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Well-Posedness of Minimization Problems in Contact Mechanics
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· Yi-bin Xiao1

Abstract

We consider an abstract minimization problem in reflexive Banach spaces together with

a specific family of approximating sets, constructed by perturbing the cost functional

and the set of constraints. For this problem, we state and prove various well-posedness

results in the sense of Tykhonov, under different assumptions on the data. The proofs

are based on arguments of lower semicontinuity, compactness and Mosco convergence

of sets. Our results are useful in the study of various mathematical models in contact

mechanics. To provide examples, we introduce 2 models, which describe the equilib-

rium of an elastic body in contact with a rigid body covered by a rigid-plastic and an

elastic material, respectively. The weak formulation of each model is in the form of a

minimization problem for the displacement field. We use our abstract well-posedness

results in the study of these minimization problems. In this way, we obtain existence,

uniqueness and convergence results, and moreover, we provide their mechanical inter-

pretations.
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1 Introduction

The equilibrium of elastic bodies in potential contact with an obstacle is described

by mathematical models, which consist of a system of partial differential equations

associated with unilateral constraints. The literature in the field includes the books

[1–8], among others. In a variational formulation, these elastic contact models are

expressed in terms of variational or hemivariational inequalities and, under additional

assumptions, in terms of minimization problems. Usually, the minimization problem

for an elastic model aims to find a displacement field, which minimizes an energy

functional on a constraint set of admissible displacement fields, where the energy

functional is related to the constitutive laws and the problem data, i.e. the density

of body force and surface traction, which act on the elastic body, and the friction

bound. The constraint set is constructed by using the nonpenetrability conditions and

could depend on the initial gap between the elastic body and the obstacle. The weak

solvability of the elastic contact model is provided by the existence of solutions to

the minimization problem. On the other hand, from mechanical point of view, it is

interesting to study the dependence of the solutions on the problem data, i.e. to compare

the solutions of the minimization problem with the solutions of its perturbed problem

with perturbed energy functional and perturbed constraint set.

A comparison of the solutions to the minimization problem and its perturbed prob-

lem, including strong and weak convergence results, can be made by using the concept

of well-posedness in the sense of Tykhonov introduced in [9] for a minimization prob-

lem. It is based on 2 main ingredients: the existence and uniqueness of the minimizer

and the convergence of any approximating sequence to the minimizer. Note that the

notion of approximating sequence depends on the choice of a specific family of sets,

the so-called approximating sets. Therefore, the concept of well-posedness in the sense

of Tykhonov, well-posedness for short, depends on this choice.

Following the pioneering work of Tykhonov, various concepts of well-posedness

have been generalized for different optimization problems, such as extended well-

posedness [10], Levitin–Polyak well-posedness [11] and generic well-posedness [12].

It is worth mentioning that the first basic criteria for well-posedness of optimization

problems in metric spaces were established by Furi and Vignoli in [13,14]. For more

details on well-posedness for optimization problems, we refer the readers to [15–

17]. Extension of the concept of well-posedness to variational inequalities, mixed

variational inequalities and hemivariational inequalities can be found in [18–26], for

instance. Recently, a general concept of well-posedness in the sense of Tykhonov for

abstract problems formulated on metric spaces was introduced in [27].

The aim of this paper is twofold. The first one is to study the well-posedness in

the sense of Tykhonov for the minimization problem in the abstract framework of

reflexive Banach spaces. To this end, we use a specific choice of approximating sets,

inspired by the perturbed minimization problem. We provide sufficient conditions

on the functional and the constraint set, which guarantee the weak and strong well-

posedness of the minimization problem, and its weak well-posedness in generalized

sense, too. To the best of our knowledge, this represents the first trait of novelty of the

current paper. The second aim is to illustrate how these abstract results can be used in

the study of contact problems with elastic materials. Our approach, based on Tykhonov
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well-posedness concept, provides mathematical tools to deduce convergence results

for various contact problems, which represents the second trait of novelty of our current

paper. In particular, the obtained results represent a nontrivial extension of some of our

previous results in [24,28,29], where the analysis of some new models, which describe

the equilibrium of an elastic body in contact with a foundation, has been carried out.

The model considered in [24] was frictionless and its variational formulation was in a

form of an elliptic variational inequality with unilateral constraints for the stress field.

