0 −1.04± 0.04 87.6
EC-Earth3-AerChem −0.94± 0.02 97.5
GISS-E2-1-G −1.20± 0.04 91.7
Multi-model mean −0.93± 0.01a 98.5
a The multi-model mean regression coefficient∆O3/∆T is−0.96± 0.07 based on averaging

the regressions coefficients from individual models.

ozone penalty due to global warming. The individual
models show this robustly for south-eastern China
and India (four out five models agree on the sign of
change) but there are model differences in regions

of Europe and the US as well as in Africa and
south America (figure S3 in supplementarymaterial).
The magnitude of the above-mentioned regional sur-
face ozone penalty is comparable to the magnitude
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Figure 3. Spatial distribution of the regression coefficient of surface ozone change (ssp370SST-ssp370pdSST) over surface
temperature change (ssp370SST-ssp370pdSST) (ppbv ◦C−1),∆O3/∆T, on an annual basis (a), for DJF (b), and for JJA (c),
during the time period from 2015 to 2100, for the CMIP6 multi-model mean (GFDL-ESM4, UKESM1-0-LL, MRI-ESM2-0,
EC-Earth3-AerChem, GISS-E2-1-G). The areas without hatching indicate that modelled regression coefficients are statistically
significant (at the 95% significance level) and agree on the sign for at least four out of five models (80%).

of the large-scale baseline ozone benefit and so it
provides some degree of offsetting on larger contin-
ental scale, but regionally the ozone penalty over pop-
ulated regions would be detrimental.

The robust surface ozone penalty due to global
warming for south-eastern China and India can be
attributed to the much stronger and spatially extens-
ive NOx emissions over these regions in relation
to the rest of the world during the 21st century

under the SSP370 scenario (figure S4 in supple-
mentary material). The positive effect of climate
change on surface ozone over regions close to
anthropogenic pollution sources (as assumed in the
SSP3-7.0 scenario) is emphasised and explained by
the positive local net ozone production rates due to
global warming as illustrated in figure S5 (in sup-
plementary material) with the highest robust val-
ues over south-eastern China and India, as well
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as in parts of Africa and south America. This is
a robust signal in each one of the models except
for EC-Earth3-AerChem in which peak NOx levels
in polluted regions are moderated by the relatively
coarser resolution (3◦ × 2◦) compared to the other
models.

Over the US, there is a robust annual mean ozone
benefit ranging from −0.2 ppbv ◦C−1 over the east-
ern US to−0.8 ppbv ◦C−1 over the western US which
becomes slightly positive but non-robust among the
models (an ozone penalty of 0.2 ppbv ◦C−1) over
the north-eastern US during JJA (figure 3). Similarly,
over Europe, there is a non-robust slight ozone bene-
fit on an annual basis and in DJF which becomes
slightly positive but non-robust among the mod-
els (an ozone penalty of 0.2 ppbv ◦C−1) during
JJA (figure 3). These slightly negative or positive (in
JJA) signals over the US and Europe can be attrib-
uted: (a) to the generally much lower anticipated
NOx emissions (compared to east China and India)
during the 21st century under the SSP370 scenario
(figure S4 in supplementary material), (b) to con-
tributions from enhanced BVOC emissions for the
models that have interactive BVOC emissions (figure
S6 in supplementary material), enhanced lightning
NOx emissions (figure S7 in supplementary mater-
ial), and STE (figure S8 in supplementary material),
and (c) the competitive role of the large scale back-
ground ozone chemical destruction linked to more
water vapour under global warming. Hence, these
factors (due to compensating effects) lead to a low
sensitivity of surface ozone to climate change and
a lack of model agreement in the sign of changes
under global warming over these regions. Among the
models, UKESM1-0-LL reveals the largest ozone pen-
alty over Europe (and North America to a certain
extent) in JJA (figure S3 in supplementary mater-
ial) due to higher NOx emissions over north-western
Europe and the north-eastern US as well as due its
high equilibrium climate sensitivity. It is interest-
ing to note that the slight ozone penalty values in
JJA for Europe and the US are consistent with the
positive but non-robust effect of global warming on
local net ozone production rate over parts of the US
and Europe during JJA (figure S5 in supplementary
material).

Over areas of Africa and South America with
enhanced natural BVOC emissions sources (figure
S6 in supplementary material), there are non-robust
signs of positive ozone responses to global warm-
ing (figure 3), which are presumably linked to model
differences in the parameterization of BVOC emis-
sion. As mentioned in section 2, only three out
of the five models have interactive BVOC emis-
sions (GISS-E2-1-G, GFDL-ESM4, and UKESM1-0-
LL), while among these three models CO2 inhib-
ition of isoprene emissions is accounted only in

UKESM1-0-LL. The models that have interactive
BVOC emissions (GISS-E2-1-G, GFDL-ESM4, and
UKESM1-0-LL) show increases in BVOC emis-
sions under SSP370 warming over areas in Africa
and south America (figure S6 in supplementary
material).

