
HAL Id: hal-03558760
https://hal.science/hal-03558760

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MLS: how Zero-Knowledge can secure Updates
Julien Devigne, Céline Duguey, Pierre-Alain Fouque

To cite this version:
Julien Devigne, Céline Duguey, Pierre-Alain Fouque. MLS: how Zero-Knowledge can secure Updates.
ESORICS 2021, Oct 2021, Darmstadt / Virtual, Germany. �hal-03558760�

https://hal.science/hal-03558760
https://hal.archives-ouvertes.fr

MLS: how Zero-Knowledge can secure Updates

Julien Devigne1, Céline Duguey1,2, and Pierre-Alain Fouque3,2

1 DGA Mâıtrise de l’information, Bruz, France julien.devigne@intradef.gouv.fr
2 Irisa, Rennes, France celine.duguey@irisa.fr

3 Univ Rennes, CNRS , pierre-alain.fouque@irisa.fr

Abstract. The Messaging Layer Security (MLS) protocol currently de-
veloped by the IETF aims at providing a group secure messaging solu-
tion. The goal is to provide end-to-end security, including Forward Se-
crecy and Post Compromise Secrecy, properties well studied for one-to-
one protocols. MLS proposes a tree-based regular asynchronous update
of the group secrets, where a single user can alone perform a complete
update. A main drawback is that a malicious user can create a denial of
service attack by sending invalid update information.
In this work, we propose a solution to prevent this kind of attacks, giv-
ing a checkpoint role to the server that transmits the messages. In our
solution, the user sends to the server a proof that the update has been
computed correctly, without revealing any information about this up-
date. We use a Zero-Knowledge (ZK) protocol together with verifiable
encryption as building blocks. As a main contribution, we provide two
different ZK protocols to prove knowledge of the input of a pseudo ran-
dom function implemented as a circuit, given an algebraic commitment
of the output and the input.

Keywords: Cryptographic Protocols · Messaging Layer Security - MLS
· Secure Messaging · Zero-Knowledge.

1 Introduction

Secure messaging protocols have been widely adopted over the last few years.
The privacy offered by encrypted communication seduces billions of users world-
wide. A significant number of application providers have settled their security
on the Double Ratchet Algorithm [36], often identified as Signal. This protocol
provides End-to-End confidentiality, as well as Forward Secrecy (FS) and Post
Compromise Secrecy (PCS). The Double Ratchet however is dedicated to one-
to-one communications. Messaging Layer Security (MLS) targets secure group
messaging and is developed by the Internet Engineering Task Force (IETF). The
goal is to obtain similar security properties as those in one-to-one protocols. The
group keys are computed and regularly updated in a protocol called TreeKEM,
based on a tree structure. In MLS, each member of the group is represented
by a tree leaf and the group secret is given by the tree root. Each member can
update the group secret as well as its own keys. He can also, if authorized, add
or remove members. To perform an update, a user sends to the other leaves

2 J. Devigne, et al.

secret information which depend on their position in the tree. In this paper,
we are concerned with an open problem identified in the MLS draft: how to be
sure that each user receives a valid update information? In other words: how to
be sure that the updating user is not cheating? The current protocol provides
verification elements for each user to check whether the update he received is
valid, but it does not prevent a malicious updater to create denial of service at-
tacks. Such attacks would prevent the updating process, seriously damaging FS
and PCS properties, that seduce the users. Consequently, we propose a solution
in which the users only receive valid updates: the server which transmits the
update messages can check their validity before forwarding them. The server is
given a check-point role. If the server were to be dishonest, he could not create a
malicious update by himself. Hence we only add a layer of security, through the
server, without modifying the core of MLS. A main building block of our solution
is a ZK protocol, inspired from the recent multi party computation (MPC) in
the head solutions ([29], [25], [33]).

Our contribution. As a first contribution, we show how to combine a ZK
protocol with a verifiable encryption solution to solve the open problem identi-
fied in the IETF draft for MLS, in a light version of the protocol. The idea is
to enable an intermediate server to perform a blind verification (on encrypted
and committed data) that each update information sent by the updater is cor-
rectly computed. The ZK proof is provided on a statement that mixes a circuit
evaluation (an HKDF derivation, defined in [35]) and an algebraic commitment
(typically a Pedersen commitment, described in [38]). The verifiable encryption
scheme proves to the server (i.e. the verifier) that the encrypted data is the one
that is committed to and verified in the proof.

As a second contribution, we propose two ZK protocols for statements that
compose an algebraic commitment and the circuit computation of a pseudo-
random function family (PRF) f . More precisely, we prove the knowledge of a
witness x such that public commitments Cx, Cy are algebraic commitments of
x and f(x), with f(x) remaining secret. Our approach is based on the MPC in
the head paradigm, introduced in [29]. We consider the recent ZK proof system
ZKBoo [25] and its improvements ZKBoo++ [16] as well as KKW [33]. Our
first approach consists in considering a Boolean circuit that computes two tags
of the form t = ax + b. One tag is on the secret input x, the second is on
the secret output f(x). The proof on this circuit binds the secret input and
output to the tag values. In a second step, we use the linear properties of the
algebraic commitment to show that the committed values are also bound by the
tags. Finally, we invoke properties of the PRF to show that their exists only
one solution to the tag equations. Our second approach is directly inspired by
a recent work of Backes et al. [6]. The first step is to provide commitments to
the bits of the secret input and output. Then, we call the algebraic properties
of the commitment scheme to link those bits with values used in the circuit
proof. Previous works have proposed solutions for such algebraic and circuit
composition statements [17] and [1] that we describe in the following. However,
the former is inherently interactive and the latter uses SNARKs, where the

MLS: how Zero-Knowledge can secure Updates 3

burden of the proof is mainly on the prover side, which does not fit our case as
smartphones have resources to be saved.

Related work. Secure Messaging. Secure messaging, and more particularly
Ratcheted Key Exchange (RKE) have been widely studied over the past ten
years. We can cite the first analysis of the Signal protocol [20] as well as the fol-
lowing works on RKE ([10], [39], [30], [32], [3]). Literature for the group version is
more limited. In [19] Cohn Gordon et al. introduced the notion of Asynchronous
Ratcheted Trees (ART). These ART are Diffie Hellman based binary trees in
which the update process of a node involves entropy coming from both its chil-
dren. In MLS, the underlying TreeKEM protocol is inspired by ART. A main
difference is that a single leaf can generate the update data for each of its an-
cestor nodes. TreeKEM has been initially formalized in the technical paper [11]
and has then evolved to reach the actual description available on the prevailing
draft 11 [?]. Alwen et al. formalize in [4] a Continuous Group Key Agreement
(CGKA) derived from the two-party Continuous Key Agreement defined in [3].
They provide a security model for CGKA and show that the protocol TreeKem
does not achieve optimal FS and PCS security. However they prove that a better
security can obtained by using an updatable public key encryption scheme. Our
solution is compatible with this improvement. In [2], Alwen et al. focus on the
addition and revocation process. Both works consider a partially active attacker,
that can leak a user’s state, has full control on message delivery but cannot use
the knowledge of secret keys to insert his own data.

Zero-Knowledge proofs. ZK proofs have proved to be a powerful tool in cryptog-
raphy, since their conception in the mid 1980s. It has been shown that ZK proofs
exist for any NP language. However, efficient ZK protocols are designed for a
small class of language and do not extend to any NP languages. Sigma protocols
(Σ-protocols), clearly described in [21], are very efficient for proving algebraic re-
lations, whereas other protocols have been designed for proving statements that
can be expressed as a circuit. Among them, Garbled Circuits based schemes, as
introduced in [31], which are inherently interactive, and SNARKs, as designed
in [24], [27], [34]. SNARKs are non-interactive arguments (with computational
soundness) of knowledge with small proofs and light verification: the burden of
the proof is on the prover side. They are proven secure in the common reference
string (CRS) model: a common trusted public input has to be shared by the
prover and the verifier. Practical implementations based on pairings are in use
in real life protocols such as cryptocurrencies. More recently, the MPC in the
head paradigm, introduced in [29], leads to very efficient proof system without
CRS. The seminal paper [25] introducing ZKBoo proposes the first efficient ZK
proof of a hash function computation. Further works significantly optimize the
efficiency, such as Ligero [5], or ZKBoo++ [16] and KKW [33] that were directly
incorporated in the post quantum signature scheme Picnic.
In real life however, many applications need to provide proofs on statements that
mix algebraic and non algebraic parts. Expressing the algebraic part as a circuit
would considerably increase the circuit size and reduce the efficiency. One can
express each gate of a circuit as an algebraic relation that can be proven with a

4 J. Devigne, et al.

Σ-protocol, but this solution is clearly non desirable as circuits for hashing may
have thousands of gates. Considering this, combining efficiently algebraic and
non algebraic proofs has revealed to be an important challenge.

In [17], Chase et al. combine for the first time proofs on algebraic and non
algebraic statements, solving the open problem described above. They propose
two constructions to provide a circuit proof on a committed input. Their two
constructions are based on Garbled Circuits, which enable efficient ZK proofs for
non algebraic statements but are inherently interactive. Our solutions are close
to theirs in the sense that their first proposal uses bit wise commitment on an
secret input, and their second proposal includes a one-time mac computation in
the circuit to be garbled. However, their proposal heavily relies on the garbling
protocol and can not be transposed to the non interactive setting. In terms of
efficiency, their second solution augments the cost of garbling in O(|x|s + s)
where s is the security parameter required for the one time mac (which can be
chosen less than the size of the witness x). This corresponds to the multiplication
on integers ax included in the circuit. In our tag based solution, we show that
the multiplication does not significantly increase the proof size.