The model considered in [28] was frictional, involved nonsmooth contact boundary

condition, and therefore, its variational formulation was in the form of an elliptic

variational–hemivariational inequality. Besides the unique solvability of the models,

we proved in [24,28] the continuous dependence of solutions with respect to the

data and discussed related optimal control problems, where we used arguments of

minimization and convergence for specific lower semicontinuous functionals defined

on particular Hilbert spaces. The corresponding proofs can be easily simplified by

using the results we present in Sect. 3 of this current paper, which concern general

functionals defined on abstract reflexive Banach spaces. We also stress that the contact

model considered in [28] was constructed with the Signorini condition, a regularization

of the Hencky elastic constitutive law, and was formulated in terms of the stress. The

convergence results obtained there represent continuous dependence of solutions with

respect to the data of the problem. In contrast, the contact model, which we present in

Sect. 4 of this paper, is based on a different constitutive law, different contact boundary

condition and leads to a minimization problem for the displacement field. Moreover,

the convergence results obtained here are different, since they involve the solution of a

regularized problem and are obtained by using Tykhonov well-posedness arguments.

The rest of the paper is structured as follows. In Sect. 2, we introduce the problem

statement together with some preliminary material. In Sect. 3, we state and prove our

main abstract results, Theorems 3.1 and 3.2. In Sect. 4, we introduce 2 mathematical

models, which describe the equilibrium of an elastic body in contact with a rigid

foundation covered by a rigid-plastic and an elastic material, respectively. Finally, in

Sect. 5, we use our abstract mathematical tools in the study of these contact models and

obtain existence, uniqueness and convergence results. We also provide the mechanical

interpretations of these results.

2 Problem Statement

Everywhere below X is assumed to be a reflexive Banach space, unless stated other-

wise. We use ‖ · ‖X and 0X for the norm and the zero element of X , respectively. All

the limits, upper and lower limits, below are considered as n → ∞, even if we do

not mention it explicitly. The symbols “⇀” and “→” denote the weak and the strong

convergence in the space X , respectively. Moreover, K is a nonempty subset of X

and J : X → R is a given functional. In this framework, we focus on the following

minimization problem, which is referred to as Problem P .
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Problem P Find u such that

u ∈ K , J (u) := min
v∈K

J (v). (1)

We denote in what follows by S the set of solutions to Problem P , i.e.

S =: { u ∈ K : J (u) ≤ J (v) ∀ v ∈ K }. (2)

In order to introduce the concept of well-posedness for Problem P , we consider a

family {Ω(ε)}ε>0 of nonempty subsets of X and we introduce the following definitions.

Definition 2.1 A sequence {un} ⊂ X is called an approximating sequence for Problem

P if there exists a sequence {εn} ⊂ R with εn > 0 and εn → 0 as n → ∞ such that

un ∈ Ω(εn) for each n ∈ N.

For simplicity, for any sequence {εn} satisfying the conditions of Definition 2.1, we

shall write 0 < εn → 0.

Definition 2.2 Problem P is said to be:

(a) strongly (weakly) well posed if it has a unique solution and every approximating

sequence for Problem P converges strongly (weakly) in X to the solution;

(b) strongly (weakly) well posed in generalized sense if it has at least one solu-

tion and every approximating sequence for Problem P contains a subsequence which

converges strongly (weakly) to some point of its solution set.

It follows from the definition above that, if Problem P is strongly well posed

(strongly well posed in generalized sense), then it is weakly well posed (weakly well

posed in generalized sense). Moreover, if it is strongly (weakly) well posed, then it is

strongly (weakly) well posed in generalized sense.

Note that the concepts of approximating sequence and well-posedness above depend

on the family {Ω(ε)}ε>0. For this reason, when necessary, we shall refer to them as

“well-posedness with respect to the family {Ω(ε)}ε>0” or “approximating sequence

with respect to the family {Ω(ε)}ε>0”. We now proceed with the following 2 examples.

Example 2.1 Let X be a Hilbert space, K := { v ∈ X : ‖v‖X ≤ k } with k > 0 and

PK : X → K be the projection map on the set K . We define the functional J : X → R

as follows

J (v) := ‖v − PK v‖X ∀ v ∈ X , (3)

and for each ε > 0, we let Ω(ε) := { v ∈ X : ‖v‖X ≤ k + ε }. With these notation,

we claim that Problem P is weakly well posed in generalized sense. Indeed, if {un}

is an approximating sequence, then Definition 2.1 implies that there exists a sequence

{εn} ⊂ R such that 0 < εn → 0 and ‖un‖X ≤ k +εn for each n ∈ N. This implies that

the sequence {un} is bounded, and therefore, there exist a subsequence, still denoted
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by {un}, and a point u ∈ X such that un⇀u in X . We now use the weak lower

semicontinuity of the norm to see that

‖u‖X ≤ lim inf ‖un‖X ≤ lim inf(k + εn) = k,

and therefore, we deduce that u ∈ K . On the other hand, it is easy to see that the set

of solutions of problem P with J defined by (3) is K and, therefore, u ∈ S. We now

use Definition 2.2(b) to deduce that Problem P is weakly well posed in generalized

sense. This problem is neither weakly well posed nor strongly well posed (in the sense

of Definition 2.2(a)) since, in general, its set of solutions is not a singleton.