Beyond model differences in BVOC emissions,
unravelling the effect of global warming on sur-
face ozone over areas of Africa and South America
becomes more complicated due to model differ-
ences in the contribution of climate change induced
lightning NOx emissions (figure S7 in supplement-
ary material). GISS-E2-1-G, MRI-ESM2-0 and
UKESM1-0-LL show consistent increases under
SSP370 warming especially over areas in Africa
and south America while this is not the case for
GFDL-ESM4 and EC-Earth3-AerChem. MRI-ESM2-
0 (which does not have interactive BVOC emissions)
is more sensitive as the positive ozone response
is strong and more extensive over areas in Africa
and South America (figure S3), which is presum-
ably linked to increases in lightning NOx emis-
sions under SSP3-7.0 warming (figure S7) and
more sensitive net chemical ozone production term
over land. On the other hand, EC-Earth3-AerChem
(which does not have either interactive BVOC emis-
sions) shows weak positive (or even negative) ozone
response signal over these regions in Africa and
south America (figure S3), while the lightning NOx

emission changes under SSP370 warming are also
weak.

Aiming to find out the ozone change that would
occur due to reaching a warming level such as that
targeted for Paris Agreement, we followed an addi-
tional approach as illustrated in figure 4. Figure 4
depicts the effect of climate change on surface ozone
concentrations for different warming levels using
changing global mean surface air temperature in the
21st century. Based on this approach, the surface
ozone change for each model corresponds to the
same level of warming which is reached at a slightly
different time period in each model. This means
that there are two levels of inter-model diversity—
one from the diversity in climate sensitivity caus-
ing models to reach warming target at different
times and the other is from the sign and magnitude
of ozone change simulated for these targets. Sim-
ilarly, to figure 3(a), this figure illustrates a robust
reduction in annual mean surface ozone concentra-
tions in most regions and an ozone penalty over
continental regions close to anthropogenic pollu-
tion sources (south-eastern China and India) or
close to enhanced natural BVOC emissions sources
(e.g. areas in Africa and South America, but the
changes are not robust) with the signals becoming
larger for increasing warming levels. However, the
individual CMIP6 models disagree on the sign of
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Figure 4.Multi-model annual mean change in surface ozone (ppbv) concentrations from five CMIP6 models (GFDL-ESM4,
UKESM1-0-LL, MRI-ESM2-0, EC-Earth3-AerChem, GISS-E2-1-G) in response to a (a) 1.0 ◦C, (b) 1.5 ◦C, (c) 2.0 ◦C and
(d) 2.5 ◦C increase in global mean surface air temperature. For each model the change in surface O3 concentrations is calculated
as difference between the ssp370SST and ssp370pdSST experiments in the year when the difference in the global mean surface air
temperature between the experiments exceeds the relevant threshold. The difference is calculated as a 20 years mean in surface
ozone concentrations around the year when the temperature threshold in each model is exceeded. The multi-model change in
global annual mean surface ozone concentrations (±1 standard deviation) is shown within parenthesis. Areas are hatched when
less than four out of five models (80%) agree on the sign of change in surface ozone concentrations.

the surface ozone response over most of the north-
ern hemisphere area, particularly at the lower sur-
face temperature thresholds, although the agreement
between models increases at the 2.5 ◦C temperature
change.

A striking feature in both figures 3 and 4, is the
robust sign of increase in surface ozone over the
Arctic which is strongest in DJF but is offset by a
decreasing signal in JJA to become a weaker posit-
ive signal on an annual mean basis. This increase in
surface ozone is not accompanied by increase in local
net chemical production rate as evident in figure S5
(in supplementary material). However, investigation
of the stratospheric ozone tracer diagnostic available
for two out of the five models (EC-Earth3-AerChem
and GFDL-ESM4) reveals an increase for the stra-
tospheric tracer at near surface over the Arctic for
both models in DJF which is also evident with a
weaker signal on an annual mean basis (figure S8 in
supplementary material). This implies a dynamical
cause for the surface ozone increase over the Arctic

through stratosphere-to-troposphere transport pre-
sumably linked to enhanced STE and stratospheric
ozone recovery over the 21st century under global
warming.

