
HAL Id: hal-03558739
https://hal.science/hal-03558739v2

Submitted on 31 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards faster polynomial-time lattice reduction
Paul Kirchner, Thomas Espitau, Pierre-Alain Fouque

To cite this version:
Paul Kirchner, Thomas Espitau, Pierre-Alain Fouque. Towards faster polynomial-time lattice reduc-
tion. CRYPTO 2021, Aug 2021, Santa Barbara / Virtual, United States. �10.1007/978-3-030-84245-
1_26�. �hal-03558739v2�

https://hal.science/hal-03558739v2
https://hal.archives-ouvertes.fr

Towards faster polynomial-time lattice reduction

Paul Kirchner1, Thomas Espitau2, and Pierre-Alain Fouque1

1 IRISA/Inria, Rennes Univ., France, {paul.kirchner,pierre-alain.fouque}@irisa.fr
2 NTT Secure Platform Laboratories, Tokyo, Japan, t.espitau@gmail.com

Abstract. The lll algorithm is a polynomial-time algorithm for reduc-
ing d-dimensional lattice with exponential approximation factor. Cur-
rently, the most efficient variant of lll, by Neumaier and Stehlé, has a
theoretical running time in d4 ·B1+o(1) where B is the bitlength of the en-
tries, but has never been implemented. This work introduces new asymp-
totically fast, parallel, yet heuristic, reduction algorithms with their op-
timized implementations. Our algorithms are recursive and fully exploit
fast matrix multiplication. We experimentally demonstrate that by care-
fully controlling the floating-point precision during the recursion steps,
we can reduce euclidean lattices of rank d in time Õ(dω ·C), i.e., almost
a constant number of matrix multiplications, where ω is the exponent of
matrix multiplication and C is the log of the condition number of the
matrix. For cryptographic applications, C is close to B, while it can be
up to d times larger in the worst case. It improves the running-time of the
state-of-the-art implementation fplll by a multiplicative factor of order
d2 · B. Further, we show that we can reduce structured lattices, the so-
called knapsack lattices, in time Õ(dω−1 ·C) with a progressive reduction
strategy. Besides allowing reducing huge lattices, our implementation can
break several instances of Fully Homomorphic Encryption schemes based
on large integers in dimension 2,230 with 4 millions of bits.

1 Introduction

Lattice reduction and cryptanalysis. Lattice reduction is of the utmost
importance in public-key cryptanalysis, as testified, for instance, by the exten-
sive survey of Joux and Stern [40]. Indeed, many cryptographic problems are
solved by constructing an appropriate lattice and retrieving one of its short vec-
tors. Some standard examples include knapsack problems [46,48,40], breaking
linear congruential generators [28,69]), Coppersmith attack [19] against RSA
modulus by retrieving small roots of univariate polynomials over Z/NZ or bi-
variate polynomials over Z, or even attacks against the initial versions of the
NTRU cryptosystem [20,32,4]. Yet, its field of applications extends way beyond
cryptography, as lattice reduction is a cornerstone of many number theoretical
algorithms, allowing factoring polynomials over Z[X] [50], finding integer rela-
tions [37], solving simultaneous diophantine approximation problems [45].

Essentially, lattice reduction means finding a short and nearly orthogonal
basis to a lattice Λ (represented as a Z-basis). For many applications, finding a

2 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

small non-zero lattice vector, i.e., solving the (approximate) Short Vector Prob-
lem (svp), shall suffice. Since the work of Minkowski, we know that there exists
a vector with euclidean norm smaller than

√
d(volΛ)

1
d , but the proof is not

constructive. Nonetheless, the lll algorithm, introduced in 1982 by Lenstra,
Lenstra, and Lovász [50] retrieves vector within an exponential factor to the
shortest vector of a lattice of dimension d in time O

(
d6B3

)
where B is the bit-

size of the input representation. One can also prove that the norm of the first
vector of an lll-reduced basis is less than

(√
4/3
) d−1

2 (volΛ)
1
d . The approxima-

tion factor (‖b1‖/ volΛ)1/d is called the root Hermite factor (RHF), with b1 a
short vector. Later, Schnorr developed a hierarchy of algorithms to reach better
RHF in β

1
2β in time 2O(β) for large β [62,64]. This family leads to a polynomial-

time algorithm with a RHF 2
log log d

log d [47]. Gama and Nguyen introduced the slide
reduction to give an effective take on Mordell’s inequality and further improve
the RHF [29]. In an orthogonal direction, following Haståd and Lagarias, Seysen
proposed a variant of lll aiming at simultaneously reduces the primal and dual
basis [67]. He defines a new reduceness measure which is closely related to the
condition number of the matrix [51].

Related work. The two most singular characteristics of lattices appearing in
the cryptographic setting are their high dimension and the large bitsize of their
matrix representation. As such, the reduction of cryptanalytically relevant lat-
tices is a computationally intensive challenge. While the original lll implemen-
tation works with exact arithmetic on rational entries, Schnorr proposed in 1988
to replace it with floating-point arithmetic [63], significantly improving its effi-
ciency. Since 1996, Shoup maintains a heuristic yet very efficient version in the
NTL library with fine control of the float-point precision. This code has been
routinely used for more than a decade to break cryptographic schemes. Later,
Nguyen and Stehlé precisely analyzed and decreased the asymptotic complex-
ity to O

(
d5(d+B)B

)
in [57], a.k.a. the quadratic lll or L2 algorithm. This

algorithm has been then implemented in fpLLL [3], which is the current state-
of-the-art open-source implementation of lll. However, despite many theoretical
improvements to reduce the complexity to quasi-linear in the bitsize using re-
cursive local computation techniques [65,44,58,55] and some attempts [13,61,11]
to use only the most significant bits, the practical complexity of the best imple-
mentation available remains in O

(
d4B2

)
. As such, it struggles to reduce lattices

with large entries in high dimensions. Consequently, cryptographers still assess
their concrete parameters using L2 as a reference for lll.

Thus, from a cryptanalytical standpoint, it is interesting to have a fast im-
plementation of lattice reduction (with a controlled approximation factor) even
though this algorithm might rely on some heuristics. Since lattice-based cryp-
tography is becoming a strong contender for post-quantum cryptography and
offers many interesting functionalities to cryptography, such as efficient Fully
Homomorphic Encryption (fhe), new algorithms and implementations of lat-
tice reduction have been designed to give better security estimate for lattice-
based cryptography. Some improvements mainly target the bkz algorithm since

Towards faster polynomial-time lattice reduction 3

it allows to finely adjust the approximation factor [29,30,35,14,53,5]. Others are
heuristic and improve sieving technique for solving svp, use a reduction tech-
nique in the lattice dimension [6], exploit subfield structure and symmetries in
structured lattices [60,41], or use the tensor core architecture of GPU [26]. Some
of them with sieving SVP-oracle [6] are used to perform the security estimation
of signatures and KEM, where the dimension are generally lying between 512
and 1024. However, fhe schemes over the integers use extremely large integers
(several millions of bits) and high dimensional lattices (typically of a few thou-
sand dimensions), but can be broken with high approximation factors. To deal
with such settings, faster algorithms are required, in particular with complexity
quasi-linear in the bitsize and not much more costly than matrix multiplication.

Our Contributions. To improve the running time of lattice reduction algo-
rithms, we propose to exploit parallelism with many cores, make full use of
computer’s cache using block matrix implementation [34], and use a low pre-
cision while still controlling the approximation factor at the same time. Our
implementation we describe allows reducing lattice in dimensions up to 2,000
with entries of up to millions of bits, which is intractable otherwise.

Our proposal of lattice reduction is a lll-type algorithm, i.e., using a size-
reduction procedure jointly, together with many passes of a rank-2 reduction
subprocess. The design rationale is to exploit fast block matrix operations and
locality of operations. To do so, we use a block variant of the Cholesky factoriza-
tion algorithm for computing the QR-decomposition [34]. We replace the size-
reduction with a block variant of Seysen’s size-reduction, which can be thought
of as a rounded version of the multiplication by the inverse of the R factor of the
QR-decomposition. To our knowledge, this algorithm has not been used since
1993. Contrary to the textbook lll, we do not swap vectors when the Lovász
condition is not fulfilled, but we fully reduce the 2-dimensional corresponding
projected sublattice, using Schönhage’s algorithm. The global design is recur-
sive, as was proposed before by Koy and Schnorr [44] with Segmented lll and
by Neumaier and Stehlé [55]. However, in this work, we do not recurse on over-
lapping blocks but on separate ones; a technique proposed by Villard to achieve
parallelism [73] with even and odd steps, also used recently in [41].

As all the computations are conducted in floating-point arithmetic, a sys-
tematic caveat concerns the precision required for computing the correct result.
We claim and experimentally verify that on average, it decreases exponentially
with the recursion depth as shown in section 4.1, allowing to reduce the overall
complexity by a factor d. Additionally, we handle matrice multiplications in the
Fourier domain to compute with large numbers. We conjecture and experimen-
tally verify a complexity of approximately dω ·C/ logC, where ω is the exponent
of matrix multiplication, and C is the logarithm of the condition number of the
input matrix. We highlight that typically, the complexity of lattice reduction
depends on the bitlength B of the input, instead of C. For cryptographic ap-
plications (Coppersmith and knapsack-type lattice amid others), C is close to
B, while it can be up to d times larger in the worst case. It is well-known that
a row-wise diagonal dominant matrice has a condition number bounded by a

4 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

constant times the ratio beteen the largest diagonal entry and the smallest one,
so the logarithm of the condition number will be close to the size of the entries.

Additionally, section 5 shows that one can reduce knapsack lattice in a time
approximately equal to the reduction of a random lattice with a bitsize reduced
by a factor of d. Such a phenomenon is already known for some algorithms like
fplll [68, 1.5.3], noted [56], and exploited [72]. We present a reduction between
the two problems with this property. The idea is to iteratively double the num-
ber of columns reduced, and reduce the bitsize of the other ones. It has been
implemented and tested.

