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This paper provides the formulation of partial derivatives over hypercomplex variables for functions of octonions or split-biquaternions. The proposed partial derivatives are an extension to the case of octonions and split-biquaternions algebras of the well-known Wirtinger/ calculus for complex-numbers algebra, and  calculus or generalized  calculus for quaternion algebra. The octonionic functions considered in this paper are not constrained by analyticity, holomorphy, harmonicity, conformality, regularity or monogenic property constraints (e.g. as described in [1],[2]). Instead, the only constraint for the octonionic functions considered in this paper is that each element of an octonionic function be real-differentiable over the (real-valued) variable of each element in an octonion or split-biquaternion variable. We first show that the approach based on rotations over basis components used in the development of  calculus or generalized  calculus is not suitable for the two considered 8-dimensional hypercomplex algebras. Instead, we justify the use of transformations based on Hadamard matrices, which allows a common framework for the development of partial derivatives for complex-numbers, quaternion, octonion and split-biquaternion algebras. The results of this paper can be an important step towards the development of optimization algorithms and adaptive filtering algorithms of hypercomplex variables from 8-dimensional hypercomplex algebras.

I. INTRODUCTION

The use of Wirtinger/ calculus for complex-numbers algebra has been well know in the last few decades. With partial derivatives over complex variables, it provides a simple and efficient representation for performing calculus and optimization with functions of complexvariables, whether or not the functions are analytic or holomorphic (unlike complex analysis) [START_REF] Ollila | Complex-valued signal processing -essential models, tools and statistics[END_REF], [START_REF] Sorber | Unconstrained Optimization of Real Functions in Complex Variables[END_REF], [START_REF] Mandic | Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models[END_REF]. More recently, this concept has been extended to hypercomplex quaternion algebra, with the development of  calculus and generalized  calculus [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF], [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF]. Just like  calculus for complex-numbers algebra,  calculus provides a simple and efficient notation for calculus in quaternion algebra with partial derivatives over hypercomplex variables, and it can also provide some benefits over the alternative calculus formulations using only derivatives of the (real-valued) individual components of quaternions [START_REF] Nitta | Hypercomplex Widely Linear Estimation Through the Lens of Underpinning Geometry[END_REF].

This paper provides the formulation of partial derivatives over hypercomplex variables for functions of octonions or split-biquaternions (as opposed to partial derivatives over the (real-valued) variable of each element in an octonion or split-biquaternion variable). The proposed partial derivatives are an extension to the case of octonions and split-biquaternions of the well-known Wirtinger/ calculus for complex-numbers algebra, and  calculus or generalized  calculus for quaternion algebra. The octonionic functions considered in this paper are not constrained by analyticity, holomorphy, harmonicity, conformality, regularity or monogenic property constraints (e.g. as described in [START_REF] Kauhanen | On the Structure of Octonion Regular Functions[END_REF], [START_REF] Li | On Stein-Weiss conjugate harmonic function and octonion analytic function[END_REF]). Instead, the only constraint for the octonionic functions considered in this paper is that each element of an octonionic function be real-differentiable over the (real-valued) variable of each element in an octonion or split-biquaternion variable.

While the 8-dimensional octonion algebra is a normed (composition) algebra over  and a division algebra over , it is not an associative algebra, which can certainly be a limitation for some practical uses of the algebra and for the development of calculus in this algebra.

In this paper, we nevertheless provide a formulation for partial derivatives over hypercomplex variables for functions of octonions, despite the fact that the last step in these developments is in principle invalid because of the lack of associativity, for two reasons:

• It will provide some insights for the formulation of partial derivatives over hypercomplex variables for functions of associative octonion-like split-biquaternions, and allow some insightful comparisons with the development of  calculus and  calculus.

• It may later lead to some heuristic approximative algorithms, since despite the lack of associativity in octonion algebra the product x y o o of two octonion numbers can be significantly correlated with the product y x o o [START_REF] Cook | How close is octonion multiplication to being associative?[END_REF] and also The octonion-like split-biquaternion algebra is an 8-dimensional associative algebra (unlike the octonion algebra). It is an even subalgebra of Clifford algebra 4 0 Cl  , ( ) and it can be obtained from a sum of two quaternion algebras [START_REF]Clifford Algebra[END_REF], [START_REF]Split -Biquaternion[END_REF]. Using elementary linear algrebra, it has recently been explained [START_REF] Khalid | On the Octonion-like Associative Division Algebra[END_REF] that this octonion-like algebra is a seminormed composition algebra over  (i.e., preservation of two seminorms under multiplication) and it is also a seminormed division algebra over  (i.e., division by any number is possible as long as the two seminorms of this number are non-zero). It was also pointed out that for sparse split-biquaternion numbers (i.e., when one of the components in the splitbiquaternion number is dominant), the seminorm becomes similar to the Euclidian norm.

The split biquaternion algebra is the same as the 1d-up approach to conformal geometric algebra, presented with some potential application in [START_REF] Lasenby | A 1d Up Approach to Conformal Geometric Algebra: Applications in Line Fitting and Quantum Mechanics[END_REF].

In  calculus, for the development of the partial derivatives over quaternion variables, the approach of performing rotations of variables over the different unit basis of quaternions was followed [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF]. These rotations become involutions and they lead to a form where each basis component in the resulting rotated quaternion variables is only a function of the same component in the original quaternion variable, which is a requirement for the formulation of simple partial derivatives over quaternion variables. The resulting rotations are referred to as simplified rotations in this paper. This approach was extended to a more general form in the generalized  calculus [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF], where the different basis used for the simplified rotations are the original quaternion unit basis rotated over an arbitrary quaternion number. This led to more general results, where instead of having partial derivatives over a quaternion variable rotated over the quaternion basis components, a partial derivative over a quaternion variable rotated over any arbitrary quaternion number is obtained.