To compare the climate change effect on sur-
face ozone versus the combined effect of climate
and emission changes, the futuremulti-model change
in surface ozone concentrations averaged across the
months of boreal summer for ten continental regions
and globally in 2050 and 2095 from the five CMIP6
models in the ssp370SST experiments and the dif-
ference between the ssp370SST and ssp370pdSST
experiments (figure 5). Across most regions, the
effect of climate change reduces surface ozone con-
centrations except for Southern and Eastern Asia,
whereas the combined effect of changes in ozone pre-
cursor emissions and climate change increases sur-
face ozone concentrations across most world regions.
This reveals the dominant role of emission changes
on surface ozone changes under future climate change
scenarios.
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Figure 5. Change in surface ozone between a 2005–2014 mean and two future time periods in each scenario for five models. The
difference is calculated from a 10 year multi-model mean centred on (a) 2050 and (b) 2095. Values in brackets are regional
multi-model mean values and the standard deviation calculated over the 2005–2014 period from the histSST experiment of each
model. Future multi-model change in surface ozone concentrations (ppb) are averaged across the months of JJA in 2050 and 2095
from five CMIP6 models (GFDL-ESM4, UKESM1-0-LL, MRI-ESM2-0, EC-Earth3-AerChem, GISS-E2-1-G) in the ssp370SST
(red) experiments and the difference between the ssp370SST and ssp370pdSST (green) experiments. Changes in surface ozone
concentrations are averaged across the globe and ten other continental regions. Each black point represents a 10 year multi-model
mean response in each of the scenarios centred on the particular time period, with the coloured bar showing the standard
deviation in the multi-model response. Note that the difference between the green bars (ssp370SST-ssp370pdSST) and the red
bars (ssp370SST) denotes the effect of emission changes in isolation.

4. Discussion and conclusions

A multi-model global annual average ozone climate
benefit of −0.96 ± 0.07 ppbv ◦C−1 was calculated
solely due to global warming in the ssp370 scenario.
Previous modelling studies reported similar global
estimates ranging from −0.7 ppbv to −0.88 ppbv
for a temperature change of roughly 0.7 ◦C by 2030s
for different scenarios (Dentener et al 2006, Unger
et al 2006). In this range, Racherla and Adams
(2006) reported a global surface ozone decrease of
−1.3 ppbv for a temperature change of 1.7 ◦C by
2050s. When splitting land and ocean ∆O3/∆T, a
multi-model mean value of−1.12 ppbv ◦C−1 for the
oceanic regions and −0.44 ppbv ◦C−1 for the land
is estimated. If ∆O3/∆T over land is weighted by
NOx emissions (shown in figure S4), then a value of
+0.06 ppbv ◦C−1 is calculated, which highlights the
importance of NOx emissions over polluted regions
in creating an ozone penalty. Nevertheless, the ozone
decrease across the oceans dominates the large-scale
baseline ozone decrease which through atmospheric

circulation provides some degree of offsetting on lar-
ger continental scale and may act to moderate any
ozone penalty signals over polluted regions.

Spatially, over regions remote from pollution
sources, there is a robust decline in mean surface
ozone concentrations varying spatially from −0.2 to
−2 ppbv ◦C−1, with the strongest decline over trop-
ical oceanic regions. A similar conclusion is reached
from the inspection of surface ozone concentration
changes for different warming levels with the ozone
decreases becoming larger with increasing warming
levels. The implication is that over regions remote
from pollution sources there is a consistent cli-
mate benefit for baseline ozone due to global warm-
ing. This is mainly linked to the dominating role
of enhanced ozone destruction with higher water
vapour abundances under a warmer climate, as has
been also shown in several previous studies (e.g.
Johnson et al 1999,Hauglustaine et al 2005, Stevenson
et al 2005, Murazaki and Hess 2006, Zeng et al 2008,
Doherty et al 2013, Fiore et al 2015, Fu and Tian
2019).
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In contrast, over regions close to anthropogenic
pollution sources (as assumed in the SSP3-7.0 scen-
ario) or close to enhanced natural BVOC emission
sources, there are ozone increases with a rate ran-
ging regionally from 0.2 to 2 ppbv ◦C−1 implying a
regional surface ozone penalty due to globalwarming.
The role of local photochemical ozone production for
the ozone increase over these regions is justified by
positive local net ozone production rates due to global
warming. The individual CMIP6 models show this
chemically driven ozone penalty robustly for south-
eastern China and India due to the stronger and spa-
tially extensive NOx emissions over these regions than
over other continental regions during the 21st cen-
tury under the SSP3-7.0 scenario. Ozone penalties at
polluted regions (with largeNOx emissions, including
large biomass burning emissions) have been reported
in various previous studies (Hauglustaine et al 2005,
Stevenson et al 2005, Dentener et al 2006, Murazaki
and Hess 2006, Racherla and Adams 2006, Unger et al
2006, Zeng et al 2008, Bloomer et al 2009, Doherty
et al 2013).