More recently, Agrawal et al. in [1] propose a solution for modular composition
of algebraic and non algebraic proofs. Their solution is non interactive, based
on Sigma protocols and QAP-based SNARKs. As explained in their work, the
“key ingredient we need from a SNARK construction is that the proof contains
a multi-exponentiation of the input/output”. They compose it with a proof that
the exponents in a multi-exponentiation correspond to values committed to in
a collection of commitments. From this result, they show how to obtain proofs
for AND, OR and composition of two statements, either algebraic or circuit.
The authors work with SNARK proofs for the circuit part in order to obtain
small proofs and a light verification step. These properties are desirable for their
applications such as privacy-preserving credentials or crypto-currencies proofs of
solvency. The counterpart is that the prover has to provide a higher computa-
tional effort. In our application case - a proof of an honest key update in MLS -
the verifier turns out to have a larger computation power than the prover.

Finally, Backes et al. propose in [6] an extended version of ZKBoo++ that allows
algebraic commitments on the secret input of the circuit. Their protocol is non
interactive and the computational cost is balanced between the prover and the
verifier. Their solution requires to commit to each bit of the secret input and to
commit to internal values of the ZKBoo++ circuit proof. We extend their result
to the case of a committed output in our second zero-knowledge solution. We
focus on the MPC in the head paradigm in order to provide proofs in which the
amount of work is balanced between both parties.

Organization of the paper. In section 2, we quickly recall the definitions con-
cerning ZK proofs, commitment schemes, and verifiable encryption. We detail
more particularly ZKBoo, an efficient protocol for large boolean circuits such as
hash computation. In section 3, we present the protocol MLS, focusing on the
process to update the group secret, and we describe our solution to improve the
security of the update mechanism. The section 4 is dedicated to our two proto-

MLS: how Zero-Knowledge can secure Updates 5

cols, CopraZK and (bitwise) ComInOutZK, for proving knowledge of the preimage
of a PRF function when only commitments of the input and the output are pub-
licly available. Finally, in section 5 we present implementation results concerning
our first solution CopraZK.

2 Backgrounds

Zero-Knowledge. Consider an NP relation R, i.e. given a witness w and an in-
put x, R(x,w) = 1 can be decided in polynomial time. Let L be the language as-
sociated to R, L = {x|∃w such that R(x,w) = 1}. A ZK proof of knowledge for
L allows a prover to convince a verifier (who knows x), that he knows a witness w
for R, without revealing any further information on w. It shall be correct (if the
prover and the verifier are honest, the verifier always accepts), sound (a corrupted
prover can make the verifier accept a false statement only with negligible proba-
bility), and zero-knowledge (no information on w leaks from the proof). Follow-
ing the notation of [13], we write PK{w1, . . . ws : R(w1, . . . , ws, x1 . . . xt) = 1}
to denote the proof of knowledge of the secret witnesses w1, . . . ws that satisfy
the relation R with the public values x1, . . . , xt.

Commitment Schemes. A commitment scheme involves a Committer and
a Receiver who share public parameters. On entrance a message x and an
additional opening information r, the commitment protocol produces a value
c = Com(x, r) such that c shall not reveal any information about x; this is the
hiding property. The Committer can open its commitment c by revealing r and
x with the property that only the secret x shall produce a valid opening for c;
this is the binding property. For our second ZK protocol, we will require an extra
property, called equivocality. Briefly, a commitment is equivocable if there exists
a trapdoor T such that, given a commitment C, its opening information, and T ,
it is possible to open C to any value. Equivocality comes with a specific extractor
that, given two different openings (x1, r1), (x2, r2) to a single commitment C, can
extract the trapdoor T . The Pedersen commitment scheme [38] is an equivoca-
ble scheme with unconditional hiding and computational binding. It is routinely
used because it interacts nicely with linear relations. This scheme is defined as
follows: let G be a cyclic group of prime order q, P a generator and Q ∈ G
such that the discrete log of Q in base P is unknown. Then, Com(x) = xP + rQ
where r is sampled at random in Zq. Let C1, C2 be commitments to values
x1, x2. If a, b ∈ Zq are public values, then one can efficiently prove the following
: PK{x1, x2, r1, r2 : C1 = x1P + r1Q∧C2 = x2P + r2Q∧ ax1 + x2 = b mod q}.
The trapdoor for equivocality is given by the discrete log of Q in base P .

MPC in the head. Ishai et al. introduced in [29] a new paradigm for ZK
proofs, called MPC in the head. This solution reveals to be very competitive
in terms of efficiency for ZK proofs performed on circuits. The idea is that
the prover performs a virtual MPC and obtains several views. He commits to
these views and opens only a sub-part of them required by the verifier. This

6 J. Devigne, et al.

Σ-protocol can be turned into a non-interactive proof using Fiat-Shamir trans-
formation [23]. ZKBoo [25] generalizes IKOS to any relation Rφ defined by a
function φ : X → Y (Rφ(y, x) ↔ y = φ(x)), as long as the function φ can
be computed in a specific manner identified as a (2,3)-decomposition. Given
this specific MPC computation, the prover first shares its secret input x into
(x1, x2, x3) = Share(x) such that x = x1 ⊕ x2 ⊕ x3. Then he runs the MPC and
obtains three distinct views w1, w2, w3 and from each of this view he gets an
output share yi = Output(wi), i ∈ {1, 2, 3} such that y1 ⊕ y2 ⊕ y3 = φ(x). A
detailed description is given in Appendix A.

Verifiable encryption. Verifiable encryption aims at convincing a verifier that
an encrypted data satisfies some properties without leaking any information
about the data itself. In such 2-party protocol, a prover and a verifier share in
a common input string a public key encryption scheme Enc, a public key pk for
Enc, and a public value y. At the end, the verifier either accepts and obtains the
encryption of a secret value x under pk such that x and y verify some relation R
or rejects. It is worth noticing that the prover does not need to know the secret
key sk, that usually belongs to a third party. Verifiable encryption often appears
in the domain of anonymous credentials, fair exchange signatures, or verifiable
secret sharing [40]. In [12], Camenish and Damg̊ard describe how to provide a
proof that an encrypted value is a valid signature, using any semantically secure
encryption scheme. The idea is to take advantage of the Σ-protocol that already
exists for a relation R(x, y), to provide an evidence that an encrypted value is
the witness x for this relation. In our application, we need to prove that the
encrypted data x, is the one that is linked by a Pedersen commitment Cx = y.
As a Pedersen commitment comes with an associated Σ-protocol, the Camenish-
Damg̊ard scheme applies naturally. There are interesting ways towards more
efficient schemes, e.g. [18] or [14]. However, the main benefit of the Camenish-
Damg̊ard solution is that it does not introduce any change in the original MLS
specification, as we can still use the encryption scheme required in MLS draft.
More details are given in Appendix B. We denote by VerifEncEnc,pk(m : r) the
encryption of a message m (using randomness r) under the public key pk with
the encryption scheme Enc and the associated proof. We omit the randomness r
when it is not necessary to explicitly mention it.

3 MLS Updates

We explain how the MLS update mechanism works and our more secure solution.

3.1 Message Layer Security

MLS is a protocol currently under development by the IETF to provide an End-
to-End secure group messaging application. The idea is to enable a group of
users to share a common secret that can be updated regularly by any user. One
of the open issues in the IETF draft is that the validity of an update message can
only be checked after it has been received. This open issue was clearly identified

MLS: how Zero-Knowledge can secure Updates 7

until draft 9 included. In the recent draft 11, all open issues have been removed.
However, to our knowledge, there is still no solution to this problem, which can
lead to denial of service attacks. Currently in MLS, the authors require an hybrid
public key encryption (HPKE) scheme, as designed in [8], which comprises a
KEM, an AEAD encryption scheme and a hash function. Briefly, an asymmetric
KEM protocol is used to compute and transmit a symmetric key k. Then data
are symmetrically encrypted under key k with the AEAD encryption scheme.
As symmetric encryption is far more efficient than its asymmetric counterpart,
this hybrid method is a common practice. In the rest of this work, we denote
by Encpk(m : r) the HPKE encryption of a message m under the public key pk
using randomness r. The asymmetric part of Enc is based on an elliptic curve E
defined on a finite field Z/pZ with base point P of order a prime q. MLS also
supposes the existence of a broadcast channel for each group, which distributes
all the messages to each group member, conserving the order.

MLS tree. MLS is based on a binary tree structure (Figure 1) where users
correspond to leaves and each node is associated to a secret value. Each user U
has a long term identity signing key and an initial key package for the encryption
scheme Enc (both certified by a PKI). We will simply represent the key package
as a public/private key pair (pkU , skU) valid for the encryption scheme Enc.

A B C − E F G H
psA psB psC psE psF psG psH

•ps2 •ps6 •ps10 •ps14

•ps12•ps4

•
psroot

Fig. 1. A view of the MLS tree. Nodes are implicitly numbered from left to right,
independently from their height. Leaves are associated to a user represented as a letter.
Each node i has a secret psi. A leaf secret is indexed with its user name.