Essentially, for the development of  calculus or calculus involving partial derivatives over complex or hypercomplex variables, the concept is to perform transformations (e.g. simplified norm-preserving rotations/involutions in [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF]) such that transformed variables are generated from an original variable, and such that the individual components in the original variable can be expressed as a linear combination of the transformed variables, using real-valued coefficients. The transformed variables, which also include the original variable (unit transformation), correspond to the complex or hypercomplex variables for which partial derivatives are to be formulated. While the choice in [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF], [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF] of using simplified rotations over the basis quaternion components as transformations may not be unique, it leads to the same known simple forms as in  calculus for the resulting partial derivatives over quaternion variables in  calculus or generalized  calculus. However, this approach using simplified rotations over the basis components is not directly transferable to other complex or hypercomplex algebras. For complex-numbers algebra, a rotation over any basis of complex numbers leads to the same number as the original number and is thus not useful. For the octonion algebra, performing simplified rotations over the octonion basis components leads to a non-intuitive formulation of the partial derivatives over octonion variables, with somewhat arbitrary coefficients that don't have the same intuitive form as in  calculus or  calculus. And more importantly, for the octonionlike split-biquaternion algebra, performing simplified rotations over basis components leads to only four different split-biquaternion variables, while eight linearly independent variables are required for the reconstruction of the individual basis components in the original splitbiquaternion variable, which is an important step in the formulation of the partial derivatives.

It is possible to replace the approach of using simplified rotations over basis components (used in [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF], [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF] for  calculus or generalized  calculus) by an approach which is applicable to all the considered algebras in this paper (complex numbers, quaternion, octonion and split-biquaternion algebras), and which leads to an intuitive formulation where the partial derivatives over complex or hypercomplex variables all have the same form for the different algebras. This is achieved by formulating the transformation as a real-valued transformation matrix with some constraints which are justified in the paper: the first column of the matrix has unit elements, all the elements of the matrix have unit absolute value, and all elements of the inverse matrix also have a constant absolute value. For all the complex and hypercomplex algebras considered in this paper, the orthogonal and symmetric Hadamard matrix provides a solution for the required transformation matrix, and the transformation matrix and resulting partial derivatives become unique if the first row of the matrix is also required to have positive unit values.

The structure of this paper is as follows. A summary of the development of  calculus and generalized  calculus using simplified rotations as in [START_REF] Jahanchahi | On HR calculus, quaternion valued stochastic gradient, and adaptive three dimensional wind forecasting[END_REF], [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF] will first be presented.

Then the limitations of developing partial derivatives over octonions and octonion-like splitbiquaternions variables using simplified rotations over basis components will be illustrated.

After this, new expressions are formulated for partial derivatives over hypercomplex variables with octonions and octonion-like split-biquaternions functions, using a transformation of variables with the Hadamard matrix. For completeness, the development of the well-known Wirtinger/ calculus using the proposed Hadamard matrix transformation will then also be shown. 3

II. SUMMARY OF  CALCULUS AND GENERALIZED

i e i = -
≤ ≤ and the multiplication rules of Table I. q e q e q e q e q q i q j q k = + + + = + + + q

(1)

q e q e q e q e q q i q j q k

= - - - = - - - q (2) 2 * 2 2 2 2 0 1 2 3
q q q q = = + + + q qq

(3) * * * ( )

x y y x = q q q q (4).

In general, quaternions are non-commutative:

x y y x ≠ q q q q (5).

However, when the product x y q q is a scalar (i.e., only the real-valued or scalar first component 0 e is non-zero), the product becomes commutative.

To formulate the partial derivatives over quaternion variables, three transformed versions of a variable q are produced. q and the three transformed variables are the quaternion variables for which partial derivatives formulations are to be obtained. q and the three transformed variables must be such that the coefficients 0 1 2 3 , , , q q q q in q can reversely be expressed as a linear combination of q and transformed variables, with real-valued coefficients. q and the transformed variables must therefore be linearly independent. Then from the expression of the total differential of a function ( ) df q and using the differentials

0 1 2 3
, , , dq dq dq dq , the partial derivatives over q and transformed variables will be formulated.

One possible transformation to generate the three transformed versions of q is to use a multiplication with form 1 -= u q uqu , which is a norm-preserving rotation. Moreover, the transformation can be further simplified if the norm-preserving rotation 1 u q = uqu is also involution. Some values of u leading to an involution rotation are those for which 2 1

= u or 2 1 = - u
, then leading to a simplified form = u q uqu . For the simple formulation of the partial derivatives, it is important that after the rotation or involution each component in the transformed u q ( 0 1 2 3 , , , q q q q u u u u ) is only a function of the corresponding coefficient in q , i.e., 0 1 2 3 , , , q q q q . This is not necessarily achieved by all choices of rotations A natural choice for the three transformed variables obtained from q are to use

, , i j k u = : 1 0 1 2 3 i i i i i q q i q j q k -= - =+ - - q = q q (6) 1 0 1 2 3 j j j j j q q i q j q k - = = - =- + - q q q (7) 1 0 1 2 3 k k k k k q q i q j q k - = = - =- - + q q q (8)
To express each component n n q e 0 3 n ≤ ≤ of q as a linear combination of q , , , i j k q q q with real-valued coefficients, we have:

1 i j k n n n ni nj nk q e c c c c = + + + q q q q 0 3 n ≤ ≤ . ( 9 
)
Re-writing this in matrix form with real-valued elements:

1 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0 n ni n nj nk c q q q q c q q q q q c q q q q q q q q c             - -      =       - -      - -             n n = q Qc     0 3 n ≤ ≤ (10)
Since each component in , , i j k q q q involves only the corresponding component n q in q , each row in the above matrix can be normalized by the coefficient n q , to have a formulation which is independent of the coefficients in q :

1 0 1 1 1 1 1 (row ) 1 1 1 1 0 1 1 1 1 0 1 1 1 1 n ni nj nk c c n c c             --      =       - -      --             n n ′ ′ = q Q c     0 3 n ≤ ≤ (11).
This leads to: q = + + + q q q q 1 ( ) 4 i j k i q -= + -q q q q (15).