Over Europe and the US, there are slightly neg-
ative or positive ozone changes, which are related to
the much lower NOx emissions than in eastern China
and India, as well as to contributions from enhanced
BVOC and lightning NOx emissions, STE, and the
competitive role of the large-scale baseline ozone
chemical destruction. Hence, compensating effects
from these processes and model differences in para-
meterizations of BVOC and lightning NOx emissions,
and STE lead to low sensitivity of surface ozone to cli-
mate change and lack ofmodel agreement for the sign
of changes under global warming. The above men-
tioned heterogeneity in model results is also found in
previous regional studies focusing on North Amer-
ica (Gonzalez-Abraham et al 2015, Val Martin et al
2015, Schnell et al 2016, He et al 2018, Nolte et al
2018, Rieder et al 2018) or Europe (Katragkou et al
2011, Colette et al 2015, Lacressonnière et al 2016,
Schnell et al 2016, Fortems-Cheiney et al 2017). For
European land areas, previous studies have estim-
ated a summertime average ozone climate penalty as
a function of the average European surface temperat-
ure anomaly of+0.17 ppbv ◦C−1 (Colette et al 2015),
which is consistent with the estimated range of 0 to
+0.2 ppbv ◦C−1 inferred by the multi-model mean
of CMIP6models over parts of Europe. Furthermore,
positive relationships were also reported for three
CCMs, with the climate penalty ranging between 0.34
and 1.20 ppbv ◦C−1 for three midlatitude regions in
North America, Europe and East Asia from May to
September (Doherty et al 2013).

The low sensitivity of surface ozone to climate
change over Europe and the US versus the high sens-
itivity over south-eastern China and India points
to the fact that climate change enhances the effi-
ciency of precursor emissions to generate surface

ozone in polluted regions, but the magnitude of this
effect depends on the regional emissions considered
versus the competitive role of the large-scale baseline
ozone chemical destruction. Most of previous stud-
ies quantified ozone climate penalty for different
global warming scenarios while holding the ozone
precursor emissions fixed at present day (Colette
et al 2015, Schnell et al 2016). Schnell et al (2016)
showed climate-driven increases in summertime sur-
face ozone over the north-easternUS, parts of Europe,
and north-eastern China under RCP8.5 warming
scenario with anthropogenic precursor emissions
fixed to present day. In our study, anthropogenic pre-
cursor emissions follow the business-as-usual scen-
ario SSP3-7.0. However, the use of either present-day
or future business-as-usual scenarios of anthropo-
genic precursor emissions could bias the climate
ozone penalty results. This has been pointed out by
Colette et al (2013) reporting that the climate ozone
penalty will decrease in magnitude and even become
a net benefit under mitigation scenarios for anthro-
pogenic precursor emissions. Hence it is important
that future studies quantifying climate ozone pen-
alty should consider both business-as-usual and mit-
igation scenarios for anthropogenic precursor emis-
sions. Furthermore, the amplitude of the climate
change penalty on ozone over polluted regions may
be different in high-resolution (regional and urban
scale) models in comparison to coarse resolution
global models as several controlling processes are
resolution dependent, including e.g. meteorological
conditions, local emissions, and sensitivity to the
chemical regime (VOC limited versus NOx limited)
(Lauwaet et al 2014, Markakis et al 2014, 2016).