The complexity of our algorithms can be analyzed in an arithmetic cost
model with an analysis similar to [35] (sandpile model) for LLL with even and
odd pass as in [42]. However, the specificity of our algorithm is to consider the
precision. Without such attention, it would have been impossible to reduce high
dimensional lattice with so many bits. In an exact arithmetic cost model, the
complexity would have been comparable to previous algorithms, which is not
the case in practice. Such heuristic algorithms is interesting, even without a full
analysis, to assess the security of cryptographic instances. For instance, many
fhe schemes over the integers base their security on the complexity of the best
algorithm. However, a rigorous proof of the algorithm with the precision is highly
technical in a numerical computational model and escape us so far. Consequently,
we decided to present only all the ingredients of our implementation with its
applications in this paper and postpone a proof for future work.

Regarding the applications, we first show in section 6 that our implementa-
tion is much faster than fplll with a factor between 30 and 45 on single-thread in
all dimensions tractable by fplll. However, our implementation can exploit multi-
core processors and reduce lattices in much higher dimensions. Consequently, we
run it on matrices of dimensions a few thousand and inputs of millions of bits,
as reported in table 1. As a result, we attack many instances fhe over the in-
tegers to illustrate the efficiency of our code and evaluate its running time on
large inputs. For these examples, the wall-clock time is six orders of magnitude
smaller than the (estimated) cost of fplll. We broke knapsack instances from [21]
in dimension 2,230 with 4.26 millions of bits in 22h with 18 cores, while the secu-
rity level was evaluated at 262. We also broke ntru instances with overstretched
parameters proposed in [31] in 5h (resp. 10 days) in dimension 2560 (resp. 3086)
with 111 (resp. 883) bits and RHF 20.1105 (20.018, equivalent to BKZ-25). In
practice, at the bottom of the recursion tree, we use a small bkz to improve the
approximation factor, whilst not altering too much the running time.

2 Background

2.1 Notations and conventions

The capitals Z, Q, R refer to the ring of integers, the field of rational and real.
Given a real number x, its integral rounding denoted by bxe returns its closest
integer. The logarithms are log for the binary one and ln for the natural one.

Towards faster polynomial-time lattice reduction 5

Matrix and norms. We denote by Qd×d the space of square matrices of size
d over Q, GLd(Q) its group of invertible. We use bold fonts for matrices and
denote the elementary matrix transformations by Ti,j(λ) and Di(λ) for respec-
tively the transvection (or shear mapping) and the dilatation of parameter λ.
We use Diag(x1, . . . ,xd) to refers to a diagonal matrix of elements x1, . . . ,xd.
We generalize this definition to block matrices and overload it to the extraction
of the diagonal of a given matrix. A triangular unipotent or unitriangular matrix
is a triangular matrix with ones on the diagonal. We extend the product for any
pair of matrices (A,B): for every matrix C with compatible size with A and B,
we set: (A,B)·C = (AC,BC). We adopt the usual conventions for submatrix ex-
traction: for any matrix M = (mi,j) ∈ Qd×d and 1 6 u < v 6 d, 1 6 w < x 6 d,
define the submatrix M[u : v,w : x] = (mi,j)u6i6v,w6j6x, while Mi refers to
the i-th column of M. For a vector v (resp. matrix A = (ai,j)16i,j6d), we de-
note by ‖v‖ (resp. ‖A‖) the Frobenius norm, i.e., ‖A‖ =

√∑
16i,j6d a

2
i,j . The

condition number of an invertible matrix M measures how much the output
value of the matrix can change for a small change in the input. It is defined
as κ(M) = ‖M‖‖M−1‖ and allows to compute the precision needed during the
computation. We deal with block decomposition of matrices, with block of half-
dimension. For matrices of odd dimension 2k + 1, the upper-left block to be of
dimension k + 1 and the bottom-right one of dimension k.

Computational setting. We use the standard model in algorithmic theory,
i.e., the word-RAM with unit cost and logarithmic size register (see [52, Section
2.2] for a comprehensive description). The number of bits in the register is w
and the precision during the computation by p. All computations with ratio-
nal/real values are conducted in floating-point, unless stated otherwise. For a
non-negative integer d, we set ω(d) to be the exponent of matrix multiplication
of d× d matrices. If the dimension d is clear from context we might omit it and
write simply O(dω) for this complexity. We can assume that this exponent is
not too close to 2, in particular ω(d) > 2 + 1/ log(d). Due to the conflict with
Laudau’s small omega notation, we use ω for the latter symbol.

2.2 Lattices and LLL reduction

Definition 1 (Lattice). A d-dimensional (real) lattice Λ ⊆ Rd is the set of in-
teger linear combinations

∑d
i=1 biZ of some linearly independent vectors (bi)16i6d.

The finite family (b1, . . . , bd) ∈ Λ is called a basis of Λ. Every basis has the same
number of elements called the rank of the lattice. A measure of the density of
the lattice is its (co)volume, defined to be the volume of the torus Rd/Λ, which
corresponds to the square root of the Gram-determinant of any basis (b1, . . . , bd):

volΛ =
√

det(〈bi, bj〉)16i,j6d.

Two different bases of a lattice Λ are related by a unimodular transformation,
i.e., a linear transformation represented by an element of GLd(Z), the set of

6 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

d × d integer-valued matrices of determinant ±1. In essence, algorithms acting
on lattice bases are sequences of unimodular transformations. Among these pro-
cedures, reduction algorithms are of the utmost importance. They aim at finding
congenial classes of bases, which are quasi-orthogonal and with controlled norms.
Fundamental constant associated to any rank d lattice Λ are its successive min-
ima λ1, . . . ,λd. The ith minimum λi(Λ) is the radius of the smallest sphere
centered in the origin containing i linearly independent lattice vectors.

Orthogonalization, QR-decomposition. LetB = (b1, . . . , bd) a family of lin-
early independent vectors. Let πi the orthogonal projection on (b1, . . . , bi−1)

⊥,
with the convention that π1 = Id. The Gram-Schmidt orthogonalization pro-
cess is an algorithmic method for orthogonalizing B while preserving the in-
creasing chain of subspaces (

⊕i
j=1 bjR)16i6d. It constructs the orthogonal set

B∗ = (π1(b1), . . . ,πd(bd)). For notational simplicity we refer generically to the
orthogonalized vectors by b∗i for πi(bi). The computation of B∗ can be done
inductively as follows: for all 1 6 i 6 d, b∗i = bi −

∑i−1
j=1

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

b∗j . Collect the

family B in a matrix also denoted by the same notation and set Ri,j =
〈bj ,b∗i 〉
‖b∗i ‖

and Q =
[
b∗1
‖b∗1‖

∣∣ . . . ∣∣ b∗d
‖b∗d‖

]
. Then, we have B = QR, with Q being an orthogonal

matrix and R being upper triangular. This is the QR-decomposition of B. In the
following, we work with the R part only, so that we present the computation of
this matrix in the pseudo-code Orthogonalize below. We omit considerations on
the required fp-precision here, to just focus on the core ideas of the algorithms.

Algorithm 1 — Orthogonalize

Input :Basis B

Output :R part of
qr-decomposition

for i = 1 to d do

for j = i − 1 to 1 do

Qi ← bi −
〈bi ,Qj 〉
〈Qj ,Qj 〉

Qj

end for

end for

return R =
(
〈Qi ,bj 〉
‖Qi‖

)
16i6j6d

Algorithm 2 — Size-Reduce

Input :Basis B, R part of
qr-decomposition

Output :Tranformation of SR basis

U = Idd

for i = 1 to d do
for j = i − 1 to 1 do

(U,R)← (U,R) ·Ti ,j

(
−
⌈

R[i ,j]
R[i ,i]

⌋)
end for

end for
return U

Size-reduction of a family of vectors. Let Λ be a rank d lattice given
by a basis B = (b1, . . . , bd), we might want to use the Gram-Schmidt process.
However, since the quotients 〈bi,b

∗
j 〉

〈b∗j ,b∗j 〉
are not integral in general, the vectors b∗i

may not lie in Λ. The size-reduction process instead approximates the result of
the Gram-Schmidt process by rounding to a nearest integer: each vector bi is
replaced by bi −

∑i−1
j=1

⌈
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

⌋
bj . The whole process takes time O

(
d5B2

)
when

Towards faster polynomial-time lattice reduction 7

the input matrix B is of dimension d×d with B-bit entries. This process is called
Size-reduction and corresponds to the following iterative algorithm3Size-reduce.

2.3 The LLL reduction algorithm

Lenstra, Lenstra, and Lovász [50] proposed a notion called lll-reduction and
a polynomial-time algorithm that computes an lll-reduced basis from an ar-
bitrary basis of the same lattice. Their reduction notion is formally defined as
follows (presented directly in an algorithmic way with the QR-decomposition):

Definition 2 (LLL reduction). A basis B of a lattice, admitting the decom-
position B = QR, is said to be δ-lll-reduced for 1/4 < δ 6 1, if the following
two conditions are satisfied:

∀i < j, |R[i, j]| 6 1

2
|R[i, i]| (Size-Reduction condition) (1)

∀i, δ

∥∥∥∥(Rj,j

0

)∥∥∥∥2 6

∥∥∥∥(Rj,j+1

Rj+1,j+1

)∥∥∥∥2 (Lovász condition). (2)

The length of vectors and orthogonality defect is related to the parameter δ:

Proposition 1. Let 1/4 < δ 6 1 be an admissible lll parameter. Let (b1, . . . , bd)
a δ-lll reduced basis of rank-d lattice Λ. Then for any 1 6 k 6 d:

vol (b1, . . . , bk) 6 (δ − 1/4)−
(d−k)k

4 volΛ
k
d .

