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Abstract 11 

Estimating groundwater level evolution is a major issue in the context of climate change. Groundwater 12 

is a key resource and can even account in some countries for more than half of the water supply. 13 

Groundwater trend estimates are often used for describing this evolution. However, the estimated trend 14 

obviously strongly depends on available time series length, which may be caused by the existence of 15 

long-term variability of groundwater resources. In this paper, using a groundwater level database in 16 

Metropolitan France as an example, we address this issue by exploring how much trend estimates are 17 

sensitive to low-frequency variability of groundwater levels. Database consists of relatively undisturbed 18 

groundwater level time series regarding anthropogenic influence (water abstraction  by either continuous 19 

or periodic pumping). Frequent changes in trend direction and magnitude are detected according to time 20 

series length, which can eventually lead to contradictory interpretations of the groundwater resource 21 

evolution, as presented in first part of this article. To assess whether low-frequency variability – known 22 

to originate from climate variability – can induce such modifications of trends, we explored in a second 23 

step the multi-time scale variability of groundwater levels using a methodology based on discrete 24 

wavelet transform. Most of the time series displaying changing trends depending on time series length 25 

corresponded to aquifers with high-amplitude low-frequency variability of groundwater levels. Two 26 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022169422000117
Manuscript_3745665b4fec66e2a36a7865a812f472

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022169422000117
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0022169422000117


2 
 

predominant low-frequency components were detected: multi-annual (~7 years) and decadal (~17 27 

years). We finally examined how much those two low-frequency components may affect trend estimates 28 

on the longer time period available. For this purpose, we individually removed each of both components 29 

from the original times series by discrete wavelet filtering and re-estimated trends in the filtered 30 

groundwater level time series. The results showed that the groundwater level trends were highly 31 

sensitive to the presence of any of these low-frequency components, which may then strongly influence 32 

the estimated trends either by exaggerating or mitigating them. These results emphasize that i) 33 

attributing the estimated trends only to climate change would be hazardous given the large influence of 34 

low-frequency variability on groundwater level trends, ii) estimation of trends in hydrological 35 

projections resulting from GCM outputs in which low-frequency variability is not well represented 36 

would be subject to strong uncertainty, iii) a potential change in the amplitude of internal climate 37 

variability – e.g. increasing or decreasing low-frequency variability – in the next decades may lead to 38 

substantial changes in groundwater level trends. 39 

 40 
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 44 

1. Introduction 45 

According to Iliopoulou and Koutsoyiannis (2020), the number of scientific publications using the word 46 

“trend” has steadily increased over the past two decades, especially in relation to hydroclimatological 47 

variables. Various scientific questions and aims can lead scientists to search for trends in hydrological 48 

processes. The assessment or forecasting of the qualitative and quantitative evolution of environmental 49 

variables – such as detecting short- to long-term increases or decreases – are part of this (Visser et al., 50 

2009; Giuntoli et al., 2013; Sakizadeh et al., 2019; Caporali et al., 2020; Dudley et al., 2020). These 51 

questions are related to resource preservation issues in the context of global change. For instance, the 52 
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European Union’s Water Framework Directive is based on this philosophy: detect negative trends in 53 

water resources (streamflow and groundwater levels) with the aim of their protection (European 54 

Commission, 2009); deterioration of a resource can cause restrictions on freshwater withdrawals. 55 

 56 

In the context of climate change, assessing the long-term evolution of hydrological variables and 57 

associated extremes is a major issue, particularly for identifying which parts of this evolution can be 58 

attributed to climate change and to anthropogenic forcing (Massei et al., 2020). For groundwater, this 59 

issue is even more relevant when considering pumping; for instance, groundwater provides 65% of the 60 

water supply in France (Chataigner et al., 2019). Hence, the study of long-term groundwater level 61 

evolution is especially relevant for management purposes and the knowledge of groundwater resource 62 

capacity. Methods for identifying linear or monotonic trends are commonly used for describing changes 63 

in hydrological variables (Stahl et al., 2010; Lorenzo-Lacruz et al., 2012; Blöschl et al., 2019; Pathak 64 

and Dodamani, 2019; Vicente-Serrano et al., 2019; Mohanavelu et al., 2020; Peña-Angulo et al., 2020). 65 

 66 

Although the detection of monotonic trends is a widely used tool for quantifying evolution of 67 

hydrological variables, its use may still raise questions. First, they cannot be extrapolated to other study 68 

periods, and longer or shorter periods, regardless of the type of variable considered (Koutsoyiannis, 69 

2006; Burn and Whitfield, 2018). For a given region, authors commonly find contradictory or varying 70 

results as trends are often not estimated over the same periods, a point that is often discussed as a major 71 

issue (Hannaford et al., 2013; Degefu et al., 2019). Therefore, their “non-extrapolability” makes them 72 

poor predictors and unsuitable for forecasting (Iliopoulou and Koutsoyiannis, 2020). Second, trends 73 

commonly reflect long-range dependence/autocorrelations, because of low-frequency variability in the 74 

hydroclimatic variables of interest (Iliopoulou and Koutsoyiannis, 2020). Such variability generated by 75 

large-scale atmospheric and oceanic circulation patterns is the primary source of a “misperceived” trend, 76 

as short-term periods affected by a trend may actually be part of longer-term fluctuations. Multi-77 

temporal trend-definition methods have been developed to highlight this dependence of trend 78 

assessment on low-frequency variability (multi-annual–multidecadal) in hydroclimatic variables and to 79 
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avoid trend “misperceptions” (McCabe and Wolock, 2002; Schmocker-Fackel and Naef, 2010; 80 

Hannaford et al., 2013; Stojković et al., 2014; Peña-Angulo et al., 2020). For instance, Hannaford et al. 81 

(2013) demonstrated that trend direction and magnitude are highly influenced by interdecadal 82 

variability. 83 

 84 

Given the influence of interdecadal variability, and more generally low-frequency variability, on the 85 

hydrological trends, it is crucial to better understand the large-scale origin of these fluctuations and how 86 

catchments can filter and modify them. In this regard, Gudmunsson et al. (2011) indicated that the low-87 

frequency variability of runoff directly originates from the large-scale atmospheric circulation, while 88 

the catchments properties control the proportion of variance of low-frequency variability in hydrological 89 

variables. Simultaneously, a large amount of studies addressed the large-scale origins of such 90 

variabilities in hydroclimatic variables (streamflow, precipitation, groundwater, temperature), using 91 

climate indices and atmospheric fields (Massei et al., 2010; Boé and Habets, 2014; Dieppois et al., 2013; 92 

Dieppois et al., 2016; Massei et al., 2017; Neves et al., 2019; Liesch and Wunsch, 2019). 93 

 94 

Across the whole metropolitan France area, Fossa et al. (2021) detected ~3-yr and ~7-yr variabilities in 95 

streamflow, precipitation and temperature but with fluctuating amplitudes depending on the region. At 96 

a smaller regional scale, particularly in the Seine watershed, many studies previously highlighted these 97 

same two low-frequency variabilities in precipitation and streamflow as well as a ~17-yr variability 98 

(Massei et al., 2007; Massei et al., 2010; Fritier et al., 2012; Massei and Fournier, 2012; Dieppois et al., 99 

2013; Massei et al., 2017). The North Atlantic Oscillation (NAO) was described as one significant driver 100 

of such temporal signature (~7-yr and ~17-yr) in precipitation and streamflow (Massei et al., 2007; 101 

Massei et al., 2010). Later, Massei et al. (2017) highlighted using a composite analysis with Sea Level 102 

Pressure (SLP) that the atmospheric pattern associated to the ~7-yr variability was not exactly 103 

reminiscent of the NAO, with centers of action actually shifted to the North. Similarly, the pattern 104 

associated to ~17-yr variability was a spatially extended pattern across the Atlantic ocean with lower 105 

SLP roughly following the Gulf Stream front. This result highlighted that atmospheric patterns 106 
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associated to ~7-yr and ~17-yr variabilities are not similar and these atmospheric patterns exhibit centers 107 

of action that are not necessarily corresponding to those of established climate indices such as the NAO. 108 

 109 

Aquifers very often act as rather strong low-pass filters, leading to high-amplitude low-frequency 110 

variability in groundwater levels. In other words, aquifers filter out high-frequency (short-term) 111 

variations of the precipitation input more or less significantly, letting only low-frequency (longer-term) 112 

variations dominate the overall variability of the groundwater level signal. Some studies also 113 

investigated the role played by geological characteristics in controlling the magnitude of these 114 

fluctuations in groundwater levels: thickness of superficial formations, of the vadose zone, hydraulic 115 

properties of aquifers (Slimani et al., 2009; El Janyani et al., 2012; Velasco et al., 2017). In Normandy, 116 