Ozone increases due to global warming are also
revealed in regions close to enhanced natural BVOC
emission sources such as in Africa and south America,
but the signal is not robust in the multi-model mean
as only three out of the five models have interact-
ive BVOC emissions while there also model differ-
ences in the parameterization of BVOC emission.
Nevertheless, these three models (with interactive
BVOC emissions) show increases due to global warm-
ing over these regions. Previous studies have also
shown increase in BVOC emissions because of cli-
mate warming on local to global scales (Weaver et al
2009, Jiang et al 2018). However, a growing num-
ber of recent studies indicates that the CO2 inhib-
ition of biogenic isoprene emissions reduces future
increases in BVOC emissions andmight even result in
a decrease (Tai et al 2013, Fu and Liao 2016, Hantson
et al 2017, Hollaway et al 2017, Lin et al 2020). In our
studyCO2 inhibition of isoprene emissions is accoun-
ted only in UKESM1-0-LL simulations. Furthermore,
there are feedback processes related to biosphere–
atmosphere interactions which are not considered
in the presented simulations. For example, ozone
itself interacts with vegetation either via stomatal
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uptake with negative feedback in BVOC emissions
and ozone or through a reduced deposition velo-
city of ozone, resulting in positive feedback on ozone
(Franz et al 2017, Sadiq et al 2017, Lombardozzi
et al 2018, Zhou et al 2018). Other relevant studies
indicated that the dry deposition of ozone, driven by
non-stomatal mechanisms (rather than by stomatal
uptake) may alleviate the positive feedback on ozone
over many vegetated surfaces (Clifton et al 2014,
Horváth et al 2018). Even if the emissions of biogenic
VOCs do increase with climate warming, the associ-
ated response of surface ozone over BVOC-rich areas
is still quantitatively uncertain due to the different
model assumptions on the yields of isoprene nitrates
and their subsequent NOx-recycling ratios (Squire
et al 2015). Furthermore, there is lack of knowledge
on quantifying the effect of natural methane emis-
sions on surface ozone under future climate change.
The effect of climate change on ozone via changes
in methane concentrations and lifetime are not con-
sidered as the models use the same prescribed meth-
ane concentrations in all simulations. Overall, the
integrated effect of biosphere interactions on ozone
remains poorly understood and there are model dis-
crepancies for their impact on surface ozone under
global warming with even opposite signs of ozone
changes (Squire et al 2015, Val Martin et al 2015,
Schnell et al 2016, Pommier et al 2018).

There is a robust sign of increase in surface ozone
over the Arctic in DJF by roughly 1 to 2 ppbv ◦C−1

which seems to be associated with dynamical causes
through STE processes under global warming as the
stratospheric ozone tracer (in the two available mod-
els) at the surface reveals an average increase of about
1 to 2 ppbv over the whole period 2015–2100. A
significant increase of surface ozone due to climate
change over the Arctic has been also reported by
Zeng et al (2008) in February/March. The changes
of the net stratospheric influx in STE are linked
to changes of the stratospheric Brewer–Dobson Cir-
culation and the amount of ozone in the lower-
most stratosphere, which are strongly influenced in
a changing climate by the emissions of ODSs and
GHGs (Butchart 2014, Morgenstern et al 2018). Total
column ozone (reflectingmostly stratospheric ozone)
is projected to return to 1960s values by the middle
of the 21st century under the SSP2-4.5, SSP3-7.0,
SSP4-3.4, SSP4-6.0 and SSP5-8.5 scenarios (Keeble
et al 2021). Furthermore, analysis of five CMIP6
models (UKESM1-0-LL, CESM2-WACCM, GFDL-
ESM4,MRI-ESM2-0, andGISS-E2-1-G) showed pro-
nounced stratospheric ozone increases, which impact
the tropospheric-ozone abundance through STE in
the SSP3-7.0 scenario across all models (Griffiths et al
2021). Our findings are in line with a number of
previous model studies showing that both enhanced
stratospheric ozone influx into the troposphere and
stratospheric ozone recovery will tend to increase
the future tropospheric ozone levels, affecting surface

ozone by rougly 1 and 2 ppbv in the extratropics
(Sekiya and Sudo 2014, Hess et al 2015, Banerjee et al
2016, Meul et al 2018, Akritidis et al 2019). How-
ever there are still uncertainties and a large spread
among the different models for the effect of STE
changes on tropospheric and surface ozone related to
stratosphere–troposphere coupling and tropospheric
mixing processes among the models (Morgenstern
et al 2018).

Apart from the limitations resulting from
the uncertainties in processes such as STE and
atmosphere-biosphere interactions discussed above,
we should also consider the limitations in quantifying
the effects on surface ozone under a changing climate
from lightning NOx emissions as well as from wild-
fires. Lightning NOx emissions are calculated inter-
actively in the model simulations of this study, but
there aremodel differences in climate change induced
lightning NOx emissions (ssp370SST-ssp370pdSST
differences). Furthermore, the direction of change of
lightning activity in the future remains also highly
uncertain (Clark et al 2017, Finney et al 2018). In our
study, wildfire emissions are not interactive in the
model simulations and hence there is no feedback
of wildfire-induced ozone pollution under global
warming. Another source of uncertainty of our study
is driven by the diversity in models’ equilibrium cli-
mate sensitivity which leads to diversity in reaching
different warming levels and the associated surface
ozone changes.

The comparison of the climate change impact
effect on surface ozone versus the combined effect
of climate and emission changes reveals the dom-
inant role of emission changes controlling surface
ozone changes under future climate change. This
is in line with the assessments of IPCC AR5 and
AR6, which concluded with high confidence that the
response of surface ozone to climate-driven changes is
more uncertain than the response to emission-driven
changes (Kirtman et al 2013, Szopa et al 2021). In
AR6, the evolution of surface ozone is shown to be
very variable within each region depending on the
choices assumed in the various SSP scenarios regard-
ing air pollution control (Szopa et al 2021).