In particular, we have that Ri,i 6 (δ − 1/4)−1Ri+1,i+1.

We recall that vol(Λ) = det(B) =
∏d
i=1 Ri,i and the log-potential is defined

as Π(B) =
∑d
i=1(d − i) log(Ri,i). For k = 1 and δ = 1, the Hermite approx-

imation factor defined as ‖b1‖/ det(B)1/d, will be (4/3)(d−1)/4. To find a basis
entailing the lll conditions, it suffices to iteratively modify it at any index vi-
olating one of these conditions. This process yields the simplest version of the
lll algorithm. However, we choose to present a different take on this algorithm,
closer to the algorithms we introduce later. The first remark is that for a given
1 6 j 6 d−1, the lll-reduceness conditions correspond to saying that the basis(

Rj,j Rj,j+1

0 Rj+1,j+1

)
is Gauss–reduced. The global strategy given in algorithm 3 to reduce a lattice
consists of iteratively applying a reduction procedure in rank 2 to projected
sublattices, naturally using the Gauss reduction algorithm [35]. We start by
reducing the sublattice spanned by b1, b2, then the projection onto the orthogonal
3 We choose to present it using the matrix R and yielding the unimodular transfor-
mation matrix, for consistency with the description of our algorithms in section 3.

8 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

subspace to b1 sublattice spanned by b2, b3 and so on. When we hit the end of
the basis, this iteration restarts afresh until no more progress is achieved.

We replace the outermost while loop by a for loop of a fixed number ρ of
iterations. This parameter is set to be sufficiently large to ensure the reducedness
of the output (using a dynamical system analysis à la [35] after O

(
d2 logB

)
rounds, a vector within the lll quality bound is discovered).

We will use a slight generalization of the lll-reduction notion. In particular,
a lll-reduced basis satisfying the Lovász conditions, is a Siegel reduced basis.

Definition 3 (Siegel reduction). The Siegel reduction problem consists in,
given an integer matrix A of dimension d with ‖A‖, ‖A−1‖ 6 2B, outputting a
matrix AU with U a unimodular integer matrix such that with QR = AU the
QR-decomposition, we have for all i: Ri,i 6 2Ri+1,i+1.

Algorithm 3 — Reduction

Input : Initial basis B = (b1, . . . , bd)

Output : A δ-lll-reduced basis

1 while B is not lll-reduced do
2 R← Orthogonalize(B)
3 Ui ← Size-Reduce(R)
4 (B,R)← (B,R) ·Ui

5 for j = 1 to d do
6 B′ ← R[j : j + 1, j : j + 1]

7 U′ ←Gauss(B′)
8 (Ui ,B)← (Ui ,B) ·Diag(Idj−1,U′, Idd−j−1)
9 end for

10 end while
11 return

∏ρ
i=1 Ui // ρ is the number of passes

2.4 Matrices Representation

A matrix A is represented as A′2e where A′ is an integer matrix and e 6 0.
The quantity log(‖A′‖) is the precision of the matrix. The standard algorithm
for multiplying matrices with large entries consists in transforming the integers
in A and B into polynomials of degree bounded by O

(
p+w
w

)
(p is the precision

and w the number of bits in registers), and computing their evaluations on
roots of unity. The matrices of evaluations are then multiplied, and an inverse
Fourier transform gives the product of the matrix of polynomials. Carries are
then computed to obtain AB. Matrices can be multiplied quickly using the FFT:

Theorem 1. Given A and B two integer matrices of dimension d with log(‖A‖+
‖B‖) = p, the product AB can be computed in time O

(
dω p+ww + d2 pw log

(
2 + p

w

))
.

Towards faster polynomial-time lattice reduction 9

2.5 Fast inversion of unitriangular matrices

We eventually conclude this preliminary section by introducing a natural re-
cursive algorithm to invert unitriangular matrices—working with floating-point
approximation. It is a direct application of the computation of Schur’s comple-
ment in the case of a block triangular matrix, i.e., the observation that:(

A C
0 D

)−1
=

(
A−1 −A−1CD−1

0 D−1

)
.

As bothA andD are unitriangular, this inversion formula translates naturally in
a recursive algorithm. Its base case corresponds to inverting a one dimensional
unitriangular matrix, that is (1), which is its own inverse. The corresponding
pseudo-code is given in Invert. Its complexity is easily analyzed to be asymptot-
ically the cost of a matrix multiplication, as the dominant step of each recursive
call is the computation of the complement −A−1CD−1.

Algorithm 4 — Invert

Input : A unitriangular matrix M

Output : A fp-approximation of M−1

1 if dim(M) = 1 then
2 return (1)

3 end if

4

(
A C

0 D

)
←M // with dimension almost halved

5 A′ ← Invert(A) ; D′ ← Invert(D) // fp-approximations of A−1,D−1

6 S← −A′CD′ // Computed in floating-point

7 return

(
A′ S

0 D′

)

We provide the precise analysis of this inversion. It can be extended to tri-
angular matrices, and we consider that Invert also computes their inverse.

Lemma 1. Given an integral unitriangular matrix M of dimension d, with both
‖M‖, ‖M−1‖ 6 2p and p > w + log(d), Invert returns a matrix M′ such that
‖M′ −M−1‖ 6 2−p with a running time of O

(
dωp
w + d2p

)
.

Proof. We set a working precision p′ = 1+3p+dlog de = O(p), and by induction
on d, let us prove that

‖M′−1 −M‖ 6 2
√
d2−p

′
.

The case d = 1 is straightforward, so that we now deal with inductive case
d > 1. Let E, δA and δD be matrices such that the top-right part of M′

is −A′CD′ + E, A′−1 = A + δA, and D′−1 = D + δD. Consequently, we

10 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

get: M′−1 − M =

(
δA −A′−1ED′−1

0 δD

)
. We can guarantee that ‖E‖ 6

2−p
′−2p with a computation with intermediary bitsize O(p′). This leads to our

intermediary result. Now let M′−1 = M + F, so M′ = (M(Id + M−1F))−1 =
(Id+M−1F)−1M−1 and ‖M′−M−1‖ 6 ‖M−1‖‖(Id+M−1F)−1− Id‖ 6 2−p.
The complexity comes from the matrix multiplication with words of size w.

3 Fast reduction of Euclidean lattices

This section is devoted to the description of our block recursive lattice reduction
algorithm. In the following, let us fix a Euclidean lattice Λ of rank d, described
by a basis collected in a rational matrix B in the canonical basis of Rd. We
generically denote by R the R-part of the QR-decomposition of this matrix. We
recall that computations are conducted in floating-point arithmetic. However,
for the sake of readability and ease of presentation, we defer the issue of the
necessary precision to section 4.

We turn to a detailed breakdown of the essential parts of the algorithm.
Each of the following subsections details and refers to the corresponding lines of
algorithm 5, Reduce.

Algorithm 5 — Reduce

Parameter : Relaxation factor α, ε > 0, number of rounds ρ,
number of blocks D, d ′ = d/D block size.

Input : Basis B ∈ Zd×d of the lattice Λ

Output : A unimodular transformation U ∈ Zd×d , UB reduced.

1 if d = 2 then return Schonhage(B)
2 for i = 1 to ρ do
3 R← Block-Cholesky(BTB)

4 Ui ← Size-Reduce(Diag(R)−1 · R)
5 (B,R)← (B,R) ·Ui

6 for j = 1 + (i mod 2) to D/2 by step of 2 do
7 V1 ← vol(R[(j − 1)d ′ + 1 : jd ′, (j − 1)d ′ + 1 : jd ′])

8 V2 ← vol(R[jd ′ + 1 : (j + 1)d ′ − 1, jd ′ + 1 : (j + 1)d ′])

9 if V1 > 22(1+ε)α(d
′)2V2 then

10 U′ ← Reduce(R[jd ′ : (j + 2)d ′ − 1, jd ′ : (j + 2)d ′ − 1])

11 (Ui ,B)← (Ui ,B) ·Diag(Idjd′ ,U′, Idd−3jd′)
12 end if
13 end for
14 end for
15 return

∏ρ
i=1 Ui // The product is computed from the end

Towards faster polynomial-time lattice reduction 11

3.1 Base case: plane lattices [Line 1]

As in all variants of the lll algorithm, the base case of the reduction boils down
to the two-dimensional case, usually handled by the celebrated Lagrange-Gauss
reduction or some equivalent transformations. For instance, in the original lll
algorithm, truncated steps of Lagrange-Gauss reduction are conducted on two-
dimensional projections of shape πi(bi)Z⊕ πi(bi+1)Z.

For the sake of efficiency, we adapt Schönhage’s algorithm [66], as in the
algorithms of [41,35], to reduce these plane lattices. This algorithm is an exten-
sion to the bidimensional case of the so-called half-GCD algorithm [54], likewise
that Gauss’ algorithm is a bidimensional generalization of the classical Euclid’s
gcd. The original algorithm of Schönhage only deals with the reduction of bi-
nary quadratic forms but can be straightforwardly adapted to reduce lattices, as
well as returning the corresponding unimodular transformation matrix. In the
following, we denote by Schonhage this modified procedure. Its complexity is
quasilinear in the size of its input (which is to be compared with the quadratic
complexity of the classical Gauss reduction).

3.2 Outer iteration [Line 2]

To reduce the lattice Λ, we adopt an iterative strategy to progressively modify
the basis: for ρ > 0 steps, a reduction pass over the current basis is performed, ρ
being a parameter set to optimize the complexity of the whole algorithm while
still ensuring the reduceness of the basis. We defer the choice of this constant for
the moment. This global iterative scheme is similar to the terminating variants
of the bkz algorithm, for instance as in [36] or [53], where a polynomial number
of rounds is fixed to reduce the input.