Slimani et al. (2009) and El Janyani et al. (2012) identified a significant ~7-yr variability in groundwater 117 

levels of chalk aquifer consistent with many previous works that had already documented the presence 118 

of both ~7-yr and ~17-yr variabilities, and their link to the NAO in northern France on precipitation 119 

(Massei et al., 2007) or river flow (Massei et al., 2010, 2012, 2017). Later, the exact same multi-annual 120 

and decadal fluctuations were also identified in groundwater levels in Great Britain (Rust et al., 2019) 121 

and on the western European continent (Liesch and Wunsch, 2019; Neves et al., 2019). 122 

 123 

In this article, we specifically addressed the issue of the influence of low-frequency variability on 124 

groundwater level trend estimates. In metropolitan France, for instance, many changes in trend direction 125 

and magnitude were observed depending on the length of time series considered, thus leading to 126 

completely contradictory conclusions on groundwater level evolutions, as exposed in section 3.1. In 127 

some surface hydrology studies (e.g. Hannaford et al., 2013, as mentioned previously), such 128 

contradictory conclusions were related to low-frequency variability. Therefore as a second step, we 129 

aimed to determine whether French aquifers concerned by these regular changes in trend direction and 130 

magnitude, exhibited a significant low-frequency variability in groundwater levels. In section 3.2., we 131 

thus broke down groundwater level signals using discrete wavelet transform and quantified the variance 132 

percentage of total signal explained by each time scale of variability. Finally, in a third step, we 133 

examined if and how low-frequency variability influenced trend estimates by filtering out each low-134 
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frequency component from the original time series using discrete wavelet transform and re-estimating 135 

trends on filtered time series (Section 3.3.). This last point is particularly important because if the low-136 

frequency variability significantly influences the estimated groundwater level trends, this has several 137 

implications: 138 

(i) First, regarding the identification of traces of climate change in groundwater levels. Indeed, 139 

if the low-frequency variability in groundwater levels significantly affects trend estimates, 140 

it is hazardous to conclude that, for instance, a decreasing evolution of groundwater levels 141 

is directly the result of climate change. Indeed, such trends would then be primarily the 142 

result of internal climate variability instead of anthropogenic climate change. 143 

(ii) Second, regarding future projections. Indeed, trend estimates in hydrological projections 144 

resulting from GCM outputs in which low-frequency variability is not well represented 145 

would be subject to strong uncertainty. 146 

(iii) Third, regarding future evolutions. Indeed, a potential change in the amplitude of internal 147 

climate variability – e.g. increasing or decreasing low-frequency variability – in the next 148 

decades may lead to substantial changes in groundwater level trends. 149 

 150 

2. Data and methods 151 

2.1. Data 152 

2.1.1. Groundwater data 153 

For this study, we used 215 boreholes in continental France, with groundwater level time series being 154 

little or not affected by pumping (Fig. 1). They were selected from a BRGM database on boreholes not 155 

influenced by human activities (Baulon et al., 2020) that was constituted in three steps:  156 

(i) a selection of boreholes with time series satisfying criteria of duration, minimum amount of 157 

data per month, maximum length of gaps;  158 

(ii) the crossing of pre-selected boreholes with other BRGM databases on known anthropogenic 159 

influences;  160 
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(iii) numerous visualisations of time series with the hydrogeologists responsible for piezometric 161 

networks, in order to retain only non-influenced boreholes. 162 

Time series of boreholes in this database were initially gathered in the ADES database that contains all 163 

groundwater data (quantity and quality) across continental France (https://ades.eaufrance.fr/). 164 

 165 

Figure 1. Spatial distribution of the 215 little- or non-influenced groundwater boreholes in 166 

continental France 167 

 168 

The criteria satisfied for selecting groundwater level time series in the database, and thus for the present 169 

study, were: 170 

• The duration of the groundwater level time series must be >30 yr for regions where monitoring 171 

history is sufficiently long, and >20 yr for regions where monitoring history is shorter. 172 

• The time series must contain a minimum amount of data in a month. This minimum amount is 173 

divided into two parts. A date of sampling-frequency change is identified in each time series, 174 

and the minimum sampling frequency must be at least one datum per month before this date 175 

and three data per month after this date. 176 

• The length of consecutive gaps must be <3 yr for time series starting after 1950 and <10 yr for 177 

time series starting before 1950. This allows time series in the new database to preserve low-178 

frequency variability in the data. Several gaps in the time series can be allowed if these criteria 179 

are respected, and if the number of gaps and their lengths are small. 180 

Before data analysis, a visual check of the groundwater level time series served to remove or correct 181 

erroneous data. Wishing to qualify the behaviour of water tables by including annual variability, we 182 

decided to work on monthly averages. Any missing months in these time series were then filled by linear 183 

interpolation, before spectral analyses. 184 

 185 

In continental France, groundwater level time series in some regions span on a limited historical time 186 

period, especially in western and southern France. Hence, we decided to focus on two different time 187 

spans: 1996–2019 and 1976–2019. For all French aquifers, the analyses cover the 1996–2019 period, 188 
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ensuring a good trade-off between time series length and spatial coverage (215 time series available). 189 

The longer period, spanning 43 years between 1976 and 2019, covered 102 time series in northern 190 

France. These two periods are referred to as “reference periods”. 191 

 192 

In our study, the selected wells are representative of the various French hydrogeological contexts: 193 

alluvial, sedimentary, volcanic, and bedrock aquifers, but most wells are in sedimentary aquifers, 194 

primarily in the Paris Basin, and some in the Aquitaine Basin. Each well is attached to a hydrogeological 195 

area based on the groundwater bodies. 196 

 197 

In the resulting database, the Seno–Turonian chalk aquifer of the Paris Basin is the best represented (60 198 

boreholes), followed by Jurassic limestone aquifers in Lorraine, Berry, and Poitou on the rim of the 199 

Paris Basin (19 boreholes), and the Eocene Beauce limestones aquifer (8 boreholes). Wells in the 200 

Aquitaine Basin mainly capture the Jurassic limestone aquifer of the northern part of the Basin (7 201 

boreholes) and multiple sedimentary hydrogeological formations in the southern part (sand, limestone: 202 

10 boreholes). Finally, most of the wells selected in the Rhône valley monitor alluvial and fluvio-glacial 203 

formations (11 boreholes). 204 

 205 

Alluvial aquifers are also well represented in the dataset, especially the Rhine/Vosges alluvium (18 206 

boreholes) in Alsace, the Garonne alluvium in the Toulouse region (3 boreholes), and recent alluvium 207 

in the Mediterranean region (11 boreholes). 208 

Some wells in the Central Massif are located in volcanic aquifers in various formations with different 209 

behaviour of groundwater levels (5 boreholes). Finally, bedrock aquifers are monitored by a few selected 210 

wells in the Armorican Massif (10 boreholes). 211 

 212 

2.1.2. Precipitation data 213 

Precipitation data used in this study come from the SAFRAN reanalysis (Vidal et al., 2010), which 214 

provides daily data on an 8×8 km2 mesh covering France from 1958 to 2019. In addition, based on 215 
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meteorological data (precipitation (P), snow, temperature, and Penman-Monteith potential 216 

evapotranspiration (PET)) from the SAFRAN reanalysis, effective precipitation (EP = P – PET) data 217 

were computed using a gridded water-budget model with 8 km resolution at a daily time step, relying 218 

on the water-budget method of Edijatno and Michel (1989). The water-bugdet method considers that 219 

in the water cycle, the soil acts as a reservoir caracterized by its water storage capacity. Edijatno and 220 

Michel (1989) introduced a quadratic law to progressively empty the soil water reserves and to distribute 221 

the positive difference between P and PET between EP and soil storage. In the present study, the 222 

temporal resolution of both precipitation and effective precipitation was set at a monthly time step by 223 

using monthly cumulated data. 224 

 225 

2.2. Methods 226 

2.2.1. Trends over multiple time series lengths 227 

We first estimated groundwater level trends over multiple time series lengths. We then determined 228 

whether changes in the length of time series affected trend estimates, by assessing the stability of trends 229 

when comparing the direction and magnitude of trends over decreasing periods. The procedure is 230 

illustrated in Fig. 2a. As explained above, we split the trend stability analysis into two reference periods, 231 