1 n n - ′ ′ = c Q q     0 3 n ≤ ≤ 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 (row ) 1 4 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 n n n -             -- --       ′ = × =       - - - -       -- --             c q   0 3 n ≤ ≤ (12). Therefore, each n c  0 3 n ≤ ≤ has the values from the corresponding column in 1 - ′ Q   : 0 1 [1 1 1 1] 4 T = c  1 1 [1 1 1 1] 4 T = -- c  (13), 2 1 [1 1 1 1] 4 T = - - c  3 1 [1 1 1 1] 4 T = -- c  leading to 1 1 ( ) i j k n n n ni nj nk q e c c c c - = + + + q q q q (14)

(

) 4

i j k j q - = -+ - q q q q 3 ( ) 4 i j k k q - = --+ q q q q
It should be noted that the results in (15) are quaternion variables where only the 1 st component is non-zero, therefore they are real-valued scalars.

If we wish to express n n q e 0 3 n ≤ ≤ in terms of conjugates * * * * ,( ) ,( ) ,( )

i j k
q q q q , then a conjugation operation can be applied to (15):

* * * * 0 1 ( ( ) ( ) ( ) ) 4 i j k q = + + + q q q q * * * * 1 ( ( ) ( ) ( ) ) 4 i j k i q = + - - q q q q (16) * * * * 2 ( ( ) ( ) ( ) ) 4 i j k j q = - + - q q q q * * * * 3 ( ( ) ( ) ( ) ) 4 i j k k q = - - + q q q q
The total differential of a function 0 1 2 3 ( ) ( , , , ) f f q q q q = q n q ∈  0 3 n ≤ ≤ can be expressed as:

0 1 2 3 0 1 2 3 ( ) ( ) ( ) ( ) ( ) f f f f df dq dq dq dq q q q q ∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ q q q q q (17) or 0 1 2 3 0 1 2 3 ( ) ( ) ( ) ( ) ( ) f f f f df dq dq dq dq q q q q ∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ q q q q q
( n dq ∈  ) (18).

(17) will lead to left derivatives while (18) will lead to right derivatives, which may differ since quaternions are non-commutative. However, for real-valued functions of quaternions ( ) f q , the left derivatives and right derivatives have been shown to be the same [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF].

The differentials

0 1 2 3
, , , dq dq dq dq are obtained from (15) or (16). To obtain the partial derivatives, we substitute 0 1 2 3 , , , dq dq dq dq into (17) or (18). There are therefore four different possibilities, depending on partial derivatives over the variables , , , i j k q q q q or * * * * ,( ) ,( ) ,( )

i j k
q q q q , and left derivatives or right derivatives. Note that for the right derivatives in (18), norm-preserving involutions

1 2 3
, , iq i jq j kq k --should first be applied to (15) or ( 16), to get equations where the , , i j k terms appear at the end of the equation.

The formulation of left side partial derivatives over the variables , , , i j k q q q q is shown in detail in (19). Grouping together the terms with , , ,

i j k d d d d q q q q and defining n ∂ ∂q 1, , , n i j k =
as the factor multiplying n dq , we obtain:

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 ( ) ( ) ( ) ( ) ( ) 1 ( ) 1 ( ) ( ) ( ) 4 4 1 ( ) 1 ( ) ( ) ( ) 4 4 1 ( ) ( ) ( ) ( 4 i j k i j k i j i j k f f f f df dq dq dq dq q q q q f f d d d d i d d d d q q f f j d d d d k d d d d q q f f f f i j q q q ∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ ∂ ∂ = + + + - + - - ∂ ∂ ∂ ∂ - - + - - - - + ∂ ∂ ∂ ∂ ∂ ∂ = - - - ∂ ∂ ∂ k q q q
q q q q q q q q q q q q q q q q q q q q q q q q q q 3 0 1 2 3

0 1 2 3 0 1 2 3 ) 1 ( ) ( ) ( ) ( ) 4 1 ( ) ( ) ( ) ( ) 4 1 ( ) ( ) ( ) ( ) 4 
( ) ( ) ( ) i j k i i k d q f f f f i j k d q q q q f f f f i j k d q q q q f f f f i j k d q q q q f f f d d       ∂     ∂ ∂ ∂ ∂ + - + +     ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂ + + - +     ∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂ + + + -     ∂ ∂ ∂ ∂   ∂ ∂ ∂ ≡ + + ∂ ∂ ∂
q q q q q q q q q q q q q q q q q q q q q q q ( )

j k j k f d d ∂ + ∂ q q q q q (19)
From the above, we note in particular the result for the left partial derivative over q :

0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ - - -     ∂ ∂ ∂ ∂ ∂   q q q q q q (20)
Using the same procedure but with (16) instead of (15), the left partial derivative over * q can also be found:

* 0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ + + +     ∂ ∂ ∂ ∂ ∂   q q q q q q (21)
For right side derivatives, i.e., when (18) is used instead of (17), the following results are obtained:

0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ - - -     ∂ ∂ ∂ ∂ ∂   q q q q q q (22) * 0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 
f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ + + +     ∂ ∂ ∂ ∂ ∂   q q q q q q (23).
These partial derivatives over quaternion variables are the fundamental expressions for  calculus in quaternion algebra, for which several other properties such as chain rule, product rule, gradient vector, Hessian matrix, Taylor series expansion can also be developed [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF], [START_REF] Xu | Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms[END_REF].