Example 2.2 Let K := X , a ∈ X , J : X → R be the functional given by

J (v) := ‖v − a‖X ∀ v ∈ X , (4)

and for each ε > 0, we let Ω(ε) := { v ∈ X : ‖v − a‖X ≤ ε }. With these notation,

we claim that Problem P is strongly well posed. Indeed, let us first note that this

problem has a unique solution since S = {a}. Moreover, if {un} is an approximating

sequence, then Definition 2.1 shows that there exists a sequence {εn} ⊂ R such that

0 < εn → 0 and ‖un − a‖X ≤ εn for each n ∈ N. This implies that un → a. We now

use Definition 2.2(a) to deduce that Problem P is strongly well posed.

Next, recall that it was assumed in [27] that the inclusion

S ⊂ Ω(ε) (5)

holds for any ε > 0 and note that this inclusion is satisfied in Examples 2.1 and 2.2,

too. Based on this inclusion, a characterization for the well-posedness of Problem P

was obtained in [27], in terms of the metric properties of the sets Ω(ε). Nevertheless, in

what follows, we shall use a choice of the approximating sets, which does not guarantee

the inclusion (5). Therefore, the well-posedness of Problem P will be obtained by using

different arguments, which consists one of the traits of novelties of this paper. More

precisely, we consider a specific family of sets {Ω(ε)}ε>0 defined as follows: For each

ε > 0, we assume that Kε is a nonempty subset of X and Jε : X → R is a functional,

which represent the perturbations of the set K and the functional J , respectively. We

denote by Problem Pε the following minimization problem.

Problem Pε Find u such that

u ∈ Kε, Jε(u) := min
v∈Kε

Jε(v). (6)

Then, Ω(ε) represents the set of solutions of Problem Pε, i.e.

Ω(ε) := { u ∈ Kε : Jε(u) ≤ Jε(v) ∀ v ∈ Kε }. (7)

Our aim in what follows is to provide necessary and sufficient conditions, which

guarantee the well-posedness and the well-posedness in generalized sense of Problem
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P with respect to the family of sets {Ω(ε)}ε>0 defined by (7). To this end, we start by

consider the following assumptions.

(K1) K is a nonempty weakly closed subset of X .

(K2) K is a nonempty convex closed subset of X .

(J1)

⎧
⎨
⎩

J is a weakly lower semicontinuous functional, i.e.

for any sequence {un} ⊂ X such that un⇀u in X , one has

lim inf J (un) ≥ J (u).

(J2)

{
J is a coercive functional, i.e. for any sequence {un} ⊂ X

such that ‖un‖X → ∞, one has J (un) → ∞.

(J3)

⎧
⎨
⎩

J is a strictly convex functional, i.e.

(1 − t)J (u) + t J (v) − J ((1 − t)u + tv) > 0,

for all u, v ∈ X , u 
= v, t ∈ (0, 1).

Note that assumption (K2) implies assumption (K1). We end this preliminary

section with the following version of the Weierstrass theorem, which provides the

solvability and the unique solvability of Problem P .

Theorem 2.1 Let X be a reflexive Banach space. Then, the following statements hold.

(i) Under assumptions (K1), (J1) and (J2), there exists at least a solution to Problem

P , i.e. S 
= ∅.

(ii) Under assumptions (K2), (J1), (J2) and (J3), there exists a unique solution to

Problem P , i.e. S is a singleton.

Theorem 2.1 will be used in Sect. 3 to prove the solvability and the unique solvability

of Problems P and Pε. Its proof could be found in many books and survey, see, for

instance, [7,30,31].

3 Well-Posedness Results

In order to study the well-posedness of Problem P , we need the following additional

assumptions on the perturbed sets Kε and functionals Jε.

(K1ε) For each ε > 0, Kε is a nonempty weakly closed subset of X .

(J1ε)

{
Jε is a weakly lower semicontinuous functional, i.e.

it satisfies condition (J1), for each ε > 0.

(J2ε)

{
Jε is a coercive functional, i.e.

it satisfies condition (J2), for each ε > 0.

(J3ε)

{
For any sequence 0 < εn → 0 and any sequence

{un} ⊂ X such that ‖un‖X → ∞, one has Jεn (un) → ∞.