1976–2019 and 1996–2019, corresponding to the best agreements between the spatial distribution of 232 

wells and groundwater level time series lengths over northern aquifers (102 boreholes) and all of 233 

continental France (215 boreholes), respectively. The 1996–2019 reference period provided an image 234 

of the stability of groundwater level trends through whole continental France, though over a relatively 235 

short period. To improve the consistency of the study, the 1976–2019 reference period was used for 236 

obtaining a longer historical hindsight, but covering only northern aquifers due to the data availability. 237 

 238 

Figure 2. Workflow of (a) trend stability analysis over decreasing time periods and (b) assessment of 239 

groundwater low-frequency influence on trend direction and magnitude. “WLF” is “water level 240 

fluctuation”. 241 

 242 
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To complete the stability analysis, we first evaluated the magnitude of trends and their statistical 243 

significance over different study periods (Fig. 2a; Step 1). Within the 1976–2019 reference period, 244 

trends were estimated for all groundwater level time series over six periods: 1976–2019, 1981–2019, 245 

1986–2019, 1991–2019, 1996–2019 and 2000–2019. Within the 1996–2019 reference period, 246 

groundwater level trends were estimated over two study periods: 1996–2019 and 2000–2019. The 247 

significance of monotonic trends was determined with a modified Mann–Kendall trend test for 248 

autocorrelated data (Hamed and Ramachandra Rao, 1998). Compared to the well-known Mann–Kendall 249 

trend test (Mann, 1945; Kendall et al., 1987), the modified Mann–Kendall trend test considers 250 

autocorrelation by correcting probability values (p-values) after accounting for autocorrelation. The 251 

threshold for statistical significance was set at 5%. As we primarily aimed at quantifying changes in 252 

groundwater level trends in relation to groundwater stock variation over decreasing time periods – which 253 

cannot be estimated by the significance value of the modified Mann–Kendall trend test – we developed 254 

an indicator describing this phenomenon. Therefore, although the statistical significance of trends was 255 

also tested in the present study, we decided to present only the afore-mentioned indicator. 256 

 257 

To develop this indicator, we first assessed the magnitude of trends by estimating Sen’s slope (Sen, 258 

1968), this method was selected as it is less sensitive to outliers than linear regression. The slope is 259 

defined as the median of the set of slopes calculated between pairs of points. To evaluate the relative 260 

importance of trends, compared to the groundwater stock variation, the percentage of decrease or 261 

increase in groundwater levels compared to the maximum water level fluctuation (WLF) was calculated 262 

using the following equation: 263 

���������� 
� ��
���� ��� = ������ �����∗�� !"#��
$!%#&�& '() * ∗ 100 (1) 264 

where maximum WLF is the difference between the highest and the lowest groundwater levels measured 265 

for a given time series. This normalisation of Sen’s slope by the maximum WLF allowed comparing the 266 

magnitude of groundwater trends between aquifers with various water table behaviours and significant 267 

differences in their water stock variations. 268 

 269 
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The percentages of groundwater level loss/gain against maximum WLF were split into five classes 270 

according to their magnitude: 271 

• Negligible trends between -1% and +1% of maximum WLF; 272 

• Moderate upward or downward trends between +1% and +10%, or -1% and -10%, of the 273 

maximum WLF, respectively; 274 

• Strong upward or downward trends between +10% and +100%, or -10% and -100%, of the 275 

maximum WLF, respectively. 276 

This normalisation was applied to every well for each period analysed. The maximum WLF adopted, 277 

i.e. that of the two reference periods, remained constant from one period to the next, as it is a parameter 278 

that we used for characterising the groundwater stock variation.  279 

 280 

For each well, the trend stability was evaluated by comparing the trend direction and belonging to the 281 

above classification for all studied periods (Fig. 2a; Step 2). For a given borehole, the groundwater trend 282 

can be stable or unstable in direction. We considered a trend direction “stable” if its direction was 283 

constantly upward, downward, or negligible from one period to another. Conversely, a trend was 284 

“unstable” when its direction fluctuated depending on the study period, or whether a trend emerged, 285 

such as a negligible trend for a given period followed by an upward or downward trend for the next 286 

period. Moreover, a “direction-stable” trend can be stable or unstable in magnitude; it is stable when the 287 

magnitude class does not change between periods and unstable if it does change. 288 

 289 

2.2.2. Groundwater multi-timescale variability analysis 290 

To determine the importance of low-frequency variability in groundwater levels, we identified and 291 

extracted high- to low-frequency wavelet components by multiresolution analysis, using the maximum 292 

overlap discrete wavelet transform (MODWT) algorithm. Like the more common discrete wavelet 293 

transform (DWT) method, MODWT is an iterative filtering of time series using a series of low- and 294 

high-pass filters, producing one high-frequency component, or “wavelet detail”, and one lower 295 

frequency component called “approximation” or “smooth” at each scale. The smooth component is then 296 
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further decomposed into a wavelet detail and a smooth component, the latter being decomposed again 297 

until it can no longer be decomposed. The original signal can be reconstructed by summing up all the 298 

wavelet details and the last smooth. The original signal is then separated into a relatively small number 299 

of wavelet components from high to low frequencies, which together explain the total variability of the 300 

signal. For this study, the maximum decomposition level used in the MODWT was log2(N) where N is 301 

the length of the time series. The least-asymmetric (symmlet) wavelet “s20” was used in order to better 302 

capture variability at all time scales of sometimes relatively smooth groundwater level time series. 303 

 304 

However, unlike DWT, MODWT was essentially designed to prevent phase shifts in the transform 305 

coefficients at all scales by avoiding downsampling – reducing by a factor 2 the number of coefficients 306 

– the signal with increasing scales. It results that the computed wavelet and scaling coefficients at each 307 

scale remain aligned with the original time series; that is, the variance explained by these coefficients is 308 

located where it truly lies in the time series analysed (Percival and Walden, 2000; Cornish et al., 2003; 309 

Cornish et al., 2006). While not necessarily essential for signal or image processing or numerical 310 

compression, this property is fundamental for physical interpretation of the wavelet details in 311 

multiresolution analysis, and has already been used to that purpose in several studies such as Percival 312 

and Mofjeld (1997), Massei et al. (2017) and Pérez Ciria et al. (2019). 313 

 314 

The dominant frequency associated with each MODWT wavelet detail was calculated by Fourier 315 

transform of each wavelet detail. The MODWT also provides the amount of variance (or energy) 316 

explained by each wavelet detail and frequency level. The energy percentage of a given wavelet detail 317 

expresses the relative importance of this variability in the total signal variability. As a result, the energy 318 

distribution between wavelet details for each well in the database can be extracted and mapped. 319 

 320 

Continuous global wavelet spectra were also calculated by averaging the spectral power from the 321 

continuous wavelet spectra over time (Torrence and Compo, 1998). These analyses used R packages 322 

wmtsa (Constantine and Percival, 2016) and biwavelet (Gouhier and Grinsted, 2012). They were 323 

conducted for both reference periods: 1976–2019 and 1996–2019. 324 
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 325 

2.2.3. Influence of low-frequency variability of groundwater levels on trend direction and 326 

magnitude 327 

The influence of groundwater low-frequency variabilities on the trend direction and magnitude was 328 

estimated using the MODWT method. As described in Section 2.2.2., summing up all wavelet details 329 

and the last smooth rebuilds the original signal. Based on this assessment, we first subtracted the wavelet 330 

detail of interest (or component) corresponding to a specific variability from the original signal (i.e., 331 

groundwater level monthly averages) (Fig. 2b; Step 1). We then calculated the Sen’s slope (Section 332 

2.2.1.) of the filtered signal and normalised it to the maximum WLF of the original signal (i.e., without 333 

filtering) (Fig. 2b; Step 2). The interest in keeping a fixed maximum WLF to normalise Sen’s slopes is 334 

to assess only the influence of the removal of the component on the slope, and not to assess the influence 335 

of the removal of the component combined to variance modification linked to the removal of the 336 

component.  Finally, we compared the magnitude and direction of the trends between the original and 337 

filtered signals to assess the influence of the component on the trend of the original signal. This analysis 338 

covered both reference periods: 1976–2019 and 1996–2019. 339 

 340 

3. Results 341 

3.1. Stability of trend directions and magnitudes of groundwater levels 342 

In this section, we investigate the stability of groundwater level trends, that is, we aim at determining if 343 

trend direction and magnitude change according to the length of time series used for the trend analysis. 344 

To this end, we introduce the notions of “trend stability” (no change in direction or magnitude) and 345 