3.3 Orthogonalization via Block-Cholesky decomposition [Line 6]

Gram-Schmidt Orthogonalization is a preliminary step of every lll-type algo-
rithms, as it computes the so-called Gram-Schmidt vectors of the basis, which
are ubiquitous in the definition of the reduction itself. On symmetric matrices
as the Gram-matrix BTB of the basis, one computes the Cholesky factorization,
which given a symmetric positive-definite matrix G, the factorization asserts the
existence (and unicity) of an upper triangular matrix R such that G = RTR
which is the some R in the QR decomposition of B since G = BTB = RTR.

We use here a recursive block variant of the Cholesky factorization algorithm,
allowing to compute a floating-point approximation of the matrix R, whose
running time is heuristically the cost of a matrix multiplication. It relies heavily
on the Invert procedure introduced in Section 2.5.

Remark 1. Block computations of decompositions seems to be folklore in nu-
merical algebra (see, for instance, the complete monograph of Higham [39] for
multiple variants of block orthogonalization, such as modified Gram-Schmidt,
Householder transformations, . . .), but oddly, we were unable to find a proper
reference to the block Cholesky factorization.

12 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

The decomposition is as follows, given as input a symmetric matrix G. We

start by block splitting it (with blocks of half size): G =

(
A B
BT C

)
, where

A,C are also symmetric. Its Schur complement S = C − BTA−1B is then
also symmetric. Suppose that we know the factorization of the A and S in say:

A = RT
ARA and S = RT

SRS . Then, we set R =

(
RA R−TA B
0 RS

)
. This matrix is

indeed the Cholesky factorization ofG, as ensured by the following computation:

RTR =

(
RT
A 0

BTR−1A RT
S

)
·
(
RA R−TA B
0 RS

)
=

(
RT
ARA RT

AR
−T
A B

BTR−1A RA BTR−1A R−TA B+RT
SRS

)
=

(
A B
BT C

)
,

since BTR−1A R−TA B+RT
SRS = BTA−1B+C−BTA−1B = C by definition of

the Schur complement.
This derivation yields a direct recursive algorithm, whose base case corre-

sponds to the unidimensional instance, i.e., G = (g), admitting the trivial de-
composition G = (

√
g)T (
√
g). This observation yields the procedure stated in

pseudocode in algorithm 6 Block-Cholesky, computing a floating-point approx-
imation of the Cholesky decomposition.

Algorithm 6 — Block-Cholesky

Input : A positive-definite symmetric matrix G

Output : A fp-approx. of a triangular matrix R s.t. RTR = G

1 if dim(G) = 1 then return
√
G

2

(
A B

BT C

)
← G // with blocks of half-dimension

3 RA ← Block-Cholesky(A)
4 R′A ← Invert(RA)

5 A′ ← R′TA R′A
6 RS ← Block-Cholesky

(
C− BTA′B

)
7 return

(
RA R′TA B

0 RS

)

3.4 Size-reduction [Line 4]

As in the lll algorithm, a size-reduction operation is conducted at each step of
the reduction. It allows to control the size of the coefficients and ensures that the
running time remains polynomial. However, in our case, we lean on a Seysen-like

Towards faster polynomial-time lattice reduction 13

reduction to perform this operation [67]. Our recursive procedure allows to size-
reduce a unitriangular matrix (in our case, the matrix Diag(R)−1R) in roughly
the time of matrix multiplication.

Algorithm 7 — Size-Reduce

Input : A unitriangular matrix T

Output : An integer unitriangular
matrix U, TU reduced

1 if dim(T) = 1 then return (1)

2

(
A C

0 D

)
← R // with half dimension

3 U1 ← Size-Reduce(A)
4 U2 ← Size-Reduce(D)

5 A′ ← Invert(AU1)

6 W← bA′CU2e

7 return

(
U1 −U1W

0 U2

)

We start from the clas-
sical observation that the
usual size-reduction pro-
cess is a discretized ver-
sion of the iterative Gram-
Schmidt process (which is a
way of computing the QR-
decomposition of a matrix).
Over the triangular matrix
R, it corresponds to make
iteratively the extra diag-
onal elements as close as
possible to 0. However, in-
stead of using an iterative
process, we use a lattice
reduction algorithm with
block matrix operations.

Let us start with a uni-
triangular matrix R, split
in block of half dimension:(
A C
0 D

)
. Assume for the

moment that both unitriangular submatrices A and D are already size-reduced.
Then, set

U =

(
Id −bA−1Ce
0 Id

)
,

which is unimodular as its diagonal elements are all 1. Its action on R gives

by elementary computation: RU =

(
A C−AbA−1Ce
0 D

)
and the top-right

part is of the same magnitude as A. The inverse of RU is(
A−1 −

(
A−1C− bA−1Ce

)
D−1

0 D−1

)
and the top-right part is of the same magnitude as D−1, ensuring that the norm
of this block is controlled. The translation of this process in pseudocode yields
algorithm 7 Size-reduce. Note that this algorithm is presented as yielding the
transformation matrix instead of the reduced matrix, to be consistent with the
presentation of Reduce (see proof in Appendix A).

Theorem 2. Given a d-dimensional unitriangular matrix T such that ‖T‖ and
‖T−1‖ 6 2p and p > w+log(d)2d, the algorithm Size-Reduce returns an integral
unitriangular matrix U with ‖U‖ 6 2O(p) such that ‖TU‖, ‖(TU)−1‖ 6 ddlog de

with a running time of O
(
dωp
w + d2p

)
.

14 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

3.5 Step reduction subroutine [Lines 3-13]

ܐؽ܏

Fig. 1: Illustration of the parallel step
reduction on the R-part of the QR-
decomposition. Green 2 × 2 blocks are
simultaneously reduced on odd steps
and orange ones are reduced on even
steps. This strategy is similar to [38].

From parallel design of lll... Let
us now describe the step reduction pass,
occuring once the size-reduction opera-
tion has been performed. As observed
in section 2, the lll algorithm reduces
lattice reduction to the reduction of
rank two lattices (more precisely, itera-
tively reduce orthogonally projected rank-
2 sublattices). A first idea would be to
use the same paradigm here and pass
over the current basis in a sequence
of reduction of projected planar lat-
tices. However, on the contrary to the
standard lll or bkz-2 algorithms, re-
mark that we are not forced to proceed
progressively along the basis, but that
we can reduce bd/2c independent (non-
overlapping) rank-2 lattices at each step,
namely the (π2i(b2iZ⊕ b2i+1Z))16i6d/2
and then, (π2i+1(b2i+1Z⊕ b2i+2Z))06i6d/2.
This design enables an efficient parallel
implementation which reduces sublattices simultaneously, in the same way that
the classical lll algorithm can be parallelized [73,38]. This technique can also
be thought of as a parallelized bkz [53] or slide-reduction [1] with blocksize 2.

ܐؽ܏

Fig. 2: The block process on the R-
part of the basis. Green blocks are re-
cursively reduced on odd steps and or-
anges one are reduced on even steps.

...to recursive block design A bottle-
neck with this strategy is that each round
needs (at least) a matrix multiplication
to be updated. Using a dynamical system
analysis similar to [35], such a reduction
would require ρ rounds to be a Ω(d2) to
ensure an lll approximation factor. This
implies a dependency in the running time
which would be at least quartic in the di-
mension d. However, one can notice that
each round only makes local modifications
on the basis. As a result, we propose to
use a small number D of blocks, and let
a round recursively reduces consecutive
pairs of blocks of dimension d

D . In this set-
ting, the dynamical system analysis of [35]
shows that a O

(
D2 logC

)
bound on the

number of iterations ρ is now adequate.

Towards faster polynomial-time lattice reduction 15

Let us denote by R′j the extracted
submatrix (Ra,b)(j−1)d′<a,b6jd′ , with d

′ =

d/D. The lattice R′j spanned by R′j is the projection of Λj =
⊕

(j−1)d′<a6jd′ baZ
over the orthogonal space to the first (j − 1)d′ vectors (b1, . . . , b(j−1)d′−1). The
step reduction subprocess simultaneously (and recursively) calls the reduction
of all the shifted sublattices

(
R′2j ⊕R′2j+1

)
16j<dD2 e

. Then the same is done on

the sublattices
(
R′2j+1 ⊕R′2j+2

)
06j<dD2 e

to enable the reduction of cross blocks.
This step reduction is then restarted for ρ rounds as indicated in section 3.2.

On the volumetric Siegel condition. Remark the use of relaxation parame-
ters ε,α > 0, acting on the approximation factor of the reduction. As an avatar
of the relaxation factor δ of lll, they allow a slight tradeoff between the running
time and the overall reduction quality. It is an equivalent of the Siegel condi-
tion between blocks: instead of recursively calling the reduction every time on
the blocks R2j ⊕ R2j+1, we only do it if the volume of the left block R2j is
sufficiently larger than the one of the right block R2j+1. We do not perform a
recursive reduction if the slope between the blocks is already small enough.

In practice, these values are dependent on the depth of recursion to optimize
the global running time. Section 4 addresses this technicality more thoroughly.

4 Complexity estimation and supporting experiments

We now turn to the fine-tuning of the implementation and describe some opti-
mization tricks used. We backed up our choices by supporting experiments and
eventually devise an empirical estimate of the bit-complexity of our algorithm.

4.1 Needed Precision

	0

	0.5

	1

	1.5

	2

	2.5

	3

	3.5

	0 	5 	10 	15 	20 	25

"appel1"	u	(23-$0):1

Fig. 3: Abscissa corresponds to
the iteration time and ordi-
nates corresponds to the value
log(maxiR[i, i]/miniR[i, i]). As
predicted by heuristic 1 the cor-
responding graph presents an
exponential decay.