The group key is derived from the root secret. Each child node knows the secret
of each of its ancestors and only of its ancestors. To each node i corresponds:

- a path secret psi ;
- a secret and public key ski, pki = deriveKeyPair(psi).

The exact derivation depends on the elliptic curve. We define, w.l.o.g, (ski, pki) =
deriveKeyPair(psi) = (deriveSK(psi), deriveSK(psi)P) where deriveSK is a PRF.
A user knows the secret (and so the secret keys) in its direct path, composed
of itself and its direct ancestors. Moreover, each user keeps an up-to-date global
view of the tree, as a hash value of each node’s public information.

8 J. Devigne, et al.

Updates. The path secrets and derived keys are regularly updated. Each update
gives birth to a new epoch. Each epoch corresponds to a root secret, from which
are derived several application keys. We focus on how the root secret is updated,
not on how it is used.
To update the tree, a user B generates a new secret ps′B . The path secrets in
the direct path will be successively derived from ps′B . We note Hp(psi) for the
function HKDF− expand(psi, “path”, “”, Hash.length). The update mechanism
is given in Figure 2.

A B C − E F G H
psA ps′B

psC psE psF psG psH

•Hp(ps
′
B) = ps′2 •ps6 •ps10 •ps14

•ps12•Hp(ps
′
2) = ps′4

•
Hp(ps

′
4) = ps′root

Fig. 2. Update process. User B updates its secrets. Path secrets are updated along
its direct path (in red). The update secrets are sent to its copath nodes (in green).

When B updates its secret psB → ps′B , he first computes the new node data for
each node on its path:

- ps′2 = Hp(ps
′
B), pk2 = deriveSK(ps′2) · P

- ps′4 = Hp(ps
′
2), pk4 = deriveSK(ps′4) · P

- ps′root = Hp(ps
′
4), pkroot = deriveSK(ps′root) · P

Then he sends for each node on its copath the necessary secret material for the
users under this node to perform the same update (i.e., to obtain the new secret
keys for their updated ancestors). Following our example in Figure 2, B has to
send ps′2 to A, ps′4 to nodes C and 6 and ps′root to nodes E, 10, F, 12, G, 14, H.
As a child knows the secret key ski for each of its ancestors, B will only have to
perform three encryptions, one for each secret. He encrypts ps′2 under pkA, ps′4
under pk6 and ps′root under pk12.
From ps′2 (respectively ps′4), A (resp. C) shall be able to compute the root secret.
We recall that from this root secret is derived a new epoch secret SE+1. Before
sending his Commit, B computes SE+1 and uses it to produce a confirmation key.
This value shall enable A and C to check that they have derived the correct root
secret and so, that they received a correct update. Other mechanisms such as
the transmission of the updated view of the tree, or of intermediate hash values
are provided for a user to check that he received a correct update. However, all
those mechanisms enable a verification after receiving the update information.

MLS: how Zero-Knowledge can secure Updates 9

From there, a malicious user can send non valid updates (to everyone or any
branch) causing a denial of service. Given the mechanisms for a user to check
whether the update is valid, there are two options: either the update is accepted
by all only once each user has confirmed that he received a valid update, this can
imply a huge latency, if some users are seldom online. Or the update is validated
without such a feedback approach. In such a case, the users that received non
valid secret values are ejected from the group de facto. In both case, this seriously
hampers with the security of the service provided by the protocol.

3.2 Securing MLS updates

We now explain how to combine a ZK protocol and a verifiable encryption to
secure the update process in MLS. We first focus on a single step of the update
process (a user updates his direct parent) and then explain how this solution
can be extended to the global tree.

Server-checking in MLS. As described in Figure 2, let assume that B gener-
ates a new secret ps′B and computes:

- deriveKeyPair(ps′B) to obtain a new key package;

- ps′2 = Hp(ps
′
B) the new secret for node 2;

- (sk′2, pk
′
2) = deriveKeyPair(ps′2) the new keys for node 2;

Finally he sends (EncpkA(ps′2), pk′2) so that everyone gets pk′2 but only A can
access ps′2. Now suppose there exists a ZK protocol which, given public values
Cx and Cy, provides the following proof: PK{x, rx, ry : Cx = Com(x, rx) ∧ Cy =
Com(f(x), ry)} for any PRF f . Then B can send to the server the public val-
ues CB , C2, Csk′2 , pk′2 together with a proof Π2 = PK{ps′B , rB′ , r2, rsk′2 : CB =
Com(ps′B , rB′)∧C2 = Com(Hp(ps

′
B), r2)∧Csk′2 = Com(deriveSK(Hp(ps

′
B)), rsk′2)∧

pk′2 = deriveSK(Hp(ps
′
B))P} (the last part of the proof being a classic discrete

log proof). In addition, verifiable encryption (detailed in section 2) allows to link
the message encrypted with VerifEnc with the data committed in C2. To sum
up, B will send for a node update, the public values CB , C2, Csk′2 , and pk′2, the
proof Π2 together with VerifEncEnc,pkA(ps′2). If the server accepts the proof, then
he transmits the public key pk′2 as well as VerifEncEnc,pkA(ps′2) to A.
To extend the proof to the complete tree, one has to repeat the above steps for
each level. To certify the update value ps′4 corresponding to the parent node 4,
B will send the server values C4, Csk′4 , pk′4, the proof Π4 = PK{ps′2, r2, r4, rsk′4 :
C2 = Com((ps′2), r2) ∧ C4 = Com(Hp(ps

′
2), r4) ∧ Csk4 = Com(deriveSK(Hp(ps

′
2)),

rsk′4) ∧ pk′4 = deriveSK(Hp(ps
′
2))P} together with VerifEncEnc,pk6(ps′4). The cru-

cial point is that, as the commitment C2 is linked with ps′B in Π2, it can be
used as a base value for Π4 and so on. Some special care must be taken as we
commit, in a group of order q prime, to an element sk ∈ {0, 1}256 that does not
lie naturally in Z/qZ. We explain how to handle with this in Appendix C.

About the server. Several reasons appear for calling on a third party. Firstly,
this central node with the largest computational power is the one that can discard

10 J. Devigne, et al.

invalid updates with the most efficiency. If one relies on users to check for the
validity of the data they received, this means that one must wait for each user
to process the update and to send back an acknowledgement. As a user can be
off-line for a long time, this can be very inefficient. Another solution would be
to allow users to adopt the update as soon as they are individually convinced
it is correct, while providing a ”backup solution”. This would probably imply
keeping old keys and drastically impoverish FS.
Secondly, in MLS architecture, all the update encrypted messages are gathered
and sent as one big message to all the users. It may be of interest to think of a
solution where only the needed encryption is sent to a specific user. In this case,
only the server will see all the messages together. He is then the only one able
to perform a verification on a global proof to see whether all the updates are
correctly generated from a single secret seed.

4 ZK for a PRF on committed input and output

In this section, we provide two protocols to prove the knowledge of an input
x and randoms rx, ry, such that, for a public values Cx, Cy, and a function f
evaluated as a circuit, Cx = Com(x, rx) and Cy = Com(f(x), ry). This goal can
be written as an ideal functionality, as in Figure 3.

The Verifier inputs Cy, Cx. The Prover inputs values x, rx, ry.
The functionality outputs accept if (x, rx) opens Cx and (f(x), ry) opens Cy.

Fig. 3. The ideal functionality Ff,Com.

The efficient ZK proofs for a function evaluation require this function to be eva-
luated as a circuit, but efficient commitments are algebraic. Consequently, we
want to achieve the best of both worlds by combining a proof on a circuit and
algebraic commitments.
Our first solution, CopraZK (Commitment and PRF alternative ZK), is specific
to the case of f being a PRF. The secret x is the PRF key and we evaluate f on
a public message m. We consider the circuit that evaluates two equations on x
and on another secret input a. We call the results of these equations tag values.
The first tag t1 only depends on f(x,m) and f(a,m). The second tag t2 depends
on x and a. Calling PRF properties, we show that the pair of equations have
a single solution. Hence, the input pair (x, a) is bound to the tag pair t1, t2. In
a second step, we call the homomorphic properties of the commitment to show
that the values committed in Cx and Cy also verify the equations. Then it must
be that the values committed to corresponds to the values used in the circuit.
Our second solution, ComInOutZK (Committed Input and Output ZK) is directly
inspired from [6], which provides a proof of a circuit evaluation on a committed
input and public output. We extend their work to a committed output. The idea
is to commit to the bits of the output and, for each round, to the output shares

MLS: how Zero-Knowledge can secure Updates 11

given by the circuit decomposition of ZKBoo. Then, calling the homomorphic
properties of the commitment scheme, one can bind the bit wise commitments
to the share commitments by revealing the difference of randomness between
those elements.