Even though the choice of the transformed variables , , , i j k q q q q or * * * * ,( ) ,( ) ,( )

i j k
q q q q to derive  calculus can be considered natural, it can also be seen as somewhat arbitrary.

Some more general results for partial derivatives over u q or * u q , where u is an arbitrary quaternion, have been developed with the generalized  calculus [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF]. In general, performing a norm-preserving rotation of q around an arbitrary quaternion number u gives:

1 0 1 2 3 0 1 2 3 ( ) 1 q iq jq kq q q i q j q k - = = + + + = + + + u -1 u u u u q uqu u u (24) with 1 1 1 1 - = = u u u 1 i i - = u u u 1 j j - = u u u 1 k k - = u u u . i j k u u u
, , aren't necessarily trivial to compute (except when

, , i j k = u
), but 1, , , i j k u u u for any non-zero u still form an orthonormal base [7], i.e., with

1 i i = - u u , 1 j j = - u u , 1 k k = - u u and 1 i j k = - u u u (just like 1 ii = -, 1 jj = -,
1 kk = -, and 1 ijk = -). In other words, the basic rules of the algebra (and the involutions and their properties) are preserved with the new basis.

To obtain the generalized  calculus, it is possible to follow exactly the same steps as for  calculus, but replacing 1, , , i j k by 1, , , i j k u u u and , , , i j k q q q q by , , ,

i j k u u u u u u u q q q q : 0 1 2 3 q q i q j q k = + + + u u u u q (25) 1 0 1 2 3 i i i i i q q i q j q k - = = - = + - - u u u u u u u u u u u q q ( ) q 1 0 1 2 3 j j j j j q q i q j q k - = = - = - + - u u u u u u u u u u u q q ( ) q 1 0 1 2 3 k k k k k q q i q j q k - = = - = - - + u u u u u u u u u u u q q ( ) q .
The result for the left partial derivative over u q with arbitrary quaternion value u is then:

0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ - - -     ∂ ∂ ∂ ∂ ∂   u u u u q q q q q q (26).
For the left partial derivative over * u q , the corresponding result is:

* 0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ + + +     ∂ ∂ ∂ ∂ ∂   u u u u q q q q q q (27)
and for the right side derivatives the corresponding results are:

0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ - - -     ∂ ∂ ∂ ∂ ∂   u u u u q q q q q q (28) * 0 1 2 3 ( ) 1 ( ) ( ) ( ) ( ) 4 f f f f f i j k q q q q   ∂ ∂ ∂ ∂ ∂ ≡ + + +     ∂ ∂ ∂ ∂ ∂   u u u u q q q q q q (29). For 1, , , i j k = u
, we obtain the specific case of the derivatives previously introduced with  calculus.

Using the framework of generalized  calculus, expressions for the product rule and chain rule have been developed in [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF].

III. PARTIAL DERIVATIVES OVER HYPERCOMPLEX VARIABLES FOR FUNCTIONS OF OCTONIONS, USING SIMPLIFIED ROTATIONS

The octonion non-associative and non-commutative normed division algebra over  has components 0 7

i e i ≤ ≤
as an orthogonal basis, with 2 0 1 e = , 2 1 1 7

i e i = -
≤ ≤ and the multiplication rules of Table II. 

x y y x = o o o o (33).
In general, octonions are non-associative and non-commutative:

( ) ( ) x y z x y z ≠ o o o o o o x y y x ≠ o o o o (34).
However, when the product x y o o is a scalar (i.e., only the real-valued or scalar first component 0 e is non-zero), the product becomes commutative. Moreover, the product of octonions by real-valued numbers are associative, as well as some specific forms such as:

* * ( ) ( ) x y x x y x = o o o o o o (35).
More general properties of the octonions can also be mentioned here but will not be required in this paper: alternative algebra, Moufang identities and power associative property [15].

The same steps as in the previous development of  calculus and generalized  calculus using norm-preserving simplified rotations can be used in this section to generate transformed octonion variables, computed by rotations over the basis components of octonion algebra. The transformed variables are also the set of octonion variables over which the partial derivatives are to be formulated. The approach will lead to some limitations to be discussed later in this section.

The rotations of an octonion variable over the eight orthogonal basis components of octonion algebra lead to the following expressions. Note that the octonion multiplications below correspond to special cases where they are associative as in (35). 
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n n = o O c     0 7 n ≤ ≤ Since each component in m e o 0 7 m ≤ ≤ (i.
0 1 1 1 1 1 1 1 1 1(row ) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 n n n n n n n n c c c n c c c c c          ------         - -----     -- ----     =     --- ---     ---- --         ----- -         ------                              n n ′ ′ = o O c     0 7 n ≤ ≤ (39)
leading to:
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Therefore, each n c  0 7 n ≤ ≤ has the values from the corresponding column in 
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(44) will lead to left derivatives while (45) will lead to right derivatives, which may differ since octonions are non-commutative.