“instability” (changes in direction or magnitude) over decreasing time periods. If trend direction is 346 

stable, we consider that the length of time series has a minor influence on trend estimate, then a 347 

conclusion about groundwater level evolution may be drawn. Conversely, if it is unstable, the time series 348 

length has a significant influence on such estimate, then any conclusion regarding groundwater level 349 
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evolution may not be drawn. The trend-stability maps for the reference periods (1976–2019 and 1996–350 

2019) used to verify this hypothesis, are shown on Figure 3.  351 

 352 

Figure 3. Trend-stability maps from the two reference periods (a) 1976–2019 to 2000–2019 and (b) 353 

1996–2019 to 2000–2019. These maps show for a given reference period to what extent groundwater 354 

level trends are susceptible to changes of direction and magnitude according to the time series length. 355 

If the change of time series length does not affect trend direction (stable trend in direction), a triangle 356 

or a square is drawn for the borehole. If the change of time series length affects trend direction 357 

(unstable trend in direction), a diamond or a crossed-out circle is drawn according the type of trend 358 

instability. Finally, if the change of time series length does not affect trend magnitude (stable trend in 359 

magnitude), a dot is added in the symbol. 360 

 361 

From the 1996–2019 reference period, some hydrogeological formations show an instability in trend 362 

direction (positive and negative trend; Fig. 3b). These instabilities in trend direction are represented on 363 

maps either with a diamond in case of change of sign from a period to another period (alterning positive 364 

and negative trend) or a crossed-out circle in case of emerging trend (insignificant trend and positive or 365 

negative trend). These entities are the Eocene Beauce limestones, the Seno–Turonian chalk of Artois–366 

Picardy (Fig. 4; Beauval), and the Jurassic limestones from Sarthe to Bessin. For these entities, no 367 

conclusions regarding the evolution of groundwater levels can be drawn, given the reccurrent change in 368 

trend direction according to the length of time series taken into account for the trend analysis. 369 

 370 

Figure 4. Example of trends over multiple time series lengths (1996–2019 and 2000–2019) on 371 

monthly groundwater levels at Beauval (Seno-Turonian chalk of Artois-Picardy), Goupillières (Seno-372 

Turonian chalk of Normandy/Picardy) and Penol (fluvio-glacial formations in Rhône valley).   373 

 374 

Conversely, the Seno–Turonian chalk of Normandy/Picardy (Fig. 4; Goupillières), the Jurassic 375 

limestones of Poitou and Berry, the fluvio-glacial formations of the Rhône valley (Fig. 4; Penol), the 376 

Brittany bedrock, Champagne and Bourgogne chalk exhibit stable trend directions (Fig. 3b). For these 377 
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entities, conclusions regarding groundwater level evolution may be drawn: they are still downward 378 

regardless the study period. 379 

 380 

However, if the analysis is conducted over longer periods for hydrogeological entities of northern France 381 

(particularly for the Normandy/Picardy, Champagne and Bourgogne chalk), changes in trend direction 382 

or a trend emergence can be detected when changing the time series length (Fig. 3a). Consequently, 383 

conclusions regarding the groundwater level evolution drawn for the 1996–2019 reference period are 384 

no longer valid for the 1976–2019 reference period since instabilities in trend direction are detected. 385 

Naturally, boreholes with trend direction instability between 1996–2019 and 2000–2019 periods are also 386 

subject to this instability over longer periods. Overall, the result is not homogeneous within the same 387 

hydrogeological unit as we can detect both boreholes with stable and unstable trend directions. 388 

 389 

Most boreholes with stable (upward or downward) trend directions from the shorter reference period 390 

(1996–2019) are also stable in magnitude, meaning that the importance of slope in relation to 391 

groundwater level amplitude does not change class (Fig. 3b – dot in the symbol). This is the same for 392 

the longer reference period (1976–2019) in the western Seno-Turonian chalk of Normandy and the 393 

Lutetian/Ypresian sands of the Paris Basin (Fig. 3a). 394 

 395 

Overall, when stable trend directions are detected, from the reference period 1976–2019 for northern 396 

France and 1996–2019 for the other regions of France, and that conclusions on groundwater level 397 

evolutions can be drawn, the levels are in the majority decreasing (Fig. 3). The existence of unstable 398 

trend directions raises the following question: are there low-frequency variabilities in groundwater 399 

levels that could induce these changes in trend directions and thus influence the trend estimates? 400 

Consequently, next section aims to identify the existence and significance of low-frequency variability 401 

in groundwater level signals. 402 

 403 
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3.2. Groundwater level fluctuations across multiple timescales: significance and spatial 404 

distribution over France 405 

In this section, we assess the existence, significance and spatial distribution of low-frequency variability 406 

in groundwater level signals over France. We aim at determining if the unstable trend directions 407 

previously identified, could be potentially induced by the existence of low-frequency variability in 408 

groundwater level signals. 409 

 410 

The energy percentage (i.e., the proportion of the total variance) at each timescale of variability can be 411 

extracted via MODWT and mapped for each groundwater time series. Figure 5 shows the spatial 412 

distribution of the energy contained in each spectral component, as a function of the hydrogeological 413 

entity. Multi-annual (5–12 yr) and decadal (12–24 yr) variabilities dominate over much of the Paris 414 

Basin (from Beauce limestones to the Seno–Turonian chalk farther north). Elsewhere, low-frequency 415 

variability can also prevail over a short period (1996–2019), such as in the fluvio-glacial formations of 416 

the Rhône basin, the Jurassic limestones of Poitou, and the alluvial formations of the Garonne River. 417 

Increasing the length of the studied period (1976–2019) highlights the prevalence of decadal variability 418 

(12–24 yr) in groundwater levels in the Beauce limestones and in the southern Seno–Turonian chalk of 419 

Normandy. This decadal variability also occurs in significant proportions farther north in the Seno–420 

Turonian chalk of Normandy, but there its proportion is rather similar to that of the multi-annual 421 

variability (5–12 yr). These observations highlight the inertial nature of water tables in Normandy chalk 422 

and Beauce limestones aquifers (Fig. 6a and 6b) due to their highly capacitive nature, particularly in 423 

plateau areas (Roux, 2006). In these hydrogeological units, groundwater levels depend essentially on 424 

recharge from past winters. They are particularly sensitive to a succession of dry or wet winters, due to 425 

the memory effect linked to the regulation power of the water table. Regeneration of the water table 426 

stock spans several successive years with excess winter recharges. 427 

 428 
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Figure 5. Proportion of the total variance explained by each timescale of variability (energy 429 

associated to each timescale, expressed as the percentage of total energy of each groundwater time 430 

series). 431 

 432 

Figure 6. Examples of groundwater level time series representative of each major water tables 433 

behaviour. 434 

 435 

Although these low-frequency variabilities (multi-annual and decadal) are substantial components of 436 

the total groundwater variability in the Seno–Turonian chalk of the Artois–Picardy region, the annual 437 

variability explains a larger part of the total groundwater variability than in Normandy and Picardy (Fig. 438 

5). The groundwater levels on the borders of the Seno–Turonian chalk (Champagne and Bourgogne) 439 

also display this type of variability, but here the annual variability dominates. Jurassic limestones on the 440 

edge of the Paris Basin from the Lorraine region to the Berry region also show this predominant annual 441 

variability with only a small part of the total variability explained by multi-annual and decadal 442 

variabilities. Overall, the water tables in these hydrogeological units show a combined behaviour: 443 

variously significant multi-annual to decadal variability is superimposed by prominent annual variability 444 

(Fig. 6c and 6d). In these aquifers, the annual variability is all the more important as their storage 445 

capacity decreases, with increasing fracturing, permeability, and proximity to the outlet (Roux, 2006). 446 

Here, groundwater levels strongly depend on infiltrated rainfall during the previous winter, while having 447 

a memory effect linked to the regulation power of water table.  448 

 449 

Annual variability generally becomes predominant in compact highly fractured and low capacitive 450 

sedimentary aquifers (Roux, 2006), such as the fissured Jurassic limestones of the northern Aquitaine 451 

Basin or in fractured bedrock of Brittany (Fig. 5b and 6e). In such settings, groundwater levels rapidly 452 

rise in response to winter rainfall, but drop as rapidly as soon as water input stops. 453 