CopraZK adds a negligible number of algebraic operations. The prover performs
around 20 computations on the curve (public key operations) and 8 additions in
Z/qZ (symmetric operations). For the verifier, 12 additions on the curve and 2
in Z/qZ are needed. However, the circuit part of the proof is more than doubled
to compute the two tags. Considering ZKBoo, the prover effort is O(σ|F |) sym-
metric operations, where |F | is the number of AND gates of the circuit and σ
the number of rounds. Our solution requires O(σ(2|F |+ |mod|)) + 8 symmetric
operations and 20 public key operations, where |mod| is the size of the circuit for
a modular addition. We show in section 5 that |mod| is negligible compared to
|F | and finally, our solution requires on the prover side (O(2σ|F |) symmetric +
20 public key operations. The computational cost is dominated by the symmetric
part. The size of the proof and the work on the verifier’s side are also dominated
by the circuit part. One inconvenient is that it is limited to PRF evaluation and
that the security proof requires non usual hypothesis on PRF.
On the opposite side, ComInOutZK is valid for any circuit, only requires equiv-
ocality of the commitment scheme, which is a common hypothesis, and leaves
the circuit evaluation untouched. But it requires a non negligible number of al-
gebraic commitments. Considering |x| (respectively |y|) the bit size of the input
(of the output), we obtain on the prover side O(|x|+ |y|+ 2σ) public key opera-
tions and O(σ|F |) symmetric operations. The verifier’s work is equivalent. The
proof size of ZKBoo is augmented with O(|x| + |y| + 6σ) curve points which is
asymptotically O((|x|+ |y|+λ)λ) as σ augments with λ. We compare in Table 1
our two solutions with the SNARK based solution of [1].

Non
inter-
active

No
CRS

Prover’s work Verifier’s work Proof size

SNARK
based [1]

yes no O((|F |+ λ) · pub) O((|x|+ |y|+λ) ·pub) λ

CopraZK yes yes O(2|F |λ · sym) O(2|F |λ · sym) O(2|F |λ)

ComInOutZK yes yes O(|F |λ · sym +
(|x|+ |y|+λ) · pub)

O(|F |λ · sym+ (|x|+
|y|+ λ) · pub)

O((|F | + |x| +
|y|+ λ)λ)

Table 1. Comparison of the efficiency of the different solution for Circuit proof on
committed input and output. pub stands for the cost of a public key operation (mul-
tiplication and addition on the curve for instance), while sym stands for the cost of a
symmetric operation. |F | is the circuit size, |x| the input size and |y| the output size.
In most applications, |F | >> (|x|, |y|, λ).

12 J. Devigne, et al.

On the challenge size When we expose our solutions, in both case we mention
a unique challenge, that is used for the algebraic Σ-protocol and for the ZKBoo
proof. This means that the challenge space size for the Σ-protocol is 3 and that
we shall perform λ/3 rounds to obtain a soundness error in 2−λ. The σ-protocol
can benefit from a larger challenge space, that allows for a single round. As
explained in [6], it is possible to define distinct challenges eρ ∈ {1, 2, 3} for each
ZKBoo round and a global challenge e =

∑σ
i=1 3iei for the algebraic Σ-protocols,

hence the algebraic part of the proof can be performed a single time.

4.1 Our first solution: CopraZK

Let us denote by Func(D,R) the set of all functions from D to R and by
FF(K,D,R) the set of all function families with parameter (key) in K, domain D
and range R. We write f : K×D → R for a function family in FF(K,D,R) (and
call it a function, by ease of language). Let f be a function: Z`2 × Z∗2 → Z`2 and
m a public input, m ∈ Z∗2. Let G be a group of prime order q, such that 2` ≤ q.
There is a natural embedding Z`2 ↪→ G. Let P be a generator for this group
and Q an element of G such that logP (Q) is unknown. Let h be a hash function
Z∗2 → Z`∗2 . Let Com be the Pedersen commitment scheme. Those elements are
the public parameters of the prover and the verifier.
We use a ZKBoo proof for the circuit part, but the protocol and its proof are valid
for any circuit based ZK proof or argument. Let Cx, Cy be public commitments,
known to the verifier. The main idea is to consider the circuit two tags t1 =
f(x,m) + f(a,m) and t2 = x + a where a is a random mask considered as
a second secret entry of the circuit. A MPC in the head proof on this circuit
ensures that t1 and t2 are correctly computed from two secret values x and a
known to the prover. The prover also provides commitments Ca and Cb for values
a and f(a,m). Considering Pedersen commitments, we complete the circuit proof
with an algebraic proof that the committed values in Ca, Cx, Cy, Cb verify the
relations t1 and t2. These linear relations together with the properties of f defined
below, bind the values of Cx and Cy such that the verifier can be convinced that
the value committed in Cy is equal to the evaluation of f on the value committed
in Cx. The detailed description of the protocol CopraZK is given in Figure 4.
The following theorem states the security of CopraZK.

Theorem 1. Let f be a secure special pseudo-random function, h be a secure
hash function and Com a homomorphic commitment scheme. Then the CopraZK

protocol described in Figure 4 defines a ZK argument with computational Zero-
Knowledge.

4.2 ComInOutZK: a bit-wise solution

In [6], the authors propose a non interactive proof PK{x : Cx = Com(x, rx)∧y =
f(x)} based on bit commitments and ZKBoo++. Their optimized solution in-
creases the ZKBoo++ prover’s and verifier’s work with O(|x| + σ) exponentia-
tions and multiplications on the group G of order q chosen for the commitment,

MLS: how Zero-Knowledge can secure Updates 13

Let Cy, Cx be public commitments and m a public message.
The Prover wants to convince the Verifier that he knows x, rx, ry
such that Cx = Com(x, rx) and Cy = Com(f(x,m), ry).

Prover
Commit phase:
1. samples a, ra, rb ←$Z`2.
2. computes Ca = Com(a : ra), Cb = Com(f(a,m) : rb).
3. computes α = h(Cx||Cy||Ca||Cb).
4. computes (t1, t2) = (f(x,m)− αf(a,m) mod q, x− αa mod q).
5. Evaluates the commit phase output aΠ for the Σ protocol

Π = PK{x, rx, y, ry, a, ra, b, rb : Cx = xP + rxQ
∧ Cy = yP + ryQ ∧ Ca = aP + raQ ∧ Cb = bP + rbQ
∧ t1 = y − αb ∧ t2 = x− αa}

for ρ ∈ [1, σ] (ZKBoo part):
6. samples random tapes kρ1 , k

ρ
2 , k

ρ
3 .

7. generates xρ1, x
ρ
2, x

ρ
3 = Share(x, kρ1 , k

ρ
2) s.t. x = xρ1 ⊕ x

ρ
2 ⊕ x

ρ
3.

8. evaluates the MPC protocol on the circuit Circ: on (x, a),
(t1, t2) = (f(x,m) − αf(a,m) mod q, x − αa mod q), and obtains three views
wρ1 , w

ρ
2 , w

ρ
3 .

9. obtains the output shares : oρ1 = (t1,1, t2,1), oρ2 = (t1,2, t2,2),
oρ3 = (t1,3, t2,3) s.t. t1 = tρ1,1 ⊕ t

ρ
1,2 ⊕ t

ρ
1,3, t2 = tρ2,1 ⊕ t

ρ
2,2 ⊕ t

ρ
2,3.

10. commits to the views: cρ1 = h(wρ1 , k
ρ
1), cρ2 = h(wρ2 , k

ρ
2), and cρ3 = h(wρ3 , k

ρ
3).

a = Ca, Cb, Cx, t1, t2, (c
ρ
1, c

ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ, aΠ .

Challenge: e = h(a)

Response phase:
1. computes the response zΠ for the proof Π

for ρ ∈ [1, σ] :
2. bρ = (oρe+2 = (t1,e+2, t2,e+2), cρe+2)
3. zρ = (wρe+1, k

ρ
e , k

ρ
e+1)

return p = (e, (bρ, zρ)ρ, zΠ)
. .
Verifier(a, p)
1. Parse p as e, (bρ, zρ)ρ, zΠ
2. Parse a as Ca, Cb, Cx, t1, t2, (c

ρ
1, c

ρ
2, c

ρ
3, o

ρ = (oρ1, o
ρ
2, o

ρ
3))ρ, aΠ

3. Computes α
4. Reconstruct the proof Π

for ρ ∈ [1, σ] (Verifying the ZKBoo proof):
5. runs the MPC protocol to reconstruct wρe from wρe+1, k

ρ
e , k

ρ
e+1

6. gets tρ1,e, t
ρ
2,e = Output(we), t

ρ
1,e+1, t

ρ
2,e+1 = Output(we+1)

7. computes tρ1,e+2 = t1 ⊕ tρ1,e ⊕ t
ρ
1,e+1, tρ2,e+2 = t2 ⊕ tρ2,e ⊕ t

ρ
2,e+1

Reconstruct a and reject if e 6= h(a)

Fig. 4. The CopraZK protocol. The reconstruction of the algebraic proof means the
verification by reconstruction of the challenge in the Fiat-Shamir version.