The differentials 0 1 2 3 4 5 6 7 , , , , , , , do do do do do do do do are obtained from (42) or (43). To obtain the partial derivatives, we substitute 0 1 2 3 4 5 6 7 , , , , , , , do do do do do do do do into (44) or (45). There are therefore four different possibilities, depending on partial derivatives over the variables 
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o . However, for reasons mentioned in the introduction, this development is shown nevertheless. • The form of the partial derivatives over octonion variables obtained is not the intuitive form expected from a generalization of  calculus and  calculus. This is a first motivation for the use of transformations with Hadamard matrices in later sections of this paper, which will not suffer from this issue. ) 
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This is not an intuitive result with the form expected from an 8-dimensional extension of 2-dimensional  calculus and 4-dimensional  calculus, where there would be no factor 5 and the factor 1/12 would be replaced by 1/8. This is a first indication that the approach of performing rotations with form over basis component is not appropriate for the formulation of partial derivatives over hypercomplex variables for functions of octonions or 8-dimensional algebras. A second and more severe indication will be provided in the next section for the split biquaternion algebra. After this, the subsequent sections will present the formulation of partial derivatives over hypercomplex variables 20 using transformations from Hadamard matrices, which will be applicable to  calculus,  calculus and for the formulation of partial derivatives over hypercomplex variables with functions of octonions and octonion-like split-biquaternions, all leading the same intuitive form.

IV. PARTIAL DERIVATIVES OVER HYPERCOMPLEX VARIABLE FOR

FUNCTIONS OF OCTONION-LIKE SPLIT-BIQUATERNIONS, USING SIMPLIFIED ROTATIONS

The octonion-like split-biquaternion algebra is a non-commutative but associative algebra.

It was illustrated in [START_REF] Khalid | On the Octonion-like Associative Division Algebra[END_REF] that the split-biquaternion algebra is a seminormed composition algebra over  (i.e., preservation of two seminorms under multiplication) and it is also a seminormed division algebra over  (i.e., division by any number is possible as long as the two seminorms of this number are non-zero). The split-biquaternion algebra has components 0 7

i e i ≤ ≤
as an orthogonal basis, with 2 0 1 e = , 2 7 1 e = , 2 1 1 6

i e i = - ≤ ≤
and the multiplication rules of Table III. 

i i i i i o o o o o λ λ - = = = - + ∑ ∑ o (52) 
(52) leads to two possible seminorms for the octonion-like split-biquaternion algebra, for 1 λ = or 1 λ = -. Unlike the octonions of the previous section, numbers in the split- biquaternion algebra are associative, but in general they are not commutative: Therefore, the procedure of using simplified rotations over the basis components of an algebra to produced transformed variables required in the formulation of partial derivatives does not generalize from the 4-dimensional  calculus to the 8-dimensional octonion-like split-biquaternion algebra, and an alternative procedure needs to be developed to formulate the partial derivatives over split-biquaternion variables. This will be discussed in later sections. 
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For a simple formulation of the partial derivatives, in the procedure to be developed (and as previously) it is important that in the transformed variables 
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- ′ ′ = O O    
will have elements all having the same absolute value.

It should be noted that in the case of  calculus for quaternions, the corresponding operation producing the m q , , m i j k = transformed variables can also be seen as a conjugation-like transformation (changing the sign of some real-valued coefficients in q ), and the ′ Q   matrix in [START_REF]Clifford Algebra[END_REF] has exactly the form of a 4-dimensional Hadamard matrix. The corresponding matrix in the case of Wirtinger/ calculus for complex numbers is also a size-2 Hadamard matrix, as will be illustrated in a later section.

With a size-8 Hadamard matrix used as ′ O   , (58) and (59) become:

0 1 1 1 1 1 1 1 1 0 1 -1 1 -1 1 -1 1 -1 1 (row ) 1 1 -1 -1 1 1 -1 -1 0 1 -1 -1 1 1 -1 -1 1 0 1 1 1 1 -1 -1 -1 -1 0 1 0 0 n             =               0 1 2 3 4 5 6 7 -1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 1 1 -1 n n n n n n n n c c c c c c c c                                                     (61) 
From the last seven columns of the matrix in (61) and using (57),(58), the conjugation-like operations (i.e., changing the sign of some real-valued coefficients in o ) producing the 
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= + + + + + + + o o o o o o o o (63) 
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The total differential of a function 0 1 2 3 4 5 6 7

( ) ( ,,,,,,, ) , , , , , , , do do do do do do do do are obtained from (63) or (64). To obtain the partial derivatives, we substitute 0 1 2 3 4 5 6 7 , , , , , , , do do do do do do do do into (44) or (45). There are therefore four different possibilities, depending on partial derivatives over the variables As previously described in this paper, this last step is invalid because of the lack of octonion associativity in general:

f f o o o o o o o o = o n o ∈  0 7 n ≤ ≤
( ) ( ) ( ) m m n n n n f f e d e d o o   ∂ ∂ ≠     ∂ ∂   o o o
o. However, as previously mentioned in the introduction, this development is shown nevertheless for two reasons:

• It provides some insights for the development of partial derivatives over hypercomplex variables for functions of associative octonion-like split-biquaternions (next section), and allow some insightful comparisons with the development of  calculus and  calculus;

• It may later lead to some heuristic approximative algorithms, since despite the lack of associativity in octonion algebra the product x y o o of two octonion numbers can be significantly correlated with the product y x o o [START_REF] Cook | How close is octonion multiplication to being associative?[END_REF] and also 
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This corresponds to the intuitive expected extension of the partial derivatives for quaternion variables (4-dimensional  calculus):
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q q q q q q q q q q (68) and of the partial derivatives for complex numbers (2-dimensional Wirtinger/ calculus):

0 1 ( ) 1 ( ) ( ) 2 f f f i z z   ∂ ∂ ∂ = -     ∂ ∂ ∂   z z z z (69).
Therefore, we observe that the development of partial derivatives over complex or hypercomplex variables using transformations from Hadamard matrices leads to consistent forms for different algebras. In the next section, we will see that this also applies for the formulation of partial derivatives over hypercomplex variables for functions of associative octonion-like split-biquaternions.