5. Key-note messages

Overall, a warmer climate under SSP3-7.0 scenario
is expected to reduce surface ozone (ozone benefit)
in unpolluted regions (from −0.2 to −2 ppbv ◦C−1)
and globally (approximately −1 ppbv ◦C−1) because
of greater water vapour abundance accelerating ozone
chemical loss. It is also expected to increase sur-
face ozone (ozone penalty) by a few ppbv (up to
2 ppbv ◦C−1) over polluted regions depending on
the regional emissions considered in this study within
the SSP3-7.0 scenario and the competitive role of
the large-scale baseline ozone chemical destruction.
However, there are uncertainties in several processes
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affected in a warmer climate including biosphere-
atmosphere interactions, STE, wildfires and lighting
NOx emissions, which can affect and modify future
baseline and regional/local surface ozone levels. The
overall response of surface ozone to climate-driven
changes is more uncertain than the response to
emission-driven changes, which play the dominant
role in controlling surface ozone changes under future
climate change. It is important for air pollution
policies that upcoming studies quantifying climate
ozone penalty should consider both business-as-
usual and different mitigation scenarios for anthro-
pogenic precursor emissions. Thiswork underlines an
additional need to reduce ozone pollution to avoid or
limit the climate penalty at polluted regions due to a
warmer climate.

Our multi-model analysis focuses at large-scale
responses of annual and seasonal surface ozone to
climate change on decadal climatic timescales. Thus,
due to the non-linear nature of ozone chemistry the
investigation of climate-driven changes in pollution
episodes and ozone extremes at hourly and daily tem-
poral resolution is masked. Further work on ozone
extremes in selected polluted regions based on ESMs
would be an asset for air pollution policies as heat
waves and air pollution episodes pose a serious threat
to human health and may worsen under future cli-
mate change depending on the scenario.
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Appendix. Description of models

A.1 GFDL-ESM4
The atmospheric component of GFDL-ESM4
(Dunne et al 2020), called AM4.1, includes an inter-
active tropospheric and stratospheric gas-phase and
aerosol chemistry scheme (Horowitz et al 2020). The
model includes 76 prognostic (transported) chemical
tracers and 40 diagnostic (non-transported) chem-
ical species, with 43 photolysis reactions, 190 gas-
phase kinetic reactions, and 15 heterogeneous reac-
tions. The tropospheric chemistry includes reactions
for the NOx–HOx–Ox–CO–CH4 system and oxida-
tion schemes for other NMVOCs. The stratospheric
chemistry accounts for the major ozone loss cycles
(Ox, HOx, NOx, ClOx, and BrOx) and heterogen-
eous reactions on liquid and solid stratospheric aer-
osols as in Austin et al (2012). The chemical system
is solved using an implicit Euler backward method
with Newton–Raphson iteration. Photolysis rates are
calculated interactively using the FAST-JX version
7.1 code, accounting for the radiative effects of sim-
ulated aerosols and clouds. Emissions of BVOCs,
including isoprene and monoterpenes, are calcu-
lated online in AM4.1 using the Model of Emissions
of Gases and Aerosols from Nature (Guenther et al
2006), as a function of simulated air temperature and
shortwave radiative fluxes. Details on the chemical
mechanism are included in Horowitz et al (2020).
Lightning NOx emissions are calculated interactively
as a function of subgrid convection diagnosed by the
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double-plume convection scheme described by Zhao
et al (2018). The lightning NOx source is calculated
as a function of convective cloud-top height, follow-
ing the parameterization of Price et al (1997) and is
injected with the vertical distribution of Pickering
et al (1998). Anthropogenic and biomass burning
emissions are prescribed from the dataset of Hoesly
et al (2018) and van Marle et al (2017) developed in
support of CMIP6. Natural emissions of ozone pre-
cursors are not calculated interactively but they are
prescribed as in Naik et al (2013). The stratospheric
ozone tracer diagnostic (o3ste) is defined using an
e90 tropopause (Prather et al 2011). Above the local
e90 tropopause, o3ste is set to be equal to ozone for
each time step. Below the e90 tropopause, o3ste is lost
with a loss frequency corresponding to odd-oxygen
loss via reactions O1D+H2O, HO2 +O3, OH+O3,
O3 + alkenes, NO2 + OH, heterogeneous loss of
N2O5, NO3, and NO2, and dry deposition.