(J4ε)

{
For any sequence 0 < εn → 0 and any weakly convergent sequence

{un} ⊂ X , one has Jεn(un) − J (un) → 0.

(J5ε)

{
For any sequence 0 < εn → 0 and any sequence

{un} ⊂ X such that un → u in X , one has Jεn (un) − Jεn (u) → 0.
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(M)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

The family {Kε} converges to K in the sense of Mosco, i.e.

for any sequence 0 < εn → 0, the following two properties hold:

(a) for each v ∈ K , there exists a sequence {vn} ⊂ X such that

vn ∈ Kεn for each n ∈ N and vn → v in X .

(b) for each sequence {vn} ⊂ X such that

vn ∈ Kεn for each n ∈ N and vn⇀v in X , one has v ∈ K .

Recall that the notion of Mosco convergence has been introduced in [32], and then,

it was used in a large number of papers, including [28,33], for instance.

Our first result in this section is the following.

Theorem 3.1 Let X be a reflexive Banach space. Suppose that conditions (K1), (J1),

(J2), (K1ε), (J1ε), (J2ε), (J3ε), (J4ε), (J5ε) and (M) hold. Then, Problem P is weakly

well posed in generalized sense with respect to the family of approximating sets

{Ω(ε)}ε>0.

Proof First of all, since assumptions (K1), (J1) and (J2) hold, it follows from Theorem

2.1 i) that there exists at least one solution to Problem P , which implies that S 
= ∅.

Similarly, under assumptions (K1ε), (J1ε) and (J2ε), there exists at least one solution

to Problem Pε, which implies Ω(ε) 
= ∅ for each ε > 0.

Now, let {un} be an approximating sequence. Then, Definition 2.1 implies that there

exists 0 < εn → 0 such that un ∈ Ω(εn) for all n ∈ N. We claim that the sequence

{un} is bounded in X . Indeed, if {un} is not bounded, then we can find a subsequence

of the sequence {un}, again denoted by {un}, such that ‖un‖X → ∞. Therefore, using

assumptions (J3ε), we deduce that

Jεn(un) → ∞. (8)

Let v be a given element in K and note that assumption (M)(a) implies that there

exists a sequence {vn} such that vn ∈ Kεn for each n ∈ N and

vn → v in X . (9)

Moreover, since un is a solution of Problem Pεn , we obtain that Jεn (un) ≤ Jεn (vn),

and therefore,

Jεn(un) ≤ [Jεn (vn) − Jεn(v)] + [Jεn (v) − J (v)] + J (v) ∀ n ∈ N. (10)

On the other hand, by the convergences (9) and εn → 0, assumption (J5ε) implies that

Jεn (vn)−Jεn (v) → 0, and in addition, assumption (J4ε) shows that Jεn(v)−J (v) → 0.

Thus, inequality (10) implies that the sequence {Jεn (un)} is bounded, which contradicts

(8). We conclude from above that the sequence {un} is bounded in X , and therefore,

there exists a subsequence of the sequence {un}, again denoted by {un}, and an element

u ∈ X such that

un⇀u in X . (11)
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We now prove that u is a solution of Problem P , i.e. u ∈ S. To this end, we use

assumption (M)(b) and the convergence (11) to deduce that

u ∈ K . (12)

Next, we consider an arbitrary element v ∈ K , and using condition (M)(a), we know

that there exists a sequence {vn} such that vn ∈ Kεn for each n ∈ N and (9) holds.

Since un is the solution to Problem Pεn , we have Jεn(un) ≤ Jεn(vn), which implies

that

0 ≤ [Jεn(vn) − Jεn(v)] + [Jεn (v) − J (v)] + [J (v) − J (u)]

+[J (u) − J (un)] + [J (un) − Jεn (un)]. (13)

We now use the convergences εn → 0, (9) and (11) combined with assumptions (J5ε),

(J4ε), (J1) to deduce that

Jεn (vn) − Jεn(v) → 0, (14)

Jεn (v) − J (v) → 0, (15)

lim sup [J (u) − J (un)] ≤ 0, (16)

J (un) − Jεn(un) → 0. (17)

Therefore, passing to the upper limit in inequality (13) and using (14, 15, 16, 17), we

find that

0 ≤ J (v) − J (u). (18)

We now combine (12) and (18) to deduce that u is a solution of Problem P . Finally,

we use the convergence (11) and Definition 2.2 b) to conclude the proof. ⊓⊔

We now proceed with some relevant particular cases, in which Theorem 3.1 works.