14 J. Devigne, et al.

where |x| is the number of bits of the input x and σ is the number of rounds in
ZKBoo++. The proof size grows by O(|x| + σ) group elements and O(|x| + σ)
elements in Z/qZ. We adapt this strategy in the case of a committed output.
As the output of the circuit, y, shall remain secret, we will not be able to call
ZKBoo++ as a full black box. This is of prime importance when we prove
the zero-knowledge property. Compared to CopraZK, the bit-wise commitment
strategy does not require to augment the circuit with a second evaluation of
f . Another advantage is that we do not require specific hypothesis on f . As a
drawback, we add O(|x|+ |y|+ 2σ) algebraic operations to the basic ZKBoo++
proof.
The work of Backes et al. and our extension rely on a result given by the homo-
morphic property of a commitment scheme such as Pedersen scheme. For any
scalar k, and any two commitments Com(x, rx), Com(y, ry), k · Com(x, rx) +
Com(y, ry) = Com(kx + y, krx + ry). For any commitment Cb = Com(b, rb) to
a secret bit b and any public bit β, one can easily compute the commitment of
b⊕β as follows: if β = 0, Cb⊕β = Cb and if β = 1 then Cb⊕β = Com(1, 0)−Cb =

Com(1 − b,−rb). For any x =
∑|x|−1
i=0 2ix[i], denote Cx[i] = Com(x[i], rx[i]) a

commitment to the i-th bit of x. Then
∑|x|−1
i=0 2iCx[i] is a valid commitment to

x with opening randomness
∑|x|−1
i=0 2irx[i]. And one can easily compute a com-

mitment to x⊕ β for an element β as Cx⊕β =
∑|x|−1
i=0 2iCx[i]⊕β[i], with opening

randomness
∑|x|−1
i=0 2i(−1)β[i]rx[i].

We describe in Figure 5 the protocol on committed output only, for readability
reasons. Combining Backes et al. protocol for committed input and ours for
committed output leads to the functionality described in Figure 3.
The public parameters are: f a function from Z`2 to Z`2 evaluated as a circuit (not
necessarily PRF), G is a prime order q group, such that 2` ≤ p with a natural
embedding Z`2 → G, and P be a generator of G and Q ∈ G such that logP (Q)
is unknown. We consider a hash function h : Z∗2 → Z`∗2 and Com a Pedersen
commitment scheme.

Theorem 2. Given that ZKBoo and the Πj are Σ protocols with 3-special sound-
ness and honest verifier Zero Knowledge property, and Com is a homomorphic
and equivocal commitment scheme, then the protocol described in Figure 5 is a
Σ-protocol with 3-special soundness and honest verifier property.

5 Implementation

We now discuss the efficiency of our protocol CopraZK, both in terms of time
and size of the proof. We focused on CopraZK because it was more prone to
benefit from optimized MPC protocols such as KKW ([33]), that are designed
for large circuits. We detail the results we obtained from a simple implementation
of CopraZK on top of the existing ZKBoo code. We remind that the efficiency
of the MPC in the head protocols is directly related to the number of AND
gates in the circuit. In fact, in ZKBoo, ZKBoo++ and KKW, only AND gates

MLS: how Zero-Knowledge can secure Updates 15

The Prover knows x, y = f(x), and ry such that Cy = Com(f(x), ry). The Verifier
knows the statement Cy.
Prover
Commit phase
1. samples random ry[j] and commits to the bits of y : Cy[j] = Com(y[j], ry[j]) for

j ∈ [0, |y|].
2. computes the commit phase aΠj for the proofs Πj = PK{y[j], ry[j] : Cy[j] =

Com(y[j], ry[j]) ∧ y[j] ∈ {0, 1}} for j ∈ [0, |y|].

for ρ ∈ [1, σ] :
3. samples random seeds kρ1 , kρ2 , kρ3 .
4. generates the shares xρ1, x

ρ
2, x

ρ
3 = Share(x, kρ1 , k

ρ
2) such that x = xρ1 ⊕ x

ρ
2 ⊕ x

ρ
3.

5. simulates the MPC to obtain three views wρ1 , w
ρ
2 , w

ρ
3 .

6. evaluates yρi = Output(wρi), i ∈ {1, 2, 3}.
7. commits to the views : cρi = h(wρi , k

ρ
i), i ∈ {1, 2, 3}.

8. samples random ryρi
and commits to the outputs : Cyρi

= Com(yρi , ryρi
), i ∈

{1, 2, 3}.
a = ((Cyρ1 , Cy

ρ
2
, Cyρ3 , c

ρ
1, c

ρ
2, c

ρ
3)σ, (Cy[j])|y|, (aΠj)|y|)

Challenge : e = h(a)

Response phase
1. computes the responses zΠj for the proofs Πj

for ρ ∈ [1, σ] :
2. bρ = (Cyρe+2

, cρe+2)

3. zρ = (wρe+1, k
ρ
e , k

ρ
e+1, ryρe , ryρe+1

)

4. βρ = yρe ⊕ yρe+1

5. Cρz =
∑|y|−1
i=0 2iCy[i]⊕βρ[i]

6. rρz = ryρe+2
−

∑|y|−1
i=0 2i(−1)β[i]ry[i]

return p = (e, (bρ, zρ, rρz)ρ), (zΠj)j
. .
Verifier(a, p)
1. Parse p as e, (bρ, zρ, rρz)σ
2. Parse a as (Cyρ1 , Cy

ρ
2
, Cyρ3 , c

ρ
1, c

ρ
2, c

ρ
3)σ, (Cy[j])|y|, aΠj)

3. Reconstruct the proof Πj
4. Reject if Cy 6=

∑|y|−1
i=0 2iCy[i]

for ρ ∈ [1, σ] :
5. runs the MPC protocol to reconstruct wρe from wρe+1, k

ρ
e , k

ρ
e+1

6. obtains yρe = Output(we), y
ρ
e+1 = Output(we+1)

7. Computes βρ = ye ⊕ ye+1

8. Computes Cρz =
∑|y|−1
i=0 2iCy[i]⊕βρ[i]

9. Reject if Cyρe+2
6= Com(0, rz) + Cρz

Reconstruct a and reject if e 6= h(a)

Fig. 5. Our second protocol. When the Verifier reconstructs the challenge in the final
step, he computes the commitments and can check that their openings were correct.

are randomized to provide the Zero-Knowledge property. Hence, the verifier can
compute the other gates by himself but he needs the output of the AND gates

16 J. Devigne, et al.

to recompose a complete view and check the consistency of the proof. The views
sent by the prover then only contain the output of the AND gates.

Our implementation. We implemented the circuit part of our CopraZK proto-
col on top of the ZKBoo code, available at https://github.com/Sobuno/ZKBoo.
This code provides ZKBoo versions for elementary operations. These functions
operate on three views and each binary AND call is randomized as recommended
in the ZKBoo description. The code provides ZKBoo versions of operations on
32 bits vectors: addition, XOR, AND, addition with a constant. They also pro-
vide a ZKBoo version of a SHA 256 circuit, that comprises around 23300 binary
AND gates. We implemented a ZKBoo version for the HMAC function, with
two calls to SHA 256, and a 256-bit addition. The function HMAC corresponds
to HKDF− expand when the desired output length equals the output length of
the underlying hash function. Our final circuit, with input x and a computes
t1 = x + a and t2 = HMAC(x) + HMAC(a) for a total of 93696 AND gates.
We did not implement the modular reduction. However, as we expect our en-
tries x and a (similarly HMAC(x) and HMAC(a)) to be in the cyclic group Z/qZ
(using solutions described in Appendix C), t1 and t2 may only exceed q by
one q. Hence modular reduction can be instantiated as a comparison and sub-
traction if necessary. Using Cingulata (a compiler toolchain for homomorphic
encryption, available at https://github.com/CEA-LIST/Cingulata), we esti-
mated the number of AND gates for this operation on 8 and 16 bits integers, and
obtained respectively 48 and 103 AND gates. From this result, we can expect
that a modular reduction on 256 bits integer can be implemented using around
2000 AND gates. This number being far from representative in our circuit, we
did not considered this operation in a basic implementation. We consider the
running time for a soundness parameter σ = 80 (corresponding to a soundness
error of 2−80), requiring 136 rounds.

Prover (ms) Verifier (ms)

Generating random 21 Loading file 1
Sharing secrets 1 Generating challenge 0
Running circuit 534 Verifying 799
Committing 20

Total generating proof data 578 Total verifying 800

Proof size (MB) 3.3

Table 2. Running meantime of the Prover and the Verifier over 1 000 executions for
136 rounds.

Our tests were run on a Dell laptop with Processor IntelCore i7-7600U CPU
running a single core at 2, 8 Ghz with 15.5 GB of RAM. Results are given

https://github.com/Sobuno/ZKBoo
https://github.com/CEA-LIST/Cingulata

MLS: how Zero-Knowledge can secure Updates 17

in Table 2. We see that the prover’s running time is better than the verifier’s
one, which is not the case in [25], running ZKBoo on the mere SHA 256 circuit.
Running a proof on a bigger circuit increases the verifier’s load more than the
prover’s one. The running time of the prover is around half a second when the
verification takes around 0.8 seconds. These results are better than what can be
expected from SNARKs, as we explain in Appendix F. In [25], the authors show
that a parallelized implementation can seriously improve those results (with 8
threads, they divide the running time by 3.4 for the prover and by 5 for the
verifier). This experimental proof size is larger but in Appendix F that it can be
improved with optimized MPC in the head protocols.

6 Conclusion

In this work we provide a concrete solution to a practical problem that appears
in the MLS specification. We describe how existing cryptographic tools such
as ZK proofs and verifiable encryption can be combined to secure the update
process. As the regular update of the group secret is the key to obtain the FS
and PCS properties, we think our solution may be of interest.
Additionally, we propose two protocols to obtain ZK proofs on circuit with com-
mitted input and output, such that our improvement proposal for MLS is settled
on protocols as efficient as possible. Hence, an interesting way for future work is
in the optimization of the verifiable encryption. The CL framework, introduced
by Castagnos and Laguillaumie in [15] and enriched with Zero-Knowledge prop-
erties in [14], that considers a cyclic group G where the DDH assumption holds
together with a subgroup F of G where the discrete logarithm problem is easy,
may provide novel and efficient solutions.