VI. PARTIAL DERIVATIVES OVER HYPERCOMPLEX VARIABLE FOR

FUNCTIONS OF OCTONION-LIKE SPLIT-BIQUATERNIONS, USING HADAMARD MATRIX TRANSFORMATION

For the formulation of partial derivatives over hypercomplex variables with functions of split-biquaternions, we apply the same approach using a transformation from a Hadamard matrix as in the previous section (for octonion algebra). However, since the splitbiquaternion algebra is associative, the last step in the development of the partial derivatives will be strictly valid, unlike in the previous section.

Using the definitions and properties in ( 49 , , , , , , , do do do do do do do do are obtained (71) or (72). To obtain the partial derivatives, we substitute 0 1 2 3 4 5 6 7 , , , , , , , do do do do do do do do into (44) or (45). There are therefore four different possibilities, depending on partial derivatives over the variables for split-biquaternions in (75), the following results can be obtained for simple split-biquaternions functions, and it can be observed that they match the form of the corresponding results in the generalized  calculus for quaternions in [START_REF] Xu | Enabling Quaternion Derivatives: the Generalized HR Calculus[END_REF]: IV.
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Table IV Multiplication rules in the complex-numbers algebra 

For complex numbers algebra, the concept of performing a rotation or involution of a variable z over the basis component 1 e i = is not useful to generate a transformed variable, because it leads to the same variable:

1 i i i i i ii - = = - = -= z z z z z (85).
Instead, the size-2 Hadamard matrix can be applied as a transformation matrix as in previous sections, to generate two variables (the original complex variable z and a transformed variable 1 z ), which in turn can be linearly combined to obtain the individual components in z ( 0 0 1 1 , z e z e .): In matrix form with real-valued elements and the different components of the original variable z and transformed variable 

* ( ) 1 ( ) ( ) ( ) ( ) 2 2 1 ( ) ( ) 1 ( ) ( ) 2 2 ( ) ( ) 
f f i df d d d d z z f f f f i d i d z z z z f f d d ∂ ∂ - = + + - ∂ ∂     ∂ ∂ ∂ ∂ = - + +         ∂ ∂ ∂ ∂     ∂ ∂ ≡ + ∂ ∂ z z z z z z z z z z z z z z z z z z z (97) 
From the above, we note in particular that:

0 1 ( ) 1 ( ) ( ) 2 f f f i z z   ∂ ∂ ∂ = -     ∂ ∂ ∂   z z z z (98) * 0 1 ( ) 1 ( ) ( ) 2 f f f i z z   ∂ ∂ ∂ = +     ∂ ∂ ∂   z z z z (99),
which are the well-known classic formulations of the partial derivatives over complex numbers using Wirtinger/ calculus. Therefore, we observe that the use of the Hadamard matrix transformation in the development of the partial derivatives again leads to the correct result, as previously for  calculus and for the formulation of partial derivatives over hypercomplex variables with functions of octonions or octonion-like split-biquaternions.

  i.e., some stochastic estimations of the derivatives may become possible.

   CALCULUS USING SIMPLIFIED ROTATIONSThe quaternion associative (but non-commutative) normed division algebra over R has components =

  o e o e o e o e o e o e ---

  o e o e o e o e o e o e To express each individual component n n o e 0 7 n ≤ ≤ in the original octonion variable o as a linear combination of transformed octonion variables 0 37). Re-writing this in matrix form with real-valued elements, where m e o  0 7 m ≤ ≤ is a column vector including the eight real-valued components of the corresponding octonion variable

  e., coefficient for each basis component 0 e to 7 e ) involves only the corresponding coefficient n o in o , each row in the above matrix can be normalized by the coefficient n o , to have a formulation which is independent of the coefficients in o :

•

  or right derivatives. Note that for the right derivatives in (45), normfirst be applied to (42) or (43), to get equations where the n e term appears at the end of the equation. o o o o o is shown in detail in (46) and (47). Grouping together , we obtain the definition of the partial derivatives m e However, this last step and the results that it provides have some significant shortcomings: The last step in the development is invalid because of the lack of octonion associativity in general:

  the product x y o o is non-zero only for non-imaginary or scalar components 0 show the severe limitation of attempting to use the same steps as in the development of  calculus and generalized  calculus, with rotations of splitbiquaternion variables over the basis components of the split-biquaternion algebra, to produce transformed split-biquaternion variables required as part of the procedure to formulate the partial derivatives over split-biquaternion variables. The rotations of a split-biquaternion variable over the eight orthogonal basis components of the split-biquaternion algebra lead to the following expressions: o e o e o e o e o e o e different transformed variables are generated by the eight involutions. This directly prevents to use of (37)-(42) to express the components n n o e 0 7 n ≤ ≤ of a split-biquaternion variable o as a linear combination of

  formulation of partial derivatives over hypercomplex variables for functions of octonions, we revisit the procedure of (37)-(42) for expressing the different components of an octonion variable o ( -valued coefficients. Because m o will no longer be produced by rotations, the notation m o is used in this section and the following section, where m is simply a superscript index (and not a power), instead of the notation 1 nm c are real-valued.Re-writing this in matrix form with real-valued elements, where m o  0 7 m ≤ ≤ is a column vector including the eight real-valued components of the corresponding octonion variable m

  in o . Then each row in matrix O   in (57) can be normalized to ′ O   in (58), with a formulation which is independent of the coefficients values in o :