Since the implementation of the algorithm
is done using floating-point arithmetic, we
need to set a precision which is sufficient
to handle the internal values during the
computation. To do so, we set:

p = log
maxiR[i, i]

miniR[i, i]
,

where the R[i, i] encodes the norm of
the Gram-Schmidt vectors. As in floating-
point variants of lll [63,57,44,55], it is
straightforward that a O(p) is sufficient
to handle the computation. However, the
remaining question is the evolution of this
quantity within the recursive calls. In-
deed, as we have more and more recursive

16 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

calls of the reduction algorithm on pro-
jected lattices of smaller dimensions, we
would like to reduce them with a limited
precision to get an overall faster reduction.

The analysis of [55] bounds the number of rounds, and reaches a complexity in
d3C1+o(1) with exact arithmetic (C is the log of the condition number), while the
non-optimized algorithm [35] uses Ω(d3 logC) local reductions. Consequently, to
decrease the complexity of the reduction, we have to reduce the precision in the
local operations. The justification of this fact comes from that in practice, the
values ofR[i, i] decrease roughly exponentially in i both in the input and the out-
put matrices. To define our heuristic, we rely on the notion of slope of the basis,
which is the opposite of the slope of the linear regression of the log of the norm
the Gram-Schmidt vectors. Under the Geometric Series Assumption (GSA), this
corresponds to the usual geometric decay factor. Heuristic 1 says that we reduce
the slope, i.e. the logarithm potential Π(B) =

∑d
i=1(d − i) log(Ri,i). We con-

sider that we have access to an oracle which reduces with a slope parameter of
α, namely R[i, i]/R[i + 1, i + 1] ≈ 22α. The matrix returned will have a slope
parameter of (1 + ε)α for 0 < ε < 1/2.

Heuristic 1 If ρ is even, and ρ
2 (2D − 1) > D3, then the slope decreases expo-

nentially quickly towards (1 + ε)α, with rate 1−O
(

1
D2

)
.

Remark 2. For a smaller ρ, we would have several leaves in the recursion tree,
which would be negligible compared to d3, making it unlikely to reduce the
lattice by a significant amount. These values come from an heuristic analysis.

Figure 3 shows the evolution of the slope on a lattice of dimension 1024 where
the phenomenon is observable. heuristic 1 has been tested on various types of
lattices (Knapsacks, NTRU-like) in dimensions from 128 to 2048 without failing.

4.2 On the choice of the relaxation parameter ε and its relation to
the global complexity

To finely tune our parameters, we need to estimate the decrease of the potential
at each recursive call. Using heuristic 1 at any moment in the recursion, when
called with a lattice of rank d and working precision p = log

maxiRi,i

miniRi,i
, such that

d/2∏
i=1

Ri,i > 2(1+ε)αd
2/2

d∏
i=d/2+1

Ri,i, (condition)

the output basis has a log-potential reduced by at least Ω(d2pε). Calling a recur-
sive reduction only when the condition is fulfilled allows the callee to reduce the
slope by a factor of roughly 1+ε. If this is actually done, the potential is reduced
by Ω(ε

(
d
D

)2
p′) where p′ is the precision used by the callee. The complexity of

the callee, if not already in a leaf, and outside of its recursive calls is in

O
(
D2

(
(d/D)ω(p′/w + 1) + (d/D)2p′

log p′

w

))
.

Towards faster polynomial-time lattice reduction 17

Keeping only the first term and assuming p′ > w, we get that the complexity
per unit reduction in potential should behave in

O
(
D2(d/D)ω−2w−1ε−1

)
.

This suggests minimizing D, so that we set D = 2 and ρ = 6; and also we
deduce that most of the complexity is at low-depth. While the global complexity
is minimized for D = 2, considering a larger D leads to better running time
when using multithreading (higher number of blocks can be treated in parallel).

If we write di and εi for their values at depth i, we obtain that the global
approximation factor is the one at the leaf multiplied by exp(

∑
i εi). Also, the

main term in the complexity is proportional to
∑
i d
ω−2
i ε−1i . Thus, we want εi

proportional to d1−ω/2i . If we want
∑
i εi = Θ(δ), we get

εi = δ(ω(d)− 2)(d/di)
1−ω(di)/2.

Summing the complexity at all depths, we see that the main term becomes:

O
(

dωC

w(ω − 2)2δ

)
for any δ = O

(
1

ω − 2

)
.

4.3 Using small-dimension fast enumeration in the leaves

Since almost all the complexity concentrates at low recursive depth, we can
allocate more time in the leaves of the recursion tree to improve the quality
of the reduction without altering much the global complexity. In practice, this
means stopping the recursion before reaching rank-2 sublattices and using a
stronger reduction process than lll on these (higher dimensional) leaves.

Some instances of stronger algorithms are the bkz-type family, which are
parameterized by a block size β, and have a complexity exponential in β [2].
This family includes Schnorr’s original bkz algorithm, Terminated-bkz with less
rounds [35], the self-dual bkz [53] or pressed-bkz [7]—which is particularly good
for low β. If the dimension at the leaf dl is significantly larger than β log β, the
famous Geometric Series Assumption states that the Gram-Schmidt norms of
the reduced basis are well approximated by a geometric series of rate 2Θ(

β
log β).

We can assume that the basis was already reduced with a constant slope 2α,
so that the potential will overall decrease only by O

(
d3
)
. At each leaf, we can

use a constant εl−1 and thus expect the log-potential to decrease by at least
Ω(d3l

log β
β). The number of calls is therefore

O
(

d3β

d3l log β

)
= O

(
d3

β2

)
so we can choose any β smaller than Ω((ω − 2) logC).

18 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

4.4 Complexity estimation

The sketch of analysis conducted previously let us conjecture that the complexity
should have a dominant term in dωC. We plot the single-thread running time on
lattices with dimension d = 2n generated by the columns of the following matrix(

qIdn A
0 Idn

)
with A sampled uniformly modulo q, and C = log(q) ≈ n4k−1 for k from 0
(green) to 3 (blue). The slope of the reduced matrix is 2α ≈ 0.065 (RHF=
20.032 = 1.02).

7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fig. 4: Log-Log representation of the run-
ning time (in seconds) for increasing dimen-
sion, with constant C/d on each line.

To confirm this hypothesis, we
perform a linear regression on the
log/log data of the running time
in function of the input dimension
(ranging from 128 to 2048). The
regression reveals a slope of 3.5,
that is a complexity in O

(
d2.5C

)
as C is linear in d. Given the
noise generated by the inherent
complexity of the program, its li-
braries, and the complex proces-
sor architecture, this experiment
seems to validate our conjectural
complexity. Each line corresponds
to experiments made with matri-
ces with bitsize bounded by (di-
mension K) [from green (lower)
line with K = 1/4 to blue (upper) line K = 16]. We propose the following
complexity for our algorithm, using the small bkz-enumeration in the leaves.

Analysis 1 Let A be a matrix of dimension d with integer entries, with κ(A) 6
2C such that C > d/ log d. Reduce(A) returns the transformation matrix to a
basis of AZd having its first vector of norm bounded by

max
(√

d, 2O(d(ω−2) log logC
logC)

)
volA

1
d

Further, the heuristic running time is

O
(
dω · C

(ω − 2)2 logC
+ d2C logC +

d2C

(ω − 2)2

)
.

Remark 3. The values come from a heuristic analysis that we do not develop.

• In practice, the entire basis is reduced at the end of the algorithm (as lll
algorithm gives a reduced basis with controlled decay of the Gram-Schmidt).

Towards faster polynomial-time lattice reduction 19

• When ω is bounded away from 2, and C is not extremely large (C = 2o(d)),
the complexity simplifies to O

(
dω · C

logC

)
.

• It is better to first reduce with a large δ (say min(log(C/d), 1
ω−2)), and

progressively reduce the slope by decreasing δ by a constant, so that the
precision used is exponentially decreasing. For C > d21/(ω−2), we obtain a
heuristic complexity of:

O
(
dω · C

(ω − 2) logC
+ d2C logC

)
.

• The dependency in the second term of the complexity (term in d2C logC)
comes as a direct consequence of the complexity of the Schonhäge algorithm.

The implementation mixes multiple machine representation as it needs to
manage efficiently both large and small matrices, with a large range in bit-
sizes. On the one hand, the “large matrices”, e.g. with of dimension greater than
80 and of coefficient represented on few hundreds bits, are represented in the
Fourier domain, that is to say by a collection of complex matrices, one for each
evaluation point. The complex matrices are with double-precision floating-point
coordinates. Large integers are transformed into polynomials, with between 14
and 16 bits per coefficient.

On the other hand, small matrices (dimension lower than 80) and with small
bitsize are represented with an array of MPFR values [27]. A reduction of small
matrix with at most 300 bits is computed by repeatedly reducing matrices with
at most 39 bits, which are in turned reduced using blocks of dimension 12. These
matrices of dimension 12 and with at most 20 bits are reduced with the quadratic
L2 [57] procedure.

Finally, matrices where p is small (around 30) and dimension up to 400
are treated in double precision, thanks to the use of the Householder QR-
decomposition and the Seysen size-reduction.

5 Reduction of structured knapsack-like

In this section, we present a progressive strategy to provably speed-up the reduc-
tion of almost triangular matrices. Combined with the reduction of section 3, it
gives a heuristic reduction process which estimated running time is essentially
a O

(
dω−1 C

logC + Cd log d
)
. The general idea is that a knapsack-like matrix of

dimension d and with log condition number C can be reduced as quickly as a
matrix of dimension d and condition number 2C/d. As this effect was already
known for some algorithms like fplll [68, 1.5.3], noted [56], and used in [72], we
aim at giving a general framework to encompass this observation.

5.1 Setting

Definition 4 (Almost triangular matrix). A matrix B with d columns and
O(d) rows is said to be (asymptotically) almost triangular if Bi,j = 0 for any
i > O(j), with a uniform constant.