 454 

No typical pattern in the energy distribution is noticeable for alluvial aquifers in France, and the 455 

dominance of one variability compared to another strongly depends upon the local geological and 456 
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hydrological context (Fig. 5). Boreholes monitoring alluvial formations commonly also monitor the 457 

underlying water body in the absence of an impermeable layer. Consequently, the borehole captures the 458 

behaviours exhibited by both groundwater bodies. Hence, water tables in alluvial formations can exhibit 459 

either an annual, multi-annual, or combined behaviour.  460 

 461 

Hydrogeological entities previously described as susceptible to trend direction instabilities, are 462 

essentially entities for which the water tables display inertial or combined behaviour, which means that 463 

the existence of a low-frequency variability in groundwater levels and in significant proportions could 464 

be partly responsible for these instabilities (Fig. 3 and 5). These entities are: the Normandy/Picardy 465 

chalk, the Artois-Picardy chalk, the Bourgogne and Champagne chalk, the Beauce limestones, and the 466 

southern Jurassic limestones from Sarthe to Bessin. 467 

 468 

The superposition of all the global wavelet spectra calculated for each groundwater level time series 469 

gives us a synthetic view of the predominant variabilities in groundwater levels of French aquifers (Fig. 470 

7). The three preeminent variabilities in monthly groundwater levels are: ~1 yr, 5–8 yr (~7-yr), and >12 471 

yr (~17-yr). The ~7-yr and ~17-yr variabilities show larger spectral powers and carry the largest part of 472 

the low-frequency variability in monthly groundwater levels. Such characteristic variabilities are known 473 

to be induced by large-scale climatic circulation, including the NAO, and was earlier observed in 474 

Normandy groundwater levels by Slimani et al. (2009) and El Janyani et al. (2012), and in streamflow 475 

of the Seine River (Massei et al., 2010). Later, studies highlighted these variabilities in groundwater 476 

levels in other countries (Rust et al., 2019; Liesch and Wunsch, 2019; Neves et al., 2019).  477 

 478 

Figure 7. Global wavelet spectra of (a) 102 monthly groundwater levels over 1976–2019, covering 479 

northern France and (b) 215 monthly groundwater levels over 1996–2019, covering all of France. 480 

Leading variabilities are highlighted. 481 

 482 

Since the low-frequency variabilities significantly explain groundwater level variability, the next section 483 

seeks to determine if, how and to what extent they influence the estimated trends on the reference 484 
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periods. As the ~7-yr and ~17-yr variabilities appear to be the predominant low frequencies in 485 

groundwater level signals, hereafter, we provide details on the influence of these two variabilities on 486 

groundwater level trends. 487 

 488 

3.3. Influence of groundwater level low-frequency variability on trend direction and 489 

magnitude 490 

In this section, we aim at determining the influence of groundwater multi-annual (~7-yr) and decadal 491 

(~17-yr) variabilities on the estimated trends. In other words, we want to determine whether these low-492 

frequency variabilities affect trend estimates, and if so, whether they aggravate or mitigate the estimated 493 

trends on the reference periods. To this end, we individually removed the detected low-frequency 494 

components corresponding to multi-annual and decadal variabilities and recomputed the trends for the 495 

resulting filtered groundwater level signals, to assess the effect of such low-frequency components on 496 

trend magnitude and direction. Low-frequency components to be filtered were chosen based on global 497 

wavelet spectra (Fig. 7). For the 1996–2019 reference period, only the ~7-yr component was filtered 498 

from monthly groundwater levels, while for the 1976–2019 reference period, both ~7-yr and ~17-yr 499 

components were individually filtered (Fig. 8 and 9). 500 

 501 

Figure 8. Comparison of groundwater trend magnitude between monthly groundwater levels and ~7-502 

yr filtered groundwater levels over 1996–2019. 503 

 504 

Figure 9. Comparison of groundwater trend magnitude between monthly groundwater levels, ~7-yr 505 

filtered groundwater levels, and ~17-yr filtered groundwater levels over 1976–2019. The legend of 506 

hydrogeological entities can be found on Fig. 8. 507 

 508 

Figures 8 and 9 show the magnitude of the trend (Sen’s slope/maximum WLF ratio) of each groundwater 509 

time series analysed. Monthly groundwater levels are in red, the ~7-yr filtered monthly groundwater 510 

levels in grey, and the ~17-yr filtered groundwater levels in blue (only for the 1976–2019 period). Both 511 
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figures show the impact of removing a given variability (~7-yr or ~17-yr) on the trend, compared to the 512 

unfiltered groundwater levels; they also show the influence of a given low-frequency variability on 513 

unfiltered groundwater level trends by considering the sign of the subtraction between unfiltered (red) 514 

and filtered (grey or blue) groundwater levels. Nevertheless, quantifying the exact contribution of a 515 

given variability to unfiltered groundwater level trends is difficult because other (low- or high-516 

frequency) variabilities can modulate this contribution. 517 

 518 

For the shorter period (1996–2019), the effect of the ~7-yr variability on trends shows a well-established 519 

spatial pattern throughout France (Fig. 8). In the North, for aquifers with inertial or combined behaviour 520 

of water tables, the ~7-yr variability drives levels up. In contrast, in various southern French aquifers, 521 

this variability drives groundwater levels down. 522 

 523 

In northern France in chalk, sands, and Eocene limestones of the Paris Basin, we see an accentuation of 524 

downward trends (Fig. 10b; Goupillières), a mitigation of upward trends, and reversals in direction from 525 

upward to downward trends when the ~7-yr variability is filtered from monthly groundwater levels (Fig. 526 

8b1). This effect of removing the ~7-yr variability means that in unfiltered original groundwater levels, 527 

this variability drives groundwater levels upward. In other words, the ~7-yr variability mitigates 528 

downward trends and accentuates upward trends. The Seno-Turonian chalk of Champagne is the only 529 

one not displaying this phenomenon. Around the hydrogeological entities of the Paris Basin, the effect 530 

of the ~7-yr variability on groundwater levels is more sporadic. 531 

 532 

Figure 10. Typical patterns of low-frequency variability removal influence on groundwater level trend 533 

estimates: (a) Analysis of the 1976–2019 period at Goupillières (Seno-Turonian chalk of Normandy 534 

and Picardy) and Beauval (Seno-Turonian chalk of Artois-Picardy) both in northern France; (b) 535 

Analysis of the 1996–2019 period at Goupillières (northern France) and Penol (southern France –536 

fluvio-glacial formations of Rhône valley). 537 

 538 
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In southern France, we see a reverse pattern from that found in the North (Fig. 8). Here, removing the 539 

~7-yr variability mitigates downward trends (Fig. 10b; Penol), or results in downward trends becoming 540 

upward trends (Fig. 8b2). This pattern is observed in all southern hydrogeological units analysed, even 541 

if locally the removal of the ~7-yr variability may have no effect on the trends. This “non-effect” could 542 

be caused either by the fact that the ~7-yr variability does not, or weakly explain, the variability of 543 

monthly groundwater levels, or because this variability does not contribute to the trend at all. Overall, 544 

the ~7-yr variability drives groundwater levels down in most southern hydrogeological entities. In other 545 

words, the ~7-yr variability aggravates downward trends. 546 

 547 

A transitional section between northern and southern patterns can be seen in the Jurassic limestones of 548 

Berry (Fig. 8). Here, the ~7-yr variability can drive groundwater levels upward or downward. This 549 

transition zone could be attributed to either a transitional climatic zone, or a high spatial variability in 550 

water table behaviour, related to a spatial discrepancy of aquifer properties. 551 

 552 

The ~7-yr variability displays a similar pattern for the longer period (1976–2019) as for the shorter one 553 

in the Paris Basin (Fig. 9b). Removing this variability still results in accentuated downward or mitigated 554 

upward trends. The main discrepancy compared to the shorter period is due to the fact that, in many 555 

cases, removing the ~7-yr variability hardly affects the trend (Fig. 10a; Goupillières and Beauval). 556 

Hence, the ~7-yr variability either drives groundwater levels upward, so mitigates downward trends, or 557 

has no effect on the trend in the Paris Basin. The Seno–Turonian chalk of Champagne also displays this 558 

pattern, while the Upper Cretaceous chalk of Bourgogne does not. 559 

 560 

The long reference period allows for a robust assessment of the influence of the ~17-yr variability on 561 

groundwater trends (Fig. 9), as it shows a consistent pattern in hydrogeological units of northern France, 562 

driving groundwater levels downward, so aggravating downward trends. The removal of this variability 563 

leads to mitigation of downward trends (Fig. 10a; Goupillières), accentuation of upward trends, or 564 

reversals in trend directions from downward to upward. The only hydrogeological unit where the ~17-565 
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yr variability does not influence the trend is the Seno–Turonian chalk of Artois–Picardy (Fig. 10a; 566 