A.2 UKESM1-0-LL
UKESM1-0-LL is the UK’s Earth System Model
(Sellar et al 2019). It is based on the Global Coupled
3.1 (GC3.1) configuration of HadGEM3 (Williams
et al 2018), to which various Earth system compon-
ents have been added e.g. ocean biogeochemistry,
terrestrial carbon/nitrogen cycle, and atmospheric
chemistry. The atmospheric and land components
are described in Walters et al (2019). The chem-
istry scheme included is a combined stratosphere-
troposphere chemistry scheme (Archibald et al 2020)
from the UK Chemistry and Aerosol (UKCA) model,
combining the stratospheric chemistry scheme of
Morgenstern et al (2009)with the tropospheric chem-
istry scheme ofO’Connor et al (2014). The horizontal
resolution is 1.25× 1.875 (∼140 km atmid-lats) with
85 levels in the vertical (up to 85 km) and 84 chemical
tracers used to simulate chemical cycles of Ox, HOx,
and NOx, as well as oxidation reactions of CO, CH4,
and NMVOCs. CH4 is prescribed by surface con-
centrations from each CMIP6 scenario. Anthropo-
genic and biomass burning emissions are prescribed
(van Marle et al 2017, Hoesly et al 2018), but emis-
sions of isoprene and monoterpenes are interact-
ive based on the interactive biogenic VOC emission
model (Pacifico et al 2011). Lightning emissions of
NOx (LNOx) are also interactive using the cloud top
height parameterization of Price and Rind (1992).
Other natural emissions are prescribed as climatolo-
gies as also discussed fully in Archibald et al (2020).
For volcanic eruptions, internally consistent strato-
spheric AODs and SADs are prescribed for both the
volcanic forcing and for the UKCA stratospheric het-
erogeneous chemistry. The UKESM1-0-LL set up for
the ssp370pdSST was to fix sea surface temperatures,
sea ice fields, CO2 concentrations, and surface water
dimethyl sulfide and chlorophyll concentrations at
present day values. FixingCO2 in ssp370pdSSTwould
not allow the act of CO2 inhibition in the absence of

a temperature change so that BVOC emissions would
stay close to present-day levels.

A.3MRI-ESM2-0
MRI-ESM2-0 is the Meteorological Research Insti-
tute (MRI) Earth System Model (ESM) version 2.0.
Detailed descriptions of the model and evaluations
are given by Yukimoto et al (2019a) and Oshima
et al (2020). MRI-ESM2-0 consists of four major
component models: an atmospheric general circula-
tion model with land processes (MRI-AGCM3.5), an
ocean–sea–ice general circulation model (MRI Com-
munity Ocean Model version 4, MRI.COMv4), an
aerosol chemical transport model (Model of Aero-
sol Species in the Global Atmosphere mark-2 revi-
sion 4-climate, MASINGAR mk-2r4c), and an atmo-
spheric chemistry model (MRI Chemistry Climate
Model version 2.1,MRI-CCM2.1).MRI-ESM2-0 uses
different horizontal resolutions in each atmospheric
component model but employs the same vertical res-
olution, namely MRI-AGCM3.5, the aerosol model,
and the atmospheric chemistry model use TL159
(approximately 120 km or 1.125◦ × 1.125◦), TL95
(approximately 180 km or 1.875◦ × 1.875◦), and
T42 (approximately 280 km or 2.8125◦ × 2.8125◦),
respectively, and all model employ 80 vertical lay-
ers (from the surface to the model top at 0.01 hPa)
in a hybrid sigma-pressure coordinate system.
MRI.COMv4 uses a tripolar grid with a nominal
horizontal resolution of 1◦ in longitude and 0.5◦ in
latitude with 60 vertical layers (Tsujino et al 2017).
MRI-ESM2-0 includes interactive chemistry and aer-
osols in the atmosphere. The atmospheric chemistry
model,MRI-CCM2.1, calculates evolution and distri-
bution of the ozone and other trace gases in the tropo-
sphere and middle atmosphere (Deushi and Shibata
2011, Yukimoto et al 2019a). The model includes 64
prognostic chemical species and 24 diagnostic chem-
ical species, with 184 gas-phase reactions, 59 pho-
tolysis reactions, and 16 heterogeneous reactions. It
considers Ox–HOx–NOx–CH4–CO chemical system
andNMVOCoxidation reactions, as well as themajor
stratospheric chemical system. Anthropogenic and
biomass burning emissions are prescribed (van Marle
et al 2017, Hoesly et al 2018). Lightning emissions of
NOx are diagnosed at 6 h intervals following the para-
meterization of Price and Rind (1992). Other natural
emissions such as biogenic, soil, and ocean emissions
are prescribed as climatologies (Deushi and Shibata
2011).