20 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

In order to analyze our strategy we also require the matrices to be well
conditioned in the following sense:

Definition 5 (Knapsack-like matrix). Let B ∈ Zd×d be an almost triangu-
lar matrix and set C > d2 such that λk(C) 6 2C/k, for all matrices C whose
columns are a subset of those of B of dimension k. Set R to be the R-factor of
the QR-decomposition of B. We say that B is C−knapsack-like if furthermore
‖R−1‖ 6 2C/d and |Ri,j | 6 2C/i for all i, j.

Remark 4. The conditions detailed in the previous definition seems apparently
strong but such matrices are actually widespread, as corresponding to generic
instances of so-called knapsack problems or searching integer relations. In prac-
tice, one can easily computationally check that these matrices, as well as Hermite
Normal Form matrices with decreasing round pivots verify the assumptions with
a reasonably small B.

5.2 Iterative reduction strategy

Hypothesis 1 In all of the following suppose that we have access to a lattice
reduction oracle red-Oracle, whose output is a transition matrix to a Siegel-
reduced and size-reduced basis. Its running time on a d× d matrix of condition
number bounded by C is denoted by T (d,C).

The progressive reduction consists in reducing the first k = 2i columns of B,
for all successive powers of two until reaching d. At step 1 6 i 6 blog dc, we use
the—now reduced—first k vectors to size-reduce the remaining columns before
concatenating them to the current basis and pursuing the reduction. Hence, the
bitsize of the whole matrix is reduced for each i before being actively used in
the lattice reduction oracle red-Oracle.

Formally, define inductively a family of matrices Bi which represents the
state of the matrix B computed in the i-th iteration.

Initialization: B0 = B.
Induction: Let i > 0, and suppose that Bi is known. We start by reducing

only the first k = 2i vectors using red-Oracle of Bi and denote by B′i
the result. Define QiRi to be the QR-decomposition of B′i[: 1, k]. Then,
remark that for any x being a column of B′i not in the span of B′i[: 1, k],
we can reduce its bitsize by replacing it by x−B′jbR

−1
j QT

j xe for increasing
1 6 j 6 k. Such a size-reduction can be computed on all the columns
of Bi[k + 1 : d] simultaneously using a single matrix multiplication and
call C the corresponding vectors. Eventually set Bi+1 to the concatenation[
B′[: 1, k] | C

]
.

The corresponding pseudo-code is given in algorithm 8.

Towards faster polynomial-time lattice reduction 21

Algorithm 8 — Reduction of Knapsack-like lattices

Parameter : Reduction oracle red-Oracle
Input : Matrix B ∈ Zd×d

Output : A reduced basis of BZ

1 k, i ← 1, 0

2 B0 ← B

3 while k < d do
4 k ← 2k; i ← i + 1

5 Bi [: 1, k]← Bi−1[: 1, k]·red-Oracle(Bi−1[: 1, k])

6 Ri ← Block-Cholesky(Bi [: 1, k]TB[: 1, k])

7 Qi ← Bi [: 1, k] · R−1i

8 Bi+1[1 : k, k + 1 : d]← Bi [1 : k, k + 1 : d]−
9 Bi ·

⌊
R−1i ·QT

i · Bi [1 : k, k + 1 : d]
⌉

10 end while

5.3 Complexity analysis

We now present the complexity analysis of the algorithm presented, under the
hypothesis made on the lattice reduction oracle. For readability, we defer the
proof to the full version. The following lemma entails that the condition number
of the input of the reduction oracle is sufficiently small.

Lemma 2. Let B a rank d almost triangular matrix which is C-knapsack-like.
For any index 0 6 i 6 dlog de, set Bi to be the matrix computed by the execution
of algorithm 8 on B. Denote by QiRi = Bi[, 1 : 2i] the QR-decomposition of the
matrix of 2i first columns of Bi. We get ‖Ri‖, ‖R−1i ‖ = 2O(d+C2−i) for all i.

From this we have:

Theorem 3. Let B a rank d almost triangular matrix which is C-well condi-
tioned, C > d2. We can Siegel-reduce it in time

O

(
log d∑
i=1

T (2i,O
(
C2−i

)
) +

dω−1

ω − 2
· C

logC
+ dC log d

)
.

Remark 5. • One can use such a procedure to quickly search a putative mini-
mal polynomial; the knapsack-like condition is however not guaranteed.

• The setting of theorem 3 includes both modular and integer knapsacks.
• Assuming algorithm of section 3 has heuristically the right properties (which

is the case in all of our extensive experiments), the complexity of the reduc-
tion of knapsack like matrices then becomes:

O
(

dω−1

(ω − 2)2
· C

logC
+ dC logC

)
.

22 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

6 Applications

Lattice reduction algorithms have numerous applications in mathematics and
computer science. We survey here the impact of the implementation our al-
gorithm, starting with cryptanalysis. In particular, we can reduce lattices of
dimension in the thousands and with millions of bits. We recall that the Gram-
Schmidt norms in the output basis are expected to decrease geometrically with
rate 22α so that the Hermite factor in dimension d is 2αd.

For all the presented experiments, we use an Intel CPU E5-2695 v4 with 18
cores running at 2.10GHz processors; and 768 GiB of RAM. Some SSD swap was
slightly used in the largest computation. For comparison with older timings, we
used a machine with an Intel i7-8650U with 4 cores at 1.9 GHz. The program was
compiled with Intel’s libraries and compiler with the standard -Ofast low-level
optimization flag.

6.1 Comparison with state of the art

We start this section by a comparison with the state-of-the-art implementation
of fplll. Its complexity is O

(
d4B2

)
in the general case, and its heuristic complex-

ity4 is O
(
d2B2

)
for knapsack matrices, as reported in [68, 1.5.3]. When d > 220,

its practical efficiency drops sharply due to the need of multiprecision compu-
tations. The following table presents a running time comparison with fplll, in
single-threaded mode, on classical types of lattices namely knapsack and NTRU
matrices. On the all instances, our implementation is sensibly faster than fplll.

Type Dimension d Bitsize B fplll This work

128 100 000 88 min 6 min

256 10 000 134 min 4 minKnapsack

384 10 000 388 min 13 min

256 80 24 min 3 min

384 70 431 min 10 minNTRU

512 70 1392 min 33 min

6.2 Fully Homomorphic Encryption over the integers

FHE scheme was first designed by Gentry [33] using number theoretical tools in
2009. Soon after, an equivalent system was presented, using only integer arith-
metic [70], and is based on a distant relative [17] of the celebrated Learning
4 This estimation comes from the observation that dB swaps are performed, each
taking d2 operations on B/d bits. There are B/d reduction steps for each new vector,
each takes d2 operations on B bits.

Towards faster polynomial-time lattice reduction 23

With Error (lwe) problem in dimension one. More precisely, given an integer
secret |s| 6 2η (typically a prime), this problem aims at retrieving s from given
samples xi of the form ais+ ei where 0 6 ai 6 2γ/|s| and |ei| 6 2ρ are sampled
uniformly and independently. The parameters verify γ � η � ρ.

A natural lattice reduction attack consists in collecting d samples x = (xi)16i6d

and building the matrix X =

(
x1, . . . ,xd

Idd

)
. The volume of the lattice X spanned

by the columns of X is
√
1 +

∑d
i=1 x

2
i ≈ 2γ . Hence, lattice reduction with root

Hermite factor 2α can be used to construct a non-zero vector y ∈ Zd such that
‖y‖, |〈x, y〉| 6 2γ/d+αd. Indeed, any vector in this lattice is of the form (〈x, y〉, y),
so that its squared norm is the sum of two contributions: ‖y‖2+ |〈x, y〉|2. It now
suffices to remark that norm of a vector found by reduction is smaller than the
normalized covolume 2γ/d times the root Hermite factor 2αd.

By plugging back the definition of the (xi), we have 〈x, y〉 = s〈a, y〉 + 〈e, y〉
where a = (a1, . . . , ad), e = (e1, . . . , ed). Assuming 2γ/d+αd 6 2η−ρ/

√
d, the

Cauchy-Schwarz inequality implies that 〈a, y〉 = 0. This is enough to break the
scheme; if the (d − 1) first vectors of the basis have this length, then the last
one must be proportional to a (and is ±a if the entries are coprime). The first
d − 1 first vectors are orthogonal to a and are independent, so the last one
must be proportional to a since a is in the lattice orthogonal to these vectors.
The optimal d – for maximizing α – is therefore close to

√
γ/α, leading to the

condition α 6 (η−ρ)2
4γ .

A part of the original paper [70] considers security against polynomial-time
adversaries, so that they obtain the condition γ = ω(η2 log λ) for a “security
parameter” of λ. Another part of the original paper [70, Section 6.3], and almost
all follow-ups [24,25,22,15,21,23], consider however security against adversaries
able to do 2λ operations. However, the condition was copied without change,
which possibly explains why a large α was chosen in several implementations5.

As the lattice reduction algorithm can easily reach α = 0.04, this means we
can use a smaller d, close to γ

η−ρ for many instances than the d in the table,
which is the dimension where α is maximal. In the instance where γ = 1.02 · 106
and η − ρ = 376, we used d = 3600 so that α = 0.024 was needed, and we used
a pressed-bkz-19 in the leaves. This choice was made due to memory concerns.

While the large problems are clearly quite difficult, even the largest instances
of the table seem to be within range of (motivated!) academic attackers, with
terabytes of SSD memory and perhaps around 265 flop.

6.3 Overstretched NTRU

It is well-known since the work of Albrecht et al. [4], Cheon et al. [16] and
Kirchner and Fouque [43] that an NTRU scheme with a very large modulus q
compared to the dimension of the lattice is prone to attacks. However, these
cases often happen in NTRU-based Homomorphic encryption schemes such as
5 Surprisingly, many log λ were “rounded up” to λ in the parameter choices.