Beauval). 567 

 568 

Figure 10a also shows the importance of the ~17-yr variability weakening since the late 2000s in 569 

carrying trend: the trend is largely mitigated when this variability is removed from the monthly 570 

groundwater levels at Goupillières. At Beauval, this is not the case, because the ~17-yr variability only 571 

accounts for a small part of total variability, and therefore has no influence on the trend.  572 

 573 

The degree of influence of a specific variability on the trend can be related to two factors: (i) the 574 

proportion of total groundwater variability explained by this variability and (ii) the length of the time 575 

series. The greatest influence on trends of removing a specific variability occurs when it accounts for a 576 

large part of the total groundwater variability. This phenomenon is particularly remarkable in inertial 577 

formations. For instance, removing the ~7-yr variability over the 1996–2019 period strongly affects 578 

groundwater level trends in Beauce limestones, Seno–Turonian chalk, and fluvio-glacial formations in 579 

the Rhône valley (Fig. 8). As seen earlier, the ~7-yr variability explains much of the total groundwater 580 

variability in these units over the 1996–2019 period (Fig. 5b).  581 

 582 

Similarly, removing the ~17-yr variability over the 1976–2019 period strongly affects groundwater level 583 

trends in Beauce limestones and southern Seno–Turonian chalk of Normandy (south of the Seine River), 584 

while this influence weakens farther north until it no longer affects trends in the Seno–Turonian chalk 585 

of Artois–Picardy (Fig. 9). This weakening pattern corresponds to a decrease in the significance of the 586 

~17-yr variability in monthly groundwater variability from the Beauce limestones to the Seno–Turonian 587 

chalk of the Artois–Picardy basin farther north (Fig. 5a). 588 

 589 

In addition to the explanatory variance, the other major factor that affects the importance of a given 590 

variability removal on trends magnitude and direction is the length of the time series. Thus, removing 591 

the ~7-yr variability over a long period (1976–2019) has less influence on trends than over a shorter 592 

period (1996–2019). We see an example of this in the northern part of the Seine River, in the Seno–593 
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Turonian chalk of Normandy. During the 1976–2019 period, the ~7-yr variability still explains half of 594 

the groundwater level variability (Fig. 5a), but its removal from groundwater levels hardly affects trends 595 

(Fig. 9).  596 

 597 

4. Discussion 598 

In this section, we discuss the different items addressed in the section 3. First, we discuss how the length 599 

of groundwater time series can influence trend estimation and thus conclusions regarding groundwater 600 

level evolution. We also discuss to what extent it may be related to the presence of low-frequency 601 

variability in groundwater signals, and to what extent the length of groundwater time series is a key 602 

parameter to determine the trend origin. By trend origin, we refer to the physical phenomenon that leads 603 

to the groundwater level trend. Second, we discuss the presence of low-frequency variability in 604 

groundwater levels and the relationship with aquifer and catchments properties. Finally, we discuss the 605 

influence of multi-annual and decadal variabilities on groundwater trends and compare these results to 606 

those obtained for (effective) precipitation with the aim to determine whether these influences originate 607 

from precipitation or whether catchment and aquifer properties disrupt these influences. Furthermore, 608 

we develop the implications of such results on the interpretation of estimated groundwater level trends 609 

as well as on future evolutions and projections of groundwater levels.  610 

 611 

4.1. Importance of time series length on trend estimates and to discuss the origin of 612 

groundwater trends 613 

A few studies have previously examined the influence of time series length on the magnitude and 614 

statistical significance of hydroclimatic variable trends. It emerged that the shorter the study period, the 615 

greater its magnitude and statistical significance, which appeared to be directly linked to low-frequency 616 

variability (Hannaford et al., 2013; Peña-Angulo et al., 2020). The low-frequency variability also 617 

interferes in the statistical test results with high magnitude trends that may be statistically insignificant 618 

but may actually have important implications for water resources (Morin, 2011; Fatichi et al., 2015a). 619 
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The main method for mitigating the effect of multi-annual and multidecadal variabilities on trends is to 620 

lengthen the study period as much as possible (Peña-Angulo et al., 2020). However, the main limitation 621 

to lengthen the study period comes from the existence of historical data. In our case, the French 622 

piezometric network is relatively young, which constrains trend studies to be realised on short periods. 623 

Therefore, as much studies (Burn et al., 2012), our trend study is conducted using temporal windows 624 

that provide the best compromise between time series length and the spatial coverage of in situ stations. 625 

 626 

We showed that some aquifers exhibiting inertial or combined behaviour of water tables are particularly 627 

susceptible to trend direction instabilities (alternatively upward and downward) when the length of 628 

groundwater time series is modified. It is therefore difficult to draw a conclusion on the groundwater 629 

level evolution. Shifting trend directions are not specifically inherent to groundwater levels but can also 630 

be observed in streamflow and precipitation (Hannaford et al., 2013; Stojković et al., 2014; Espinosa 631 

and Portela, 2020; Peña-Angulo et al., 2020). Such trends should be interpreted with great care, as they 632 

may actually correspond to the presence of low-frequency variability, and do not represent a physically 633 

meaningful trend behaviour, i.e., a change in the behaviour of the analyzed phenomenon that may 634 

eventually lead to a new (yet unknown) state, for instance as a consequence of anthropogenic climate 635 

change or changes in land use. 636 

 637 

However, the existence of significant low-frequency variability in groundwater levels does not 638 

necessarily induce trend direction instabilities, as it was observed for some aquifers exhibiting water 639 

tables with inertial or combined behaviour. In such case with still upward or downward trends regardless 640 

the time series length, conclusions about groundwater level evolution may be drawn. Nevertheless, 641 

observing still upward or downward trends does not allow us to deduce the origin of the trend. For 642 

instance, the detected decreasing trends may be induced either by (i) the anthropogenic climate change 643 

resulting in a decrease in groundwater recharge, (ii) the internal climate variability (developed in 644 

subsequent paragraphs), or (iii) anthropogenic impacts (e.g., groundwater pumping, changes in land 645 

cover that may generate a decrease in groundwater recharge). 646 

 647 
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Internal climate variability (i.e. the low-frequency variability) may lead to stable trend directions in 648 

different ways according our observations (not exhaustive). First, since low-frequency variability 649 

displays an aperiodic behaviour with regular amplitude-modifications, consequently trends may be 650 

largely guided by these amplitude-modifications of low-frequency that may lead to a trend direction still 651 

upward or downward regardless the length of time series considered (developed in Section 4.3.). Second, 652 

trends detected over relatively short periods may actually be only sections of slower fluctuations. 653 

Consequently, the trend direction remains upward or downward regardless the time series length 654 

considered, since the available length of groundwater level time series is still too short to grasp certain 655 

low-frequency timescales as fluctuations, but they are grasped to be trends. So, these trends which over 656 

short study periods, without caution, would be imputed easily to climate change may actually only be 657 

sections of slower fluctuation (from internal climate variability) that cannot be evidenced by the length 658 

of the study period. Because large-scale atmospheric and oceanic fluctuations are expressed over a wide 659 

range of timescales, any groundwater trend could be the result of a slower fluctuation (Rossi et al., 660 

2011). For instance, the Atlantic Multidecadal Oscillation (AMO) oscillates on ~60-yr timescales (Kerr, 661 

2000; Enfield et al., 2001). As mentioned earlier, the age of French piezometric networks does not, in 662 

most cases, allow us to grasp such a low-frequency timescale as a fluctuation in groundwater levels, but 663 

it can be grasped to be trend. To overcome these drawbacks, some studies have used the Ensemble 664 

Empirical Mode Decomposition (EEMD) method to filter out climate variability in precipitation, 665 

streamflow, or meteorological drought signals and detect non-linear trends (Massei and Fournier, 2012; 666 

Sang et al., 2014; Guo et al., 2016; Song et al., 2020). For instance, Massei and Fournier (2012) 667 

concluded that the non-linear trend in the daily Seine River flow could be related to a larger scale NAO 668 

fluctuation, indicating the reversibility of the phenomenon. Therefore, this highlights the complexity to 669 

define whether the trends in hydroclimate variables can be related to climate change or are simply a 670 

portion of some low-frequency fluctuations of large-scale atmospheric or oceanic circulation. 671 