A.4 EC-Earth3-AerChem
EC-Earth3-AerChem is essentially EC-Earth3 exten-
ded with an additional component to simulate aero-
sols and atmospheric chemistry (Döscher et al 2021,
van Noije et al 2021). The atmospheric GCM is based
on IFS cycle 36r4, which includes the land surface
model HTESSEL. Its horizontal resolution is TL255
(triangular truncation at wavenumber 255 in spectral
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space with a linear N128 reduced Gaussian grid, cor-
responding to a spacing of about 80 km). Its atmo-
spheric grid consists of 91 layers in the vertical direc-
tion and has a model top at 0.01 hPa. The time step
applied in IFS is 45 min. For EC-Earth3-AerChem,
the CMIP6 forcings prescribed in IFS are the solar
forcing (Matthes et al 2017), well-mixed greenhouse
gas concentrations (CO2, N2O, CFC-12, and CFC-11
equivalents; Meinshausen et al 2017, 2020), and stra-
tospheric aerosol radiative properties. The evolution
of methane is constrained by the surface mixing ratio
data provided by CMIP6 (Meinshausen et al 2017,
2020). Aerosols and atmospheric chemistry are sim-
ulated with the Tracer Model version 5 (TM5), spe-
cifically release 3.0 of the massively parallel version of
TM5 (TM5-mp 3.0). It runs at a horizontal resolu-
tion of 3◦× 2◦ (longitude× latitude)with 34 layers in
the vertical direction. TM5was integrated as amodule
coupled to IFS within EC-Earth (van Noije et al 2014,
2021). The chemistry scheme of TM5 accounts for
gas-phase, aqueous-phase and heterogeneous chem-
istry (vanNoije et al 2021)with the gas-phase reaction
scheme being a modified version of the CB05 carbon
bond mechanism. The mixing ratios of ozone in the
stratosphere are nudged towards zonal mean fields
calculated from the three-dimensional input data sets
provided by CMIP6 (Checa-Garcia et al 2018). The
amounts of emissions from anthropogenic activities
and open biomass burning are specified using data
sets provided by CMIP6 (Feng et al 2020): historical
anthropogenic emissions are taken from the Com-
munity Emissions Data System (Hoesly et al 2018),
historical fire emissions from the BB4CMIP6 data set
(vanMarle et al 2017), and future emissions from the
respective scenario data sets (Gidden et al 2019). The
amount of NOx produced in lightning discharges is
calculated interactively whereas other natural emis-
sions of ozone precursors are prescribed, as docu-
mented in van Noije et al (2021). The stratospheric
ozone tracer diagnostic (o3ste) above the model level
close to 140 hPa is set to be equal to ozone for
each time step. In the troposphere, o3ste has no tro-
pospheric chemical production but its loss through
O(1D)+ H2O, HO2 + O3, OH+ O3 and dry depos-
ition is considered.

A.5 GISS-E2-1-G
GISS-E2-1-G is the NASA Goddard Institute for
Space Studies (GISS) chemistry-climate model ver-
sion E2.1 using the GISS210 Ocean v1 (G01) model.
The model configurations submitted for CMIP6 are
described in detail by Kelley et al (2020) and Miller
et al (2021). The atmospheric component was run
with horizontal resolution of 2.5◦ × 2◦ (longit-
ude × latitude) with 40 hybrid sigma-pressure ver-
tical layers extended from the surface to 0.1 hPa.
Online interactive chemistry follows the GISS
Physical Understanding of Composition-Climate
INteractions and Impacts (G-PUCCINI) mechanism

for gas-phase chemistry (Shindell et al 2013, Kelley
et al 2020) and either the One-Moment Aerosol
(OMA) or the Multiconfiguration Aerosol TRacker
of mIXing state (MATRIX) model for the condensed
phase (Bauer et al 2020). The gas-phase mechanism
includes 146 reactions (including 28 photodissoci-
ation reactions) acting on 47 species throughout the
troposphere and stratosphere including five hetero-
geneous reactions. The model advects 26 (OMA) or
51 (MATRIX) aerosol particle tracers and 34 gas-
phase tracers. Anthropogenic and biomass burn-
ing emissions are prescribed following the CMIP
guidelines. NOx emissions are calculated online in
deep convection as described by Kelley et al (2020).
Soil microbial NOx emissions are prescribed from
climatology. Biogenic emissions of isoprene are cal-
culated online and respond to temperature (Shindell
et al 2006), but are prescribed for alkenes, paraffins
and terpenes. Methane is prescribed as a surface
boundary condition but allowed to advect and react
with the chemistry in the historical runs and a sub-
set of the SSP simulations; some future simulations
used interactive online methane emissions following
Shindell et al (2004).
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