References

1. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for
composite statements. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018,
Part III. LNCS, vol. 10993, pp. 643–673. Springer, Heidelberg (Aug 2018).
https://doi.org/10.1007/978-3-319-96878-0˙22

2. Alwen, J., Capretto, M., Cueto, M., Kamath, C., Klein, K., Markov, I., Pascual-
Perez, G., Pietrzak, K., Walter, M., Yeo, M.: Keep the Dirt: Tainted TreeKEM,
Adaptively and Actively Secure Continuous Group Key Agreement. Cryptology
ePrint Archive, Report 2019/1489 (2019), https://eprint.iacr.org/2019/1489

3. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17653-2˙5

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2˙9

https://doi.org/10.1007/978-3-319-96878-0_22
https://eprint.iacr.org/2019/1489
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9

18 J. Devigne, et al.

5. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sub-
linear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D.,
Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 2087–2104. ACM Press (Oct / Nov
2017). https://doi.org/10.1145/3133956.3134104

6. Backes, M., Hanzlik, L., Herzberg, A., Kate, A., Pryvalov, I.: Efficient non-
interactive zero-knowledge proofs in cross-domains without trusted setup. In: Lin,
D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 286–313. Springer,
Heidelberg (Apr 2019). https://doi.org/10.1007/978-3-030-17253-4˙10

7. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The Messaging Layer Security (MLS) Protocol

8. Barnes, R., Bhargavan, K., Lipp, B., Wood, C.: Hybrid Public Key Encryption
9. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks:

RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EURO-
CRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9˙31

10. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted en-
cryption and key exchange: The security of messaging. In: Katz, J., Shacham, H.
(eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650. Springer, Heidel-
berg (Aug 2017). https://doi.org/10.1007/978-3-319-63697-9˙21

11. Bhargavan, K., Barnes, R., Rescorla, E.: Treekem: Asynchronous decentralized key
management for large dynamic groups

12. Camenisch, J., Damg̊ard, I.: Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer,
Heidelberg (Dec 2000). https://doi.org/10.1007/3-540-44448-3˙25

13. Camenish, J., Stadler, M.: Proof systems for general statements about discrete
logarithms

14. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 191–221.
Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/978-3-030-26954-8˙7

15. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from DDH. In:
Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Heidelberg
(Apr 2015). https://doi.org/10.1007/978-3-319-16715-2˙26

16. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger,
C., Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T.,
Xu, D. (eds.) ACM CCS 2017. pp. 1825–1842. ACM Press (Oct / Nov 2017).
https://doi.org/10.1145/3133956.3133997

17. Chase, M., Ganesh, C., Mohassel, P.: Efficient zero-knowledge proof of algebraic
and non-algebraic statements with applications to privacy preserving credentials.
In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 499–
530. Springer, Heidelberg (Aug 2016). https://doi.org/10.1007/978-3-662-53015-
3˙18

18. Chase, M., Perrin, T., Zaverucha, G.: The Signal private group system and
anonymous credentials supporting efficient verifiable encryption. Cryptology ePrint
Archive, Report 2019/1416 (2019), https://eprint.iacr.org/2019/1416

19. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: Asynchronous group messaging with strong security guarantees.
Cryptology ePrint Archive, Report 2017/666 (2017), http://eprint.iacr.org/

2017/666

https://doi.org/10.1145/3133956.3134104
https://doi.org/10.1007/978-3-030-17253-4_10
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/3-540-44448-3_25
https://doi.org/10.1007/978-3-030-26954-8_7
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-662-53015-3_18
https://doi.org/10.1007/978-3-662-53015-3_18
https://eprint.iacr.org/2019/1416
http://eprint.iacr.org/2017/666
http://eprint.iacr.org/2017/666

MLS: how Zero-Knowledge can secure Updates 19

20. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017.
pp. 451–466 (2017)

21. Damg̊ard, I.: On sigma protocols
22. D.J.Bernstein: A State-of-the-art Diffie Hellman Function, https://cr.yp.to/

ecdh.html

23. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–
194. Springer, Heidelberg (Aug 1987). https://doi.org/10.1007/3-540-47721-7˙12

24. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (May 2013).
https://doi.org/10.1007/978-3-642-38348-9˙37

25. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: Faster zero-knowledge for Boolean
circuits. In: Holz, T., Savage, S. (eds.) USENIX Security 2016. pp. 1069–1083.
USENIX Association (Aug 2016)

26. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (Mar 2011).
https://doi.org/10.1007/978-3-642-19571-6˙12

27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg
(Dec 2010). https://doi.org/10.1007/978-3-642-17373-8˙19

28. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (Aug 2003). https://doi.org/10.1007/978-3-540-45146-4˙9

29. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC. pp.
21–30. ACM Press (Jun 2007). https://doi.org/10.1145/1250790.1250794

30. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state
compromise: The safety of messaging. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer, Heidelberg (Aug
2018). https://doi.org/10.1007/978-3-319-96884-1˙2

31. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled cir-
cuits: how to prove non-algebraic statements efficiently. In: Sadeghi, A.R., Gligor,
V.D., Yung, M. (eds.) ACM CCS 2013. pp. 955–966. ACM Press (Nov 2013).
https://doi.org/10.1145/2508859.2516662

32. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. Cryptology ePrint Archive, Report 2018/954 (2018),
https://eprint.iacr.org/2018/954

33. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge
with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes,
M., Wang, X. (eds.) ACM CCS 2018. pp. 525–537. ACM Press (Oct 2018).
https://doi.org/10.1145/3243734.3243805

34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (ex-
tended abstract). In: 24th ACM STOC. pp. 723–732. ACM Press (May 1992).
https://doi.org/10.1145/129712.129782

35. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Hei-
delberg (Aug 2010). https://doi.org/10.1007/978-3-642-14623-7˙34

https://cr.yp.to/ecdh.html
https://cr.yp.to/ecdh.html
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1145/1250790.1250794
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1145/2508859.2516662
https://eprint.iacr.org/2018/954
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/129712.129782
https://doi.org/10.1007/978-3-642-14623-7_34

20 J. Devigne, et al.

36. Marlinspike, M., Perrin, T.: The double ratchet algorithm. Signal’s web site (2016)

37. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy. pp. 238–252.
IEEE Computer Society Press (May 2013). https://doi.org/10.1109/SP.2013.47

38. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (Aug 1992). https://doi.org/10.1007/3-540-46766-1˙9

39. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp.
3–32. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/978-3-319-96884-
1˙1

40. Stadler, M.: Publicly verifiable secret sharing. In: Maurer, U.M. (ed.) EURO-
CRYPT’96. LNCS, vol. 1070, pp. 190–199. Springer, Heidelberg (May 1996).
https://doi.org/10.1007/3-540-68339-9˙17

A ZKBoo

We recall here the construction of the protocol ZKBoo. A (2,3)-decomposition is
a set of functions that separates the evaluation of a function into three symmetric
parts such that, given any two parts, nothing is revealed about the third one,
and so on the input.

Definition 1 ((2,3)-decomposition). A (2,3)-decomposition for the function
φ is a set of functions D = (Share, Output1, Output2, Output3, Rec)∪F , such
that:

- Share is an onto function that splits the input x into 3 shares;

- F is a finite family of efficiently computable functions described as {φj1, φ
j
2, φ

j
3}j∈[1,N];

- Outputi computes a value yi called the output share;

- Rec computes the final value y = φ(x) from y1, y2 and y3.

A (2,3)-decomposition produces three distinct views we, each composed of an
input share xe and the output values of the corresponding intermediate func-
tions φje’s. Two properties are required from a decomposition: correctness and
2-privacy. The first means that the decomposition allows to correctly evaluate
the function. The second guarantees that given any two views, one cannot learn
the secret input x. ZKBoo is built over the decomposition. Briefly, the prover
commits to the views and only reveals two of them. A soundness error of 2−σ,
i.e. the probability for a cheating prover not to be caught is less than 2−σ, is
obtained by repeating the process t = σ/(log2 3− 1) times. The size of the proof
is essentially the size of the 2 views, thus depends on the size of the circuit.
ZKBoo++ ([16]) improves the original protocol by cutting by half the size of
the proof. The authors obtain such a result by avoiding sending in the proof any
value that the verifier can compute himself. Figure 6 gives a detailed description
of the improved version ZKBoo++.

https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/3-540-68339-9_17

MLS: how Zero-Knowledge can secure Updates 21

The Prover knows x, such that y = f(x). The Verifier knows the statement y.
Prover
Commit phase
1. samples random seeds k1, k2, k3.
2. generates the shares x1, x2, x3 = Share(x, k1, k2) such that x = x1 ⊕ x2 ⊕ x3.
3. simulates the MPC to obtain three views w1, w2, w3.
4. evaluates yi = Output(wi), i ∈ {1, 2, 3}.
5. commits to the views : ci = h(wi, ki), i ∈ {1, 2, 3}.

a = (y1, y2, y3, c1, c2, c3)

Challenge : e = h(a) interpreted in {1, 2, 3}
Response phase
1. b = (ye+2, ce+2)
2. z = (we+1, ke, ke+1)

return p = (e, (b, z))
. .
Verifier(a, p)
1. Parse p as e, (b, z)
2. Parse a as (y1, y2, y3, c1, c2, c3)
3. runs the MPC protocol to reconstruct we from we+1, ke, ke+1

4. obtains ye = Output(we), ye+1 = Output(we+1)
5. Computes ye+2 = ye ⊕ ye+1

Reconstruct a and reject if e 6= h(a)

Fig. 6. The protocol ZKBoo++. Share and Output are functions specific to the (2,3)-
decomposition defined in ZKBoo. (We omit the index for the Output.)