24 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

Scheme λ γ/106 η − ρ α d Algorithm Running time

42 0.16 1072 1.8 299 LLL 5 min

52 0.86 1608 0.75 1070 LLL 55 min

62 4.2 2144 0.273 3918 LLL 1030 min
[24]

72 19 2613 0.089 14543 LLL -

42 0.061 322 0.43 379 LLL 3 min

52 0.27 370 0.12 1460 LLL 29 min

62 1.02 376 0.0347 5426 LLL 27 hours
[25]

72 2.2 420 0.02 10476 BKZ-20 -

42 0.27 929 0.8 290 LLL 13 min

52 1.1 924 0.2 2380 LLL 176 min[22]

62 4.2 919 0.051 9140 LLL -

52 0.9 1517 0.64 1186 LLL 74 min

62 4.6 2072 0.24 4440 LLL 1382 min[15]

72 21 2627 0.082 15988 LLL -

52 1 1797 0.82 1104 LLL 67 min

62 4.26 1987 0.24 4288 LLL 1322 min

72 18.7 2189 0.0643 17043 LLL -
[21]

80 63.7 2353 0.0218 54117 BKZ-20 -

Table 1: Examples of schemes attacked, and corresponding reduction algorithm
required to break.

YASHE [12] or LTV schemes. In 2019, a homomorphic scheme has been proposed
by Genise et al. [31] with a similar variant of this problem, hoping that the
overstretched NTRU only works in algebraic setting using ring of polynomials.
Some parameters proposed for performances evaluations have been broken in [49]
also showing that the assumptions used is flawed. Here, we break comparable
parameters showing that the proposed parameters only achieve a low security
level. In [59], Pataki and Tural showed that the volume of any r-dimensional
sublattice L′ of a lattice L is larger than the product of the r smaller Gram-
Schmidt. Kirchner and Fouque combined this result with the fact that in any
2d-dimensional NTRU lattices, there is a sublattice of dimension d and volume
roughly the size of secret-key to the power d, one can deduce that if the volume

Towards faster polynomial-time lattice reduction 25

of the secret key sublattice is of size about the product of the d smaller Gram-
Schmidt, it is possible to recover the secret key.

The optimal d is around log(q)
4α , which corresponds to a volume close to

2log(q)
2/16α. The scheme of [31] chooses entries in F,G as integer Gaussians

of standard deviation σ =
√
r/π where r is the dimension of their lattice.

We can restrict the lattice reduction to the middle 2d square matrix, but the
volume is conserved. A more precise estimate consists in using the volume of
the sublattice, projected orthogonally to the first r vectors of the reduced ba-
sis [43]. We expect the i-th Gram-Schmidt norm of the projected basis to be
around

√
r + 1− iσ, so that the volume can be computed with Stirling’s formula(∏r

i=1(r + 1 − i)σ2

)1/2

≈

(
√
rσ√
e

)r
. Overall we obtain 2log(q)

2/16α ≈
(

r√
πe

)r
,

from which we can find the α required. The first one necessitates roughly 220 calls

Dimension r log q α Effective dimension Algorithm Time

1024 42 0.01274 1648 BKZ-101 -

4096 111 0.01799 3086 BKZ-25 233 hours

32768 883 0.1105 2560 LLL 263 min

Table 2: Experiments for overstretched NTRU problems. Dimension is the actual di-
mension of the problem, and effective dimension refers to the dimension required in
practice to mount the attack.

to a SVP in dimension 101, and each call currently needs 211 core-seconds [6],
this translates into a year of computation on our machine. Alternatively, each
call can be computed in 22 seconds with a GPU [26]. A pressed-bkz of dimension
29 was used for the second one.

6.4 Miscellaneous

Integral relations Another use of lattice reduction is the discovery small lin-
ear integer relation between reals. It actually corresponds to the setting of sec-
tion 6.2, where 2η corresponds the norm of the relation, and γ the precision used
to represent the reals. Then clearly, γ ≈ dη+ d2α is enough to perform a search
by reduction. In 2001, Bailey and Broadhurst believed [8] that their computation
with γ ≈ 166000 and d = 110 was the largest performed. It took 44 hours, on
32 CPUs of a Cray-T3E (300 MHz). We report this takes 5 minutes on a lap-
top, or 600 times fewer cycles. As the task is identical (for large α) to breaking
the integer homomorphic schemes, the running time for bigger examples can be
found in the previous subsections.

26 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

Univariate polynomial factorization Yet another application is factoring
univariate polynomials [71,10] over the integers. The first step is to factor modulo
some prime, and the number of factors n is the dimension of the modular vectorial
knapsack we have to solve, namely we have to find very short vectors in the

lattice generated by
(
qIdr A
0 Idn

)
. The precision q, and number of coordinates

r can essentially be freely chosen. For random polynomials, n is typically very
small (e.g. logarithmic) and lattice reduction is not the bottleneck; but it can
be as large as half the degree. Our choice is to take r small, say n/ log n, and
then r log q ≈ αn2 allows (heuristically) to obtain the last Gram-Schmidt norms
larger than n2. Then, this restricts the solutions of the knapsack – known to be
shorter than this – to the first few vectors of the reduced basis. At this point,
one can recover the factors, and prove that they are irreducible. Taking n = 256,
we get a solution in two minutes on one core of our laptop instead of ten with a
1 GHz Athlon [9]; for n = 512 it takes 25 minutes instead of 500. For ω bounded
away from 2, with α = O

(
log logn
logn

)
the heuristic asymptotical complexity is

O
(
nω+1 log log n

log2 n

)
.

7 Conclusion and open questions

In this work, we introduced a recursive lattice reduction algorithm, whose heuris-
tic complexity is equivalent to a few matrix multiplications. This algorithm and
the heuristics used to complete the complexity analysis have been thoroughly
tested and applied to reduce lattices of very large dimension. The implementa-
tion takes advantage of fast matrix multiplications, and fast Fourier transforms.

This work raises several questions. First of all, the analysis we are making is
so far heuristic and empirical. It is possible to get a provable result by mitigat-
ing the complexity, in particular it seems difficult to be able to formally prove
the heuristic on the decrease of the needed precision, even though this fact is
easily checkable in practice. Reaching a provable bound in dωC is an open and
interesting problem, and our algorithm is a first step in this direction.

Acknowledgement

This work was supported by the European Union PROMETHEUS project (Hori-
zon 2020 Research and Innovation Program, grant 780701). Paul Kirchner is
partly funded by the Direction Générale de l’Armement (Pôle de Recherche
CYBER).

References

1. D. Aggarwal, J. Li, P. Q. Nguyen, and N. Stephens-Davidowitz. Slide reduction,
revisited - filling the gaps in SVP approximation. In D. Micciancio and T. Risten-
part, editors, CRYPTO 2020, Part II, volume 12171 of LNCS.

Towards faster polynomial-time lattice reduction 27

2. A. Becker, L. Ducas, N. Gama, and T. Laarhoven. New directions in nearest
neighbor searching with applications to lattice sieving. SODA 2016, pages 10–24.

3. M. Albrecht, S. Bai, D. Cadé, X. Pujol, and D. Stehlé. fplll-5.0, a floating-point
LLL implementation. Available at http://perso.ens-lyon.fr/damien.stehle, 2017.

4. M. R. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on overstretched
NTRU assumptions - cryptanalysis of some FHE and graded encoding schemes. In
M. Robshaw and J. Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 153–178.

5. M. R. Albrecht, S. Bai, P.-A. Fouque, P. Kirchner, D. Stehlé, and W. Wen. Faster
enumeration-based lattice reduction: Root hermite factor k1/(2k) time kk/8+o(k). In
D. Micciancio and T. Ristenpart, editors, CRYPTO 2020, Part II, volume 12171
of LNCS, pages 186–212.

6. M. R. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E. W. Postlethwaite, and
M. Stevens. The General Sieve Kernel and New Records in Lattice Reduction. In
Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 717–746.

7. S. Bai, D. Stehlé, and W. Wen. Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. In T. Peyrin and S. Galbraith, editors, ASI-
ACRYPT 2018, Part I, volume 11272 of LNCS, pages 369–404.

8. D. Bailey and D. Broadhurst. Parallel integer relation detection: Techniques and
applications. Mathematics of Computation, 70(236):1719–1736, 2001.

9. K. Belabas. A relative van Hoeij algorithm over number fields. Journal of Symbolic
Computation, 37(5):641–668, 2004.

10. K. Belabas, M. van Hoeij, J. Klüners, and A. Steel. Factoring polynomials over
global fields. Journal de théorie des nombres de Bordeaux, 21(1):15–39, 2009.

11. J. Bi, J.-S. Coron, J.-C. Faugère, P. Q. Nguyen, G. Renault, and R. Zeitoun.
Rounding and chaining LLL: Finding faster small roots of univariate polynomial
congruences. In H. Krawczyk, editor PKC 2014, volume 8383 LNCS.

12. J. W. Bos, K. E. Lauter, J. Loftus, and M. Naehrig. Improved Security for a
Ring-Based Fully Homomorphic Encryption Scheme. In IMACC, pages 45–64,
2013.

13. J. A. Buchmann. Reducing lattice bases by means of approximations. In L. M.
Adleman and M. A. Huang, editors, ANTS-I, volume 877 of LNCS, pages 160–168.
1994.

14. Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In D. H.
Lee and X. Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 1–20.

15. J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and A. Yun.
Batch fully homomorphic encryption over the integers. In T. Johansson and P. Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 315–335.

16. J. H. Cheon, M. Hhan, and C. Lee. Cryptanalysis of middle lattice on the over-
stretched NTRU problem for general modulus polynomial. Cryptology ePrint
Archive, Report 2017/484, 2017. http://eprint.iacr.org/2017/484.

17. J. H. Cheon and D. Stehlé. Fully homomorphic encryption over the integers revis-
ited. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part I, volume
9056 of LNCS, pages 513–536, 2015.

18. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag
New York, Inc., New York, NY, USA, 1993.

19. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

20. D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In W. Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 52–61. May 1997.

http://perso.ens-lyon.fr/damien.stehle
http://eprint.iacr.org/2017/484

28 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

21. J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical multilinear maps over the
integers. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 476–493, 2013.

22. J.-S. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic
encryption over the integers. In H. Krawczyk, editor, PKC 2014, volume 8383 of
LNCS, pages 311–328, 2014.

23. J.-S. Coron, T. Lepoint, and M. Tibouchi. New multilinear maps over the integers.
In R. Gennaro and M. J. B. Robshaw, editors, CRYPTO 2015, Part I, volume
9215 of LNCS, pages 267–286, 2015.

24. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic
encryption over the integers with shorter public keys. In P. Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 487–504, 2011.

25. J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In D. Pointcheval
and T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 446–
464, 2012.

26. L. Ducas, M. Stevens, and W. van Woerden. Advanced lattice sieving on GPUs,
with tensor cores. Cryptology ePrint Archive, Report 2021/141, 2021. https:
//eprint.iacr.org/2021/141.

27. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software (TOMS), 33(2):13, 2007.

28. A. M. Frieze, R. Kannan, and J. C. Lagarias. Linear congruential generators do
not produce random sequences. In 25th FOCS, pages 480–484. IEEE Computer
Society Press.

29. N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell’s inequal-
ity. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 207–216.

30. N. Gama, P. Q. Nguyen, and O. Regev. Lattice enumeration using extreme pruning.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 257–278.

31. N. Genise, C. Gentry, S. Halevi, B. Li, and D. Micciancio. Homomorphic encryption
for finite automata. In S. D. Galbraith and S. Moriai, editors, ASIACRYPT 2019,
Part II, volume 11922 of LNCS, pages 473–502.

32. C. Gentry. Key recovery and message attacks on NTRU-composite. In B. Pfitz-
mann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 182–194.

33. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press.

34. G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, third edition, 1996.

35. G. Hanrot, X. Pujol, and D. Stehlé. Analyzing blockwise lattice algorithms using
dynamical systems. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 447–464.

36. G. Hanrot, X. Pujol, and D. Stehlé. Terminating BKZ. Cryptology ePrint Archive,
Report 2011/198, 2011. http://eprint.iacr.org/2011/198.

37. J. Håstad, B. Just, J. C. Lagarias, and C. Schnorr. Polynomial time algorithms for
finding integer relations among real numbers. SIAM J. Comput., 18(5):859–881,
1989.

38. C. Heckler and L. Thiele. Complexity analysis of a parallel lattice basis reduction
algorithm. SIAM Journal on Computing, 27(5):1295–1302, 1998.

39. N. J. Higham. Accuracy and stability of numerical algorithms, volume 80. Siam,
2002.

https://eprint.iacr.org/2021/141
https://eprint.iacr.org/2021/141
http://eprint.iacr.org/2011/198

Towards faster polynomial-time lattice reduction 29

40. A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal
of Cryptology, 11(3):161–185.

41. P. Kirchner, T. Espitau, and P.-A. Fouque. Fast reduction of algebraic lattices over
cyclotomic fields. In D. Micciancio and T. Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 155–185.

42. P. Kirchner, T. Espitau and P.-A. Fouque. Algebraic and Euclidean Lattices: Opti-
mal Lattice Reduction and Beyond. Cryptology ePrint Archive, Report 2019/1436,
2019. https://eprint.iacr.org/2019/1436.

43. P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched NTRU
parameters. In J.-S. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 3–26.

44. H. Koy and C. Schnorr. Segment LLL-reduction of lattice bases. In J. H. Silverman,
editor, Cryptography and Lattices, International Conference, CaLC 2001, volume
2146 of LNCS, pages 67–80. 2001.

45. J. C. Lagarias. The computational complexity of simultaneous diophantine ap-
proximation problems. In 23rd FOCS, pages 32–39. IEEE Comp. Soc. Press. 1982.

46. J. C. Lagarias. Knapsack public key cryptosystems and diophantine approximation.
In D. Chaum, editor, CRYPTO’83, pages 3–23. Plenum Press, New York, USA.

47. J. C. Lagarias, H. W. L. Jr., and C. Schnorr. Korkin-Zolotarev bases and successive
minima of a lattice and its reciprocal lattice. Comb., 10(4):333–348, 1990.

48. J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. In
24th FOCS, pages 1–10. IEEE Computer Society Press, Nov. 1983.

49. C. Lee and A. Wallet. Lattice analysis on MiNTRU problem. Cryptology ePrint
Archive, Report 2020/230, 2020. https://eprint.iacr.org/2020/230.

50. A. K. Lenstra, H. W. J. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982.

51. G. Maze. Some inequalities related to the Seysen measure of a lattice, 2010.
52. K. Mehlhorn and P. Sanders. Algorithms and data structures: The basic toolbox.

Springer Science & Business Media, 2008.
53. D. Micciancio and M. Walter. Practical, predictable lattice basis reduction. In

M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume 9665 of
LNCS, pages 820–849.

54. N. Möller. On Schönhage’s Algorithm and Subquadratic Integer GCD Computa-
tion. Mathematics of Computation, 77(261):589–607, 2008.

55. A. Neumaier and D. Stehlé. Faster LLL-type Reduction of Lattice Bases. In
ISSAC, pages 373–380, 2016.

56. P. Q. Nguyen and D. Stehlé. LLL on the average. In F. Hess, S. Pauli, and M. E.
Pohst, editors, ANTS, volume 4076 of LNCS, pages 238–256. 2006.

57. P. Q. Nguyen and D. Stehlé. An LLL algorithm with quadratic complexity. SIAM
J. Comput., 39(3):874–903, 2009.

58. A. Novocin, D. Stehlé, and G. Villard. An LLL-reduction algorithm with quasi-
linear time complexity. In 43rd STOC, pages 403–412. ACM, 2011.

59. G. Pataki and M. Tural. Lattice determinants in reduced bases. Arxiv:0804.4014,
2008. https://arxiv.org/abs/0804.4014.

60. A. Pellet-Mary, G. Hanrot, and D. Stehlé. Approx-SVP in ideal lattices with
pre-processing. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 685–716.

61. Saruchi, I. Morel, D. Stehlé, and G. Villard. LLL reducing with the most significant
bits. In K. Nabeshima, K. Nagasaka, F. Winkler, and Á. Szántó, editors, ISSAC,
pages 367–374. ACM, 2014.

https://eprint.iacr.org/2019/1436
https://eprint.iacr.org/2020/230
https://arxiv.org/abs/0804.4014

30 Paul Kirchner, Thomas Espitau, and Pierre-Alain Fouque

62. C. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.
Theor. Comput. Sci., 53:201–224, 1987.

63. C. Schnorr. A more efficient algorithm for lattice basis reduction. J. Algorithms,
9(1):47–62, 1988.

64. C. Schnorr. Block reduced lattice bases and successive minima. Comb. Probab.
Comput., 3:507–522, 1994.

65. A. Schönhage. Factorization of univariate integer polynomials by diophantine
aproximation and an improved basis reduction algorithm. In J. Paredaens, edi-
tor, ICALP, volume 172 of LNCS, pages 436–447. 1984.

66. A. Schönhage. Fast Reduction and Composition of Binary Quadratic Forms. In
ISSAC, pages 128–133, ACM, 1991.

67. M. Seysen. Simultaneous reduction of a lattice basis and its reciprocal basis.
Combinatorica, 13(3):363–376, 1993.

68. D. Stehlé. Floating-point LLL: theoretical and practical aspects. In The LLL
Algorithm, pages 179–213. 2009.

69. J. Stern. Secret linear congruential generators are not cryptographically secure. In
28th FOCS, pages 421–426. IEEE Computer Society Press, Oct. 1987.

70. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In H. Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 24–43.

71. M. Van Hoeij. Factoring polynomials and the knapsack problem. Journal of Num-
ber theory, 95(2):167–189, 2002.

72. M. van Hoeij and A. Novocin. Gradual sub-lattice reduction and a new complexity
for factoring polynomials. In LATIN, volume 6034 of LNCS, pages 539–553. 2010.

73. G. Villard. Parallel Lattice Basis Reduction. In ISSAC, pages 269–277, 1992.

A Proof of Theorem 2

Proof. We use a precision p′ = O
(
p+ log(d)2

)
= O(p). We prove by induction

on d that ‖TU‖, ‖(TU)−1‖ 6 ddlog de. Initialization is clear, so that we now
assume that d > 1. We have by direct computation that TU is(

AU1 CU2 −AU1W
0 DU2

)
.

The top-right matrix is AU1((AU1)
−1CU2 −W) and we have, by setting that

A′ − (AU1)
−1 = δA:

‖(AU1)
−1CU2 −W‖ 6 ‖δACU2‖+ ‖A′CU2 −W‖.

The first term is bounded by 2O(p)‖δA‖ and the second by 2d/3. We choose the
precision so that the first term is at most 1/3 and the result follows directly, as
‖AU1‖, ‖CU2‖ 6 ddlog de−1.

Next, the matrix (TU)−1 is equal to(
(AU1)

−1 −(AU1)
−1(CU2 −AU1W)(DU2)

−1

0 (DU2)
−1

)
.

The top-right matrix is ((AU1)
−1CU2 −W)(DU2)

−1. The first term was al-
ready bounded above by d, and ‖(DU2)

−1‖ 6 ddlog de−1 and this gives the result.
Finally, we have ‖U‖ = ‖T−1TU‖ 6 ‖T−1‖‖TU‖ 6 2pddlog de.

Towards faster polynomial-time lattice reduction 31

Remark 6. It is mandatory to have T well-conditioned if we want a U which is
not much larger than T. This is also true for other variants of lll (including
fplll): outputting the transition matrix may lead to a slow-down by a factor of d.

	Towards faster polynomial-time lattice reduction