. 1 / 8

 18 Once these coefficients n c  are known, i.e., with proper choice of ′ O full rank matrix with a first column of unit values (from the use of o  in (56) and the normalization used in ′ O   ). Also, if conjugation-like operations are used (i.e., where only the sign of some coefficients n o in o  can be changed) to produce the as the Euclidian norm of o  , which is a desirable feature numerically (no scaling issue). In terms of the matrix ′ O   , this means having all realvalued elements having an absolute unit value. Another important feature is for the inverse all elements having the same absolute value, because for the synthesis of each coefficient n o in (60), the real-valued coefficients nm c to be used in the linear combination are directly obtained from columns of (60) (also a desirable feature). Considering those constraints or desirable features, the orthogonal and symmetric real-valued Hadamard matrix provides a solution for the required transformation matrix ′ O variable o ) partial derivatives formulations are to be developed. Except for permutations not affecting the final formulations, the transformation matrix ′ O   and the resulting partial derivatives become unique if the first row of the matrix ′ O   is also required to have unit values, as in standard Hadamard matrices formulations. The inverse Hadamard matrix

  defined. Expressions for partial derivatives over octonion variable o and these resulting transformed octonion variables 1

  -+ +o o o o o o o oIt should be noted that the results in (63) are octonion variables where only the 1 st component is non-zero, therefore they are real-valued scalars.If we wish to express n n

  can be expressed as in (44) (left derivatives) or (45) (right derivatives), which may differ since octonions are non-commutative. The differentials 0 1 2 3 4 5 6 7

  ( ) ,( ) ,( ) ,( ) ,( ) ,( ) ,( ) left derivatives or right derivatives. Note that for the right derivatives in (45), norm-preserving involutions first be applied to (63) or (64) , to get equations where the n e term appears at the end of the equation.The formulation of the left side partial derivative over the variables

  i.e., some stochastic estimations of the derivatives may become possible.

  )-(54) for the split-biquaternion algebra and (56) -(59), (61)-(62) for the transformation using conjugation-like operations (i.e., changing the sign of some real-valued coefficients in o ) to produce the 1 8-dimensional Hadamard matrix, the different components of a splitbiquaternion variable o ( n n o e 0 7 n ≤ ≤ ) can be expressed as a linear combination of o and seven split-biquaternion transformed variables 1 It should be noted that the results in (71) are split-biquaternion variables where only the 1 st component is non-zero, therefore they are real-valued scalars. (70) and (71) only differ from (60) and (63) (octonion algebra) for the component 7 o .If we wish to express n n be applied to (71), as per the definition in (50) for splitbiquaternion numbers:

*

  

7 n

 7 left derivatives or right derivatives. Note that for the right derivatives in (45), norm-= would first be applied to (71) or (72) , to get equations where the n e term appears at the end of the equation. The formulation of the left side partial derivative over the variables is shown in detail in (74) and (75). Grouping together the terms with

1

 1 

7 7 o

 77 e is not changed under the conjugation operation in the split-biquaternion algebra), (75) is the expected intuitive form of the partial derivative observe that the development of partial derivatives over hypercomplex variables using transformations from Hadamard matrices leads to consistent forms for  calculus, and for the formulation of partial derivatives over hypercomplex variables with functions of octonions and octonion-like split-biquaternions.Using the definition of the left partial derivative ∂

  and to illustrate that the general approach of performing a transformation using an Hadamard matrix can also be used for the development of classic Wirtinger/ calculus, in this section the partial derivatives over complex variables in  calculus are derived using the same procedure as in the previous two sections. The wellknown complex-numbers algebra is an associative and commutative normed division algebra over , with components = the well-known multiplication rules of Table

,

  dz dz are obtained from (95). To obtain the partial derivatives, we substitute 0 1 , dz dz into (96). Grouping together the terms with * d ,d z z and defining ∂ ∂z as the factor multiplying d z and * ∂ ∂z as the factor multiplying * d z , we obtain the definition of the partial derivatives over the complex variables:

Table I

 I 

Multiplication rules in the quaternion algebra

Table II

 II Multiplication rules in the octonion algebra

			i j e e		e	j
		results		
									1 e	1 -
	o		=	0 0 o e o e o e o e o e o e o e o e 1 1 2 2 3 3 4 4 5 5 6 6 7 7 + + + + + + +	(30)
	o	*	=	0 0 o e o e o e o e o e o e o e o e 1 1 2 2 3 3 4 4 5 5 6 6 7 7 -------	(31)
	o	2		=	o o	*	2 o o o o o o o o 2 2 2 2 2 2 0 1 2 3 4 5 6 7 = + + + + + + +	2	(32)

*

* * ( )

  It should be noted that the results in (42) are octonion variables where only the 1 st component is non-zero, therefore they are real-valued scalars.