 672 

Without considering the anthropogenic impacts (which data are often poorly referenced), the most 673 

limiting factor for distinguishing a climate change origin of the trend from an internal climate variability 674 

origin (in particular from segments of low-frequency fluctuations that may appear as short-term trends) 675 
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remains the availability of groundwater level data. Studies on groundwater level reconstruction might 676 

overcome this constraint via, for instance, deep learning approaches or tree-ring-based reconstructions 677 

(Vu et al., 2020; Tegel et al., 2020). However, disentangling climate change and large-scale climate 678 

natural variability would still remain difficult, even with longer time series data, as anthropogenic 679 

forcing may have already impacted climate variability (Dong et al., 2011; Caesar et al., 2018). 680 

 681 

Disentangling the determinism of trends in terms of internal climate variability or climate change lies 682 

behind the scope of the present study. It is rather dedicated to assess how low-frequency variability can 683 

affect trend estimations. Owing to the database used, the trends possibly detected here cannot result 684 

from groundwater abstraction by pumping. However, as this database does not consider changes in land 685 

cover, some trends in groundwater levels could then result from such influence involving recharge 686 

modifications for instance. 687 

 688 

4.2. Catchment and aquifer properties and their impact on variability time scales of 689 

groundwater levels 690 

The analysis of the spatial distribution of multi-timescale variability revealed the predominance of ~1-691 

yr, ~7-yr, and ~17-yr variabilities in groundwater levels throughout Metropolitan France. The ~1-yr 692 

variability can be explained by the hydrological cycle (winter recharge and summer recession), while 693 

the ~7-yr and ~17-yr variabilities originate from climatic/oceanic large-scale variability as already 694 

demonstrated by Massei et al. (2010), Massei and Fournier (2012), El Janyani et al. (2012) or more 695 

recently Rust et al. (2019). 696 

 697 

The present study showed that the significance of the low-frequency variability in groundwater levels 698 

is highly variable between French hydrogeological entities. The low-frequency variability can be either 699 

predominant in the total variance of groundwater levels or weakly depicted. These discrepancies are 700 

primarily dependent on intrinsic catchment and aquifer properties such as the permeability and thickness 701 

of the unsaturated zone, the hydrodynamic properties (transmissivity and storage coefficient), the 702 
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aquifer geometry, the connection with neighbouring aquifers and river system (El Janyani et al., 2012; 703 

Rust et al., 2018).  704 

 705 

Aquifers constituted of rocks with low matrix porosity and highly fracturated such as limestones and 706 

bedrock would tend to exhibit groundwater levels dominated by an annual variability and a weak low-707 

frequency variability due to a high diffusivity. Conversely, aquifers with high storage capacity and 708 

thickness, low transmissivity, and significant thickness of superficial formations such as chalk aquifers 709 

tend to display groundwater levels dominated by multi-annual to decadal variabilities (Slimani et al., 710 

2009; El Janyani et al., 2012). The exact same behaviour was also recently highlighted by Rust et al. 711 

(2019) in chalk aquifers of Great Britain.  712 

 713 

However, the location in the regional geomorphology (valley, plateau) and hydraulic gradient would 714 

exert a strong control on the significance of multi-annual and decadal variabilities in groundwater levels 715 

(El Janyani et al., 2012), with high-amplitude low-frequency variations for downgradient piezometers. 716 

On the contrary, piezometers with lower amplitudes of low-frequency variations and high amplitudes 717 

of annual variations would be generally found at upgradient locations and then not associated to the 718 

drainage of large areas of subterranean watersheds. Such boreholes would then also be located on 719 

plateau areas, where superficial formations and unsaturated zone are thinner (Slimani et al., 2009). It 720 

then turns out that the geomorphological context and properties such as the presence of superficial 721 

formations, aquifer thickness and transmissivity, but also the location within the hydraulic gradient are 722 

determinant explanatory factors.  723 

 724 

Local conditions would also play a major role in defining the hydrogeological determinism of 725 

groundwater level behaviour. For instance, piezometers located downgradient would correspond to the 726 

drainage of a large volume of aquifer and would then display enhanced low-frequency behaviour, but 727 

in karst areas such boreholes are also very likely associated to highly transmissive karst zones (the so-728 

called “output karst”) that display strong and fast response to precipitation (i.e., favoring high amplitude 729 

high-frequency variations). The influence of such characteristics on the frequency behaviour of 730 
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groundwater levels have been successfully put in evidence using a physics-based modeling approach in 731 

the Seine watershed (Schuite et al., 2019).  732 

 733 

On the scale of the whole Metropolitan France area, however, due to the lack of data about physical 734 

properties of aquifers and an insufficient gathering of existing data into a database, it would be hazardous 735 

to get any further into the interpretation of the impact of physical properties on the significance of low-736 

frequency variabilities in groundwater levels. Hence, the development of such a database gathering the 737 

physical properties of aquifers near boreholes across Metropolitan France would be useful for further 738 

investigations. 739 

 740 

4.3. Influence of multi-annual and decadal variabilities on groundwater trends and 741 

comparison with their influence on (effective) precipitation trends 742 

Our analyses emphasized the need for long groundwater time series to get better insight into the 743 

existence and meaning of trends regarding the presence of low-frequency variability. Extending the 744 

groundwater time series period by 20 years revealed a decrease in the influence of multi-annual 745 

variability (~7-yr) on trends. Thus, this component only little affected the trend. Obviously, the 746 

significance of this influence also depends on the water table behaviour and thus on the relative 747 

importance of multi-annual or decadal variabilities in the total variance of groundwater levels. The more 748 

the considered variability (multi-annual or decadal) dominates groundwater levels, the more influence 749 

it has on the trend. 750 

 751 

We also noted that some trends carried by either the multi-annual or decadal variability, are caused by 752 

changes in the amplitude of the low-frequency variabilities over time. These regular changes in the 753 

variance of low-frequency variabilities have been highlighted in many precipitation and streamflow 754 

studies (Fritier et al., 2012; Dieppois et al., 2013 and 2016; Massei et al., 2010 and 2017). In the 755 

Normandy chalk, downward trends detected in groundwater levels seem to be partly related to a 756 

weakening of the low-frequency variability over time, the decadal variability appearing to be the main 757 
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responsible for these downward trends. Its removal largely influenced trends (they became much smaller 758 

in magnitude), whereas that of multi-annual variability did little or not affect trend magnitude. This may 759 

also explain the stable downward trends detected in Normandy chalk and why changing the time series 760 

length has no effect on trend direction. 761 

 762 

In Section 3.3., we demonstrated the significant influence of multi-annual and decadal variabilities on 763 

groundwater level trends. This large influence of such low-frequency variabilities on groundwater trends 764 

raises the following question: is this influence inherent to the aquifer systems, or does it influence trends 765 

of precipitation and effective precipitation in the same way? We thus also analysed these variables to 766 

answer this question. 767 

 768 

In all hydrogeological units of the Paris Basin, the decadal variability drives groundwater levels down 769 

and thus aggravates downward trends over the 1976–2019 period (Fig. 9). Our analyses on precipitation 770 

and effective precipitation showed primarily the same influence of decadal variability on precipitation 771 

and effective precipitation trends as on groundwater levels (Fig. 11). It drives precipitation levels down, 772 

attenuating upward trends and accentuating downward trends. These consistent results indicate that this 773 

influence of decadal variability on groundwater trends is climatologically induced and is not affected 774 

by catchment and aquifer systems. 775 

 776 

Figure 11. Comparison of precipitation trend magnitude between cumulated monthly precipitation, 777 

~7-yr filtered cumulated monthly precipitation and ~17-yr filtered cumulated monthly precipitation 778 

over 1976–2019;  779 

a) and b) show precipitation results, c) and d) show effective precipitation results. 780 

The legend of hydrogeological entities can be found on Figure 8. 781 

 782 

Our study also revealed a reversal of the effect pattern of multi-annual variability on trends over the 783 

1996–2019 period between aquifers in northern and southern France (Fig. 8). The analysis of 784 

precipitation (P) data showed that over all of France the influence of multi-annual variability on trends 785 



30 
 

is homogeneous: it drives precipitation levels down, attenuating upward trends and accentuating 786 

downward trends (Fig. 12). Thus, the influence of multi-annual variability on trends indicates a reversed 787 

pattern between precipitation and groundwater levels in northern France, particularly in the Paris Basin. 788 