Proposition 1 ([25]). The ZKBoo protocol is a Σ-protocol for the relation Rφ,
with 3-special soundness.

In [33], a more efficient solution is proposed by considering a MPC solution with
n virtual participants, instead of 3 in ZKBoo. The soundness error is also better
for one round so that, less rounds are needed to reach the desired security level.

B Verifiable encryption

We recall here the formal definition of verifiable encryption as detailed in [12].
Let (KeyGen,Enc,Dec) be a probabilistic public key encryption scheme and
(pk, sk) = KeyGen(1λ) a valid key pair. The verifiable encryption mechanism,
attached to an encryption scheme (KeyGen,Enc,Dec), to the binary relation R
and to the associated language LR = {(x,w) : R(x,w) = 1}, is defined as a
two-party protocol Π between a prover P (who encrypts the data) and a couple
composed of a verifier V on the one hand and a recovery algorithm Rec on the
other hand. The protocol Π takes as public parameters a valid public key pk, a
statement x and a security parameter λ. Let VP (pk, x, λ) denote the final out-

22 J. Devigne, et al.

put of V interacting with P on input (pk, x, λ). The recovery algorithm takes as
input the secret key sk and VP (pk, x, λ).

Definition 2 (Secure Verifiable encryption). The couple protocol/recovery
algorithm described above is a secure verifiable encryption scheme if the following
holds:

- completeness: if P and V are honest, then VP (pk, x, λ) 6= ⊥ for all (pk, sk)
valid key pair for the subsequent encryption scheme and x ∈ LR;

- validity: for all PPT malicious Prover P̃ , all valid key pairs (sk, pk),
Pr[R(x,Rec(sk, VP (pk, x, λ))] 6= 1 and VP (pk, x, λ) 6= ⊥

)
is negligible;

- computational Zero-Knowledge: for every unbounded malicious Verifier Ṽ ,
there exists an expected poly-time Simulator SimṼ with black-box access to

Ṽ such that for all distinguisher A, all positive polynomial p(·), all x ∈ L
and all sufficiently large λ we have:

Pr[A(pk, x, αi] = i : (pk, sk) = KeyGen(1λ), α0 = VP (pk, x, λ),

α1 = SimṼ (pk, x, λ), i ∈ {0, 1}
)
≤ 1

2 + 1
p(λ) .

Informally, validity ensures that a malicious prover P∗ will always be caught,
except with negligible probability, because the recovery algorithm shall be able
to compute a witness. The recovery success guaranties that the decryption will
be correct. In the soundness property of ZKPoK, one needs a third party, the
extractor, to unmask a cheating prover. We also note that the revelation process
”kills” the Zero-Knowledge feature of the proof. Verifiable encryption follows the
same rules, except that the third party - the recovery algorithm - needs an ad-
ditional ingredient : the secret key sk. The verifier is not supposed to be honest
here.

The Camenish-Damg̊ard verifiable encryption scheme In Figure 7, we
describe the verifiable encryption solution given in [12], adapted to the Σ-
protocol dedicated to a Pedersen commitment.
As for any cut-and-choose protocols, the probability that a cheating prover wins
is 1

2 for one round. One has to repeat the protocol σ times to obtain a cheating
probability (a validity error) of 2−σ. The protocol described in Figure 7 can be
optimized by gathering all rounds in a single one as described in the original
paper, dropping to O(log(σ)) the number of encryptions to store.

C Key size and group orders in MLS updates

In [?], several suitable cipher suites are described. We focus on one of them for a
practical example, for a 128-bit security level. This suite uses X25519 for ECDH

MLS: how Zero-Knowledge can secure Updates 23

Verifiable encryption verification protocol Π

Prover(x, r) Verifier(Cx, pk)

a, s←$Zp
u0 = a, u1 = a+ x mod p

ci = Encpk(ui : ri)// ri the randomness used in the encryption

d = aP + sQ, c0, c1

e e←$ {0, 1}

u = ue, v = s+ e · r mod p

t = (u, v, re)

o← uP + vQ == eCx + d

∧ ce == Encpk(u : re)

if o = 1 return (ce, u)

else return ⊥

Fig. 7. The simple version of verifiable encryption scheme. The Verifier knows a pub-
lic commitment to x, Cx and a public key pk. The Prover proves knowledge of the
encrypted message x and of the random r used in the commitment Cx.

computation and SHA256 as a hash function (and base function for HKDF
implementation). We detail hereafter the encoding used for private and public
key generation for X25519. Following [22], the private key sk is obtained from
a 256-bit string of secure random data (sk[0], sk[1], . . . , sk[255]) by applying the
following transform : sk[0]& = 248, sk[31]& = 127 and sk[31]| = 64. One obtains,
when interpreted as an integer value in little endian, a scalar of the form 2254 +
8 · `, ` ∈ J0; 2251− 1K. We design by deriveSK the application of SHA256 followed
by the above transformation such that for any 32-byte sequence of random data
X, deriveSK(X) is a valid secret key for X25519. The public key is obtained by
multiplying the secret key by the base point of the curve. Hence, given a 32-byte
secret X, DeriveKeyPair(X) = (deriveSK(X), deriveSK(X)P). This last encoding
can be integrated in the circuit computing the last derivation. We adopt this
notation DeriveKeyPair(X) = (deriveSK(X), deriveSK(X)P) independently from
the curve targeted.

Group order and commitments. Considering an elliptic curve E on a base
field of order p, together with a base point P of prime order q, the discrete
logarithm problem is supposed to be hard in the subgroup 〈P 〉 generated by P .
Curves are chosen such that q and p are close, but not equal. From now on,
we consider commitments and discrete logarithm proofs in groups of order q.
Considering X25519, a random element in {0, 1}256, interpreted as an integer,
will not lie naturally in Fq. We consider that rejection sampling can provide
efficiently an element in Fq, without introducing a non negligible bias on the
distribution. Let X the element out of HKDF to be committed. The method
consists in cancelling the first bits of X, obtaining X̃ such that log2(X̃) =
log2(q) + 1 then discarding X if X̃ > q − 1. If the initial number of bits of X

24 J. Devigne, et al.

is sufficiently big compared to log2(q) (log2(X) > log2(q) + 64 as advised by
the NIST for instance), then simply considering X mod q can be done without
introducing a non negligible bias. For all intermediate values in the tree, one of
the two above methods (depending on the curve) is available. The last step is the
commitment of the secret key : sk = Encode(X). For this element, we directly
consider the encoding provided with the curve. The commitment Csk of sk in
a group of order q (the group 〈P 〉) will result in the same implicit reduction
modulo q than the computation of the public key. Then we can produce an
AND ZK proof that the value committed to in Csk is the discrete log of the pk:
PK{sk : Csk = skP + rQ ∧ pk = skP} where Q is an element in 〈P 〉 such that
its discrete log relatively to P is unknown, and r a random element in Z/qZ.

D Security definition of PRF

We detail in this Appendix the formal definitions for the security of a PRF.
Our security definitions are related to the correlated robustness introduced by
Ishai et al. [28], and to the related-key attack (RKA) scenario described by Bel-
lare and Kohno [9]. Our notion 1-varCI-ow, formalizes the fact that the equation
eq1 : t1 = f(x)− αf(t2−xα) is hard to solve. This will be of prime importance in
the soundness proof. The reduction to Correlated Input one-wayness, accessible
in the full version (shorturl.at/eDJMY), states that if it is difficult to find a
solution only to a simple evaluation f(t2−xα), then it should not be easier to find
a solution to eq1. Our 1-varRKA-wPRF notion follows the same path but on the
indistinguishability side. It stipulates that the function f does not leak infor-
mation when evaluated as f(x) − αf(t2−xα). This second notion is called when
proving the Zero-Knowledge property. The reduction to RKA security, also given
in the full version, tells that if f does not leak any information when evaluated
on values f(t2−xα), then it does not leak more information when evaluated as eq1.
This will be of prime importance in the proof of the Zero-Knowledge property,
as the Simulator will not be able to compute t1 and so will sample it at random.

In real life, most of the widely used hash functions are build from compression
functions, based on a keyed block cipher (SHA-2 family) or on an unkeyed block
defined permutation (Keccak family). PRF are mostly derived from those kind
of hash functions. This the case of the HKDF-expand function, built from HMAC
and instantiated in MLS with a SHA family. If few literature exists concerning
RKA or CI one-wayness for real-life PRF, we state that finding a preimage or
correlations on inputs and outputs of a hash function is among the most difficult
problem for symmetric cryptography experts.