	3 o = 7 o =	0 e o ( 0 (( ) ( ) ( ) ( ) ( ) ( ) ( ) 5( ) ) 3 5 6 7 1 2 4 3 5 ) 12 e e e e e e e e ---+ ----o o o o o o o 3 5 6 7 1 2 4 * * * * * * * * 7 12 e e e e e e e e e ------+ o o o o o o o o
	0 e o ( The total differential of a function 3 1 2 4 4 12 e e e e o -= ---o o o be expressed as:	4 = e o 5 ( ) + f o	5 e o 0 1 2 3 4 5 6 7 6 7 ) e e --o ( , , , , , , , ) f o o o o o o o o -o	n o ∈  0	n ≤ ≤	7	can
	5 o =	5 e -12	0 e o ( 0	-	1 e o 0	-	2 e o 1	-	3 e o 1	-	e o	4 2	+	5 e o 5 2	-	6 e o 3	-	7 e o 3	)
	6 o =	6 12 e -	0 e o ( 4	-	1 e o 4	-	2 e o 5	-	3 e o 5	-	e o	4	6	-	5 e o 6	+	6 e o 5 7	-	7 e 7 o	)
	7 o =	7 12 e -	0 e o (	-	1 e o	-	2 e o	-	3 e o	-	e o	4		-	5 e o	-	6 e o	+	7 5 ) e o
	If we wish to express n n o e 0	7 ≤ ≤ in terms of conjugates n	m e o	0	7 ≤ ≤ , then a m
	conjugation operation can be applied to (42):	
	o =		0 * e 3 1 2 4 * * * * e e e e + + + + o o o o o	+	5 e o	+	6 e o	+	e o	(43)
	o =	e	0 * e 3 5 1 2 4 * * * * * e e e e e + ----o o o o o o	-	6 e o	-	e o	′ O  	1 -	,
	leading to: n o = o =	0 e o 0 0 * * e 3 5 1 2 4 1 2 3 4 5 e e e e e n n n n n n e c 1 ( n c c c c c -+ + + + + o o o o o 3 5 1 2 4 * * * * e e e e e e -+ ---o o o o o o	+ -	6 6 e n c o	6 e o	+ -	n c e o	7	7 e o	)	(41)
	with 1 n e -= -e n e o =	1 0 * e 7 n ≤ ≤ , 1 0 n n e e n -= = , and: 3 5 1 2 4 * * * * * e e e e e --+ --o o o o o o	-	6 e o	-	e o
	0 o = o =	0 e o 1 (5 12 0 * e 3 5 6 7 1 2 4 ) e e e e e e e + + + + + + + o o o o o o o 3 5 1 2 4 * * * * * e e e e e e ---+ -o o o o o o	-	6 e o	-	e o	(42)
	1 o = o =	0 e o ( 0 * e 3 5 6 7 1 2 4 1 5 ) 12 e e e e e e e e -+ ------o o o o o o o 3 5 1 2 4 * * * * * ----+ o o o o o o	-	o	6	-	o
	2 o = o =	2 12 e -e	0 e o ( 0 * e 3 5 6 7 1 2 4 5 ) e e e e e e e -+ -----o o o o o o o 3 5 1 2 4 * * * * * e e e e e -----o o o o o o	+	6 e o	-	e o
																					16

* ( )

Table III

 III 

	Note that the same notation o is used in this section to represent numbers or variables in
	the octonion-like split-biquaternion algebra than for numbers or variables in the octonion
	algebra of the previous section:
	o		=	0 0 o e o e o e o e o e o e o e o e 1 1 2 2 3 3 4 4 5 5 6 6 7 7 + + + + + + +	(49)
	o	*	=	0 0 o e o e o e o e o e o e o e o e 1 1 2 2 3 3 4 4 5 5 6 6 7 7 ------+	(50)
	( o o x y	* )	=	* * y x o o		(51)
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Multiplication rules in the octonion-like split-biquaternion algebra

  o

	5 o =	5 8 e	* (( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) 1 * 2 * 3 * 4 * 5 * 6 * 7 * -+ --+ -+ o o o o o o o o
	6 o =	6 8 e	* (( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) 1 * 2 * 3 * 4 * 5 * 6 * 7 * + ----+ + o o o o o o o o
		7	*	1 *	2 *	3 *	4 *	5 *	6 *	7 *
	7								

  From the above, we note in particular the result for the left partial derivative over the splitfor octonions in (67) (this is only possible if lack of octonion associativity is neglected in the last step of the development) and considering the different definitions of conjugation for octonions and split-biquaternions (i.e., the sign of
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	≡	f ∂ ∂ o o )	d o	+	1 ( ) o o ∂ f ∂	d	1 o	+		2 ( ) o o ∂ f ∂	d o	2	+	3 ( ) o o ∂ f ∂	d o	3	+	4 ( ) o o ∂ f ∂	d	o	4	+	5 ( ) o o ∂ f ∂	d o	5	+	6 ( ) o o ∂ f ∂	d o	6	+	7 ( ) o o ∂ f ∂	d o	7
	biquaternion variable o :															
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	Considering the definition of			( ) o ∂ f ∂ o							

1 (5( ) ( ) ( ) ( ) ( * * 1 1 (( ) 5( ) ( * * 2 2 (( ) ( ) 5( * 3 3 (( ) ( ) ( * 4 4 (( ) ( ) ( (( ) (

If each component in 1 z (i.e., 0 1 , e e or 1,i ) involves only the coefficient n z of the corresponding component in z , each row in the above matrix can be normalized by the coefficient n z , to have a formulation which is independent of the coefficients in z : Hadamard matrix, we will have:

With the size-2 Hadamard matrix as the matrix ′ Z

It should be noted that the results in (94) are complex variables with only the 1 st component being non-zero, therefore they are real-valued scalars. This paper provided the formulation of partial derivatives over hypercomplex variables for functions of 8-dimensional hypercomplex algebras. We showed that the approach based on rotations over basis components used in the development of  calculus or generalized  calculus is not suitable for the two considered 8-dimensional hypercomplex algebras.

Instead, the use of transformations based on Hadamard matrices was found to lead to a common framework for the development of partial derivatives for complex-numbers, quaternion, octonion and split-biquaternion algebras. Some future work would include further developing the calculus for non-analytic functions of variables in 8-dimensional hypercomplex algebras by formulating a chain rule and a product rule, and applying the partial derivatives over hypercomplex variables for gradient vector based and Hessian matrix based optimization algorithms and adaptive filtering algorithms.