Either potential evapotranspiration (PET) and/or aquifer properties may affect the influence of multi-789 

annual variability on trends and reverse its effect. However, we observed a similar influence of multi-790 

annual variability on effective precipitation (EP) trends as on groundwater trends in the Paris Basin, 791 

driving effective precipitation levels up (Fig. 13). Knowing that EP is equivalent to P-PET, this result 792 

suggests that PET would be responsible for this reversal pattern between precipitation and groundwater 793 

levels, rather than catchment and aquifer properties. 794 

 795 

Figure 12. Comparison of precipitation trend magnitude between cumulated monthly precipitation 796 

and ~7-yr filtered cumulated monthly precipitation over 1996–2019. 797 

 798 

Figure 13. Comparison of effective precipitation trend magnitude between cumulated monthly 799 

effective precipitation and ~7-yr filtered cumulated monthly effective precipitation over 1996–2019. 800 

 801 

In southern France, over the 1996–2019 period, the influence of multi-annual variability is the same on 802 

precipitation trends, effective precipitation trends and groundwater trends (Fig. 8, 12 and 13). Only the 803 

Mediterranean region shows atypical results, as the multi-annual variability drives precipitation and 804 

groundwater levels down, while driving effective precipitation levels up. This indicates that, first, PET 805 

would affect the influence of multi-annual variability on trends by reversing the effect between 806 

precipitation and effective precipitation, and second, that catchments and aquifer properties would affect 807 

this influence in turn to reverse it again between effective precipitation and groundwater levels. To better 808 

understand and explain this phenomenon, further investigations will be necessary at a regional scale. 809 

 810 

Over the longer period of 1976–2019, the influence of multi-annual variability on trends of precipitation, 811 

effective precipitation and groundwater levels is heterogeneous in northern France (Fig. 9 and 11). Some 812 

regions (Normandy, Champagne, and Artois-Picardy) show a rather consistent influence of multi-annual 813 
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variability on trends, regardless of the variable (precipitation, effective precipitation, groundwater 814 

levels). For these regions, the multi-annual variability primarily drives levels up (attenuating downward 815 

trends or accentuating upward trends). In other regions however, such as Bessin, Beauce and Bourgogne, 816 

the available data indicate different influences of multi-annual variability on precipitation, effective 817 

precipitation, and groundwater level trends. We will not extend the discussion to these regions because 818 

the results showed disparities at the local scale.  819 

 820 

Our analysis provides a first insight into the influence of multi-annual and decadal variabilities in 821 

groundwater levels on estimated trends. Generally, the influence of both low-frequency variabilities is 822 

also similar on precipitation and effective precipitation trends. We observe multi-annual and decadal 823 

variabilities that aggravate downward trends or mitigate upward trends either in groundwater, 824 

precipitation and effective precipitation. It is known that low-frequency variability (originating from 825 

internal climate variability) may modulate anthropogenically-driven trends, particularly those induced 826 

by climate change (Kingston et al., 2020). Our result indicates that low-frequency variabilities would be 827 

able to aggravate trends (i.e., amplify downward trends) that might be induced by anthropogenic climate 828 

change. For regions that are already submitted to regular meteorological and hydrological droughts, this 829 

result may be particularly alarming, such as for the Mediterranean region that is defined as an 830 

anthropogenic climate change “hotspot” (Diffenbaugh and Giorgi, 2012; Lionello and Scarascia, 2018; 831 

Drobinski et al., 2020; Tramblay et al., 2020). However, even if it is accepted that low-frequency 832 

variability may accentuate, attenuate or inverse the long-term effects of climate change on hydrological 833 

processes (Fatichi et al., 2014; Gu et al., 2019; Massei et al., 2020), our methodology in this article does 834 

not allow us to obtain residual trends that may be only related to climate change. Indeed, we subtracted 835 

individually each low-frequency variability to assess their specific influence on trends and consequently 836 

there is still some low-frequency in residual time series (filtered ones) on which the trend is re-estimated. 837 

Consequently, we do not estimate directly the aggravating or mitigating potential of low-frequency 838 

variability on trends that would be related only to climate change. 839 

 840 
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In some areas, however, discrepancies exist between precipitation and effective precipitation, suggesting 841 

the possible influence of PET that inverses the effect of multi-annual variability on trends (over 1996–842 

2019) in the Paris Basin. Locally, discrepancies can appear between effective precipitation and 843 

groundwater levels, such as in the Beauce area over 1976–2019 due to aquifer properties that 844 

significantly filter the multi-annual variability, which then no longer affects groundwater trends. Further 845 

investigations will be necessary to better understand the processes and physical properties causing the 846 

reversal of the influence of low-frequency variability on trends between precipitation and groundwater 847 

levels. 848 

 849 

The large influence of low-frequency variability on estimated groundwater level trends entails several 850 

implications. First regarding conclusions about traces of climate change in groundwater levels, since 851 

trends may actually correspond to the presence of low-frequency variability, and then be primarily the 852 

result of internal climate variability instead of anthropogenic climate change. Second regarding future 853 

evolutions of groundwater levels, since a potential change in the amplitude of internal climate variability 854 

(that may also be the consequence of anthropogenic climate change) – e.g. increasing or decreasing low-855 

frequency variability – in the next decades may lead to substantial changes in groundwater level trends. 856 

Consequently, the extrapolation of trends estimated over the historical period seems particularly 857 

hazardous, due to the stochastic and unpredictable behaviour of such low-frequency fluctuations. Third 858 

regarding future projections, because internal climate variability is often improperly reproduced and is 859 

a major source of uncertainties in climate and hydrological projections resulting from GCM outputs 860 

(Terray and Boé, 2013; Qasmi et al., 2017). Consequently, trend estimates resulting from these 861 

hydrological projections (and in fine resulting from recharge and groundwater level projections) would 862 

be subject to strong uncertainty. 863 

 864 

5. Conclusion 865 

The analysis of groundwater level trends in France showed that a number of aquifers were susceptible 866 

to trend direction instabilities (i.e., changes in trend direction according to the length of time series), 867 
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leading to contradictory conclusions about groundwater level evolutions. This led to the question of the 868 

existence, importance and spatial distribution of low-frequency variability in groundwater levels of 869 

French aquifers. Groundwater levels were therefore broken down by MODWT to estimate the 870 

significance of low-frequency variabilities in total groundwater level variability. It turned out that most 871 

of aquifers susceptible to trend direction instabilities exhibit a hydrological variability characterized by 872 

a significant low-frequency variability: they are aquifers with inertial or combined behaviour of water 873 

tables. Given the significant presence of multi-annual and decadal variabilities in groundwater levels, 874 

we aimed to determine if, how and to what extent each of these components could affect trend estimates. 875 

To this end, MODWT filtering was performed to subtract individually the multi-annual or decadal 876 

variability from the entire signal, and then trends were re-estimated on the filtered groundwater level 877 

time series. The results showed that the groundwater level trends were highly sensitive to the presence 878 

of any of these low-frequency components, which may then strongly influence the estimated trends. 879 

Such results indicate that low-frequency variability (originating from internal climate variability) is 880 

capable of attenuating or accentuating groundwater level trends, including those that might be associated 881 

with climate change.  882 

 883 

In general, trend detection is widely used as a tool for assessing changes in groundwater levels. 884 

Nevertheless, our study presents features that show that this tool should be used with caution, 885 

particularly for studying groundwater levels with significant low-frequency variability. We observed 886 

that: (i) trends are highly dependent upon the study period and time series length, and cannot be 887 

extrapolated; (ii) trends are strongly influenced and guided by low-frequency variability, and (iii) trends 888 

are often only segments of larger scale fluctuations resulting from large-scale atmospheric or oceanic 889 

circulation. Consequently, their interpretation and attribution to a physical phenomenon, such as climate 890 

change vs. climate variability, remains complex. In addition, since low-frequency variability strongly 891 

guides and influences the estimated groundwater level trends, potential changes in low-frequency 892 

variability – induced by changes in internal climate variability – would necessarily lead to a change in 893 

the estimated trends. In particular, this means that (i) estimation of trends in hydrological projections 894 

resulting from GCM outputs in which low-frequency variability is not well respresented would be 895 
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subject to strong uncertainty, (ii) a potential change in internal climate variability – e.g. increasing or 896 

decreasing low-frequency variability – in the next decades may lead to substantial changes in estimated 897 

groundwater level trends. 898 

 899 

Consequently, future works should focus on assessing the impacts of a potential change in internal 900 

climate variability (i.e., low-frequency variability) on groundwater level trends using different scenarios 901 

of amplitude-modifications of low-frequency variability. In addition, a sensitivity analysis of the results 902 

of this study to decomposition method employed (e.g. wavelets, EEMD) should be conducted. 903 
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