The 1-varRKA-wPRF experiment Exp1-varRKA-wPRFA,f,p . Let p be a prime, let f be
a public efficiently computable function K × D → R such that there exists an
embedding R ↪→ Z/pZ. Let A be a PPT adversary. The experiment runs as
follows:
SetUp. The Challenger samples a key k←$K, a random input r←$D and

b←$ {0, 1}. He sends D, R and r to A.

shorturl.at/eDJMY

MLS: how Zero-Knowledge can secure Updates 25

Queries Computation. For i ∈ [1, q] the adversary computes his queries qi =
(αi, t1,i) ∈ K ×K. He sends those queries to the Challenger.

Answers. The Challenger samples g←$FF(K,D,R). For i ∈ [1, q] the Chal-

lenger answers to the query qi with a value t2,i = f(k, r) − αif(
k−t1,i
αi

, r) if

b = 0, t2,i = g(k, r)− αig(
k−t1,i
αi

, r) if b = 1.

Guess. A outputs a guess bit b̂. The Challenger accepts if b̂ = b.

Definition 3 (1-varRKA-wPRF security). Let f : K×D → R be an efficiently
computable function. f is 1-varRKA-wPRF-secure if, for all adversary A, running
in probabilistic polynomial time t and making at most q queries, the quantity
Adv1-varrka-wprfA,f,p (t, q) defined as:∣∣∣Pr

[
Exp1-varRKA-wPRFA,f,p (t, q) = 1|b = 0

]
−Pr

[
Exp1-varRKA-wPRFA,f,p (t, q) = 1|b = 1

]∣∣∣
is negligible.

The 1-varCI-ow experiment Exp1-varCI-owA,H,p . Let p be a prime number, f be an
efficiently computable function K×D → R, such that there exists an embedding
R ↪→ Z/pZ and A a PPT adversary. The experiment rus as follows:
SetUp. The Challenger selects a random key k and samples a random public

input r. He sends r to A.
Queries. For i ∈ [1, q] the adversary computes his queries qi = (αi, t1,i) ∈
K×K. He sends them to the Challenger. He receives a value t2,i = f(k, r)−
αif(

k−t1,i
αi

, r) ∈ R.
Invert. A sends a couple (x, j) with x ∈ K and j the index of a query. The

Challenger accepts if f(x, r)− αjf(
x−t1,j
αj

, r) = t2,j .

Definition 4 (1-varCI-ow security). Let f : K×D → R be an efficiently com-
putable function. f is said to be (q, t)-1-varCI-ow-secure if, for all adversary A
running in PPT t and making q queries, the following advantage: Adv1-varci-owA,f,p (t, q) =

Pr
[
Exp1-varCI-owA,f,p (t, q) = 1

]
is negligible.

E Security of our zero-knowledge protocols

E.1 Theorem 1

We prove the security of the construction CopraZK construction, enunciated
in Theorem 2, in a simulation based paradigm. Hence we confront an ideal
world, represented by the ideal functionality defined in Figure 3 and the real
world corresponding to the protocol. The output distributions of both the func-
tionality and the protocol should be indistinguishable, even in the presence of

26 J. Devigne, et al.

an adversary. To prove this, we use a Simulator that operates the transition
from the ideal world to the real one. Note that it is possible to directly build an
extractor from distinct transcripts, following the same reasoning, but it seemed
to us less intuitive to expose. We give a sketch of proof, the detailed proof can
be found in the full version (shorturl.at/eDJMY). As m is a common public
input, we write f(x) for f(x,m).
Corrupted prover P ∗: soundness. We first describe a Simulator, interacting
with a corrupted prover and having access to all the extractable information,
calling as a subroutine the extractors for ZKBoo and for the proof Π on three
accepting transcripts (a, e1, p1), (a, e2, p2), (a, e3, p3). This Simulator obtains the
desired witnesses and sends them to the functionality only if he is sure that they
are correct. Facing the Simulator, P ∗ has no chance to cheat (no statement
without a correct witness can lead to an accept). Then, following a game based
reduction, we show that the view of P ∗ playing with this Simulator is indistin-
guishable from the view of P ∗ playing in the real protocol.
The key point is when the Simulator does not check the equality between the
values extracted from ZKBoo and the values extracted from the algebraic com-
mitment, and only rely on the relations given by the tag values. There we show
that the 1-varCI-ow- security of f induces the equalities. As the Simulator does
not use its extraction knowledge, he acts as a real verifier.

Corrupted verifier V ∗: Zero-Knowledge. We describe how a Simulator fac-
ing a corrupted verifier manages to provide a view that is indistinguishable from
a real protocol execution view. The Simulator first acts as if he did not know
the witness x and the opening informations rx, ry.
Then by successive games we go back to the original protocol. The transition
from the Simulation to the real protocol consists in substituting, step by step, the
random witness and correlated values used by the Simulator by real values. For
each step, we show that there is little chance that the corrupted verifier sees any
difference (the probability of distinguishing the two distributions is bounded by
a negligible value that depends on the security of the underlying functions). For
most of the transcript, the indistinguishability is obtained by calling the hiding
property of the commitment scheme and the ZK knowledge property of ZKBoo
and Π. However, this is not the case for t1, t2. For those elements, we show that
1-varRKA-wPRF security provides us with the desired indistinguishability.

E.2 Theorem 2

Again, we give a sketch of the proof. A detailed proof can be found in the full
version (shorturl.at/eDJMY). Correctness follows by inspection. Soundness.
Considering the soundness, an extractor accessing three distinct accepting tran-
scripts works as follows. In a first step it acts as the ZKBoo extractor and uses the
transcripts to recompose a value x∗ = x1⊕x2⊕x3 and a value y∗ = y1⊕y2⊕y3
such that y∗ = f(x∗). From the equivocality of the commitment, he also knows
that the two randomness given in each transcript only corresponds to 3 random
values ryi such that (yi, ryi) opens Cyi . In a second step, the simulator extracts

shorturl.at/eDJMY
shorturl.at/eDJMY

MLS: how Zero-Knowledge can secure Updates 27

the opening (y′[j], ry′[j]) of the bit commitments Cy[j], for j ∈ [0, |j| − 1]. From
his knowledge of the ry′[j] and the ryi he can recompose a valid randomnness r∗

such that y∗, r∗ opens Cy. Hence x∗, r∗ is a valid extraction.

Zero-Knowledge. Again, we cannot directly call the Simulator of ZKBoo as
the output of the circuit is not public. Instead we build a simulator that runs as
the original ZKBoo simulator, and simulates two views we and we+1 for a fixed
e and their associated outputs ye and ye+1. He also generates the associated
commitments with random values rye , ry[e+1] The simulator also commits to
random bit to generates the Cy[j] except for the last that he computes as Cy[0] =

Cy−
∑|y|−1
j=1 Cy[j] such that the relation is verified. He can produce all the proofs

that the y[j] are bits except for y[0] for which he call the Simulator for Π0. With
non negligible probabilities, the simulator obtains a valid transcript for the same
challenge e. In a last step, he samples a random rz and, putting together Cy, the
Cy[j] and a Com(0, r) he can produce the missing Cye+2 . As the only values our
Simulator adds to the ZKBoo and the Π0 simulations are Commitments, the
hiding properties of the commitment scheme provides the indistinguishability
between the simulation and a real execution of the protocol.

F Implementation optimization

The first improvement, ZKBoo++ is given in [16]. The authors meticulously
analyse which data should be sent by the prover and which one can be directly
computed by the verifier. They show that one can cut by more than half the size
of the proof, at no computational cost. They implemented their solution on an
optimized circuit for SHA 256 with 22272 AND gates and obtained a proof size
of 618KB for a soundness error of 2−128 (48% of ZKBoo proof size on the same
circuit). For a soundness parameter σ = 80 they obtain 385KB. Considering
this reduction, our own proof would drop to 1.6MB. Moreover, the optimized
SHA 256 circuit enables to save around 4000 AND gates, cancelling the cost of
the modular reduction. We now turn to the KKW protocol [33]. The author
use another MPC solution to decrease the number of rounds required to reach
a desired soundness security. They show that the improvement one can expect
on the size of the proof depends on the number of AND gates. Considering
an average of 95000 AND gates for our circuit, the proof size drops by 70KB
compared to ZKBoo++. Hence we could obtain proofs around 90KB.

F.1 Comparison with SNARKs solutions

Agrawal et al. proposed in [1] a ZK protocol mixing algebraic commitments on
input and output and circuit evaluation (comIOSnark). It is worth comparing
their solution to ours. No implementation is available in [1], however they es-
timate the prover’s work to four exponentiation in addition to the number of
exponentiations for computing the SNARK proof when the Verifier has to per-
form 4 exponentiations and 30 pairings. To compare to more practical results,

28 J. Devigne, et al.

we consider the protocol Pinocchio [37], on which the protocol of [1] bases its
description. The implementation for Pinocchio is performed on a single core of
a 2.67 GHz Intel Core i7 with 8 GB of RAM, which is comparable to our test
setting. A proof on a SHA1 evaluation with 23785 multiplication gates requires,
first, a public key generation of 11 seconds. The proof computation takes 15.7
seconds. As expected however, the Verifier ’s running time is only around 10ms
and the proof size is 288. Even if optimizations can be performed, the Prover ’s
work is far more important than in our solution. Hence we believe that, depend-
ing on the applications targeted, either one or the other solution might be of
interest.

	MLS: how Zero-Knowledge can secure Updates