The first one is when Kε = K , for each ε > 0. Note that, in this case, Problem Pε is

formulated as follows.

Problem P∗
ε Find u such that

u ∈ K , Jε(u) := min
v∈K

Jε(v).

Moreover, for each ε > 0, the corresponding set Ω(ε) is given by

Ω∗(ε) := { u ∈ K : Jε(u) ≤ Jε(v) ∀ v ∈ K }.

Then, we have the following consequence of Theorem 3.1.

Corollary 3.1 Let X be a reflexive Banach space. Suppose that conditions (K1), (J1),

(J2), (J1ε), (J2ε), (J3ε) and (J4ε) hold. Then, Problem P is weakly well posed in

generalized sense with respect to the family of approximating sets {Ω∗(ε)}ε>0.

8



Proof Since Kε = K , it follows that assumption (K1) guarantees condition (K1ε).

Moreover, condition (M) is satisfied. In addition, a careful analysis of the proof for

Theorem 3.1 shows that condition (J5ε) is used only to prove the convergence (14).

Or, in the particular case Kε = K , we can avoid condition (J5ε) since we can take

vn = v for each n ∈ N, and in this case, the convergence (14) obviously holds. With

these remarks, we conclude the proof of Corollary 3.1 since it represents a simplified

version of the proof of Theorem 3.1. ⊓⊔

The second particular case is when Jε = J for each ε > 0. In this case, Problem

Pε can be formulated as follows.

Problem P∗∗
ε Find u such that

u ∈ Kε, J (u) := min
v∈Kε

J (v).

Moreover, for each ε > 0, the corresponding set Ω(ε) is given by

Ω∗∗(ε) := { u ∈ Kε : J (u) ≤ J (v) ∀ v ∈ Kε }.

Then, we can get the following consequence of Theorem 3.1.

Corollary 3.2 Let X be a reflexive Banach space. Suppose that assumptions (K1),

(K1ε), (J1), (J2), (M) hold and J : X → R is a continuous functional. Then,

Problem P is weakly well posed in generalized sense with respect to the family of

approximating sets {Ω∗∗(ε)}ε>0.

Proof Since Jε = J , it follows that assumption (J1) guarantees condition (J1ε). More-

over, assumption (J2) guarantees conditions (J2ε) and (J3ε). In addition, condition

(J4ε) is obviously satisfied and condition (J5ε) follows from the continuity of the

functional J . Corollary 3.2 is now a direct consequence of Theorem 3.1. ⊓⊔

The third particular case is when Kε = K and Jε = J for each ε > 0. Then,

Problem Pε reduces to Problem P and Ω(ε) = S for each ε > 0. In this case, we

have the following result.

Corollary 3.3 Let X be a reflexive Banach space and assume that conditions (K1),

(J1) and (J2) hold. Then, there exists at least a solution to Problem P , and moreover,

the set of solution is weakly sequentially compact in X.

Proof The existence part is a direct consequence of Theorem 2.1. We now use Theorem

3.1 to see that Problem P is weakly well posed in generalized sense with respect to

the family of approximating sets {S}ε>0. Corollary 3.3 is now a direct consequence

of Definition 2.2 b). ⊓⊔

Next, we consider the following assumption, which clearly reinforces assumption

(J3).
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(J4)

⎧
⎪⎪⎨
⎪⎪⎩

J is a strongly uniformly convex functional, i.e.

there exists m > 0 such that

(1 − t)J (u) + t J (v) − J ((1 − t)u + tv) ≥ m t(1 − t)‖u − v‖2
X

for all u, v ∈ X , t ∈ [0, 1].

Our second result in this section is the following.

Theorem 3.2 Let X be a reflexive Banach space. Then, the following 2 statements

hold.

(i) Under assumptions (K2), (J1), (J2), (J3), (K1ε), (J1ε), (J2ε), (J3ε), (J4ε), (J5ε)

and (M), Problem P is weakly well posed with respect to the family of approxi-

mating sets {Ω(ε)}ε>0.

(ii) Under assumptions (K2), (J1), (J4), (K1ε), (J1ε), (J2ε), (J3ε), (J4ε), (J5ε) and

(M), Problem P is strongly well posed with respect to the family of approximating

sets {Ω(ε)}ε>0.

Proof (i) With assumptions (K2), (J1), (J2) and (J3), it follows from Theorem 2.1 ii)

that there exists a unique solution to Problem P , i.e. S is a singleton. Now, let {un}

be an approximating sequence. It follows from the proof of Theorem 3.1 that {un} is

bounded and any weakly convergent subsequence of {un} converges to the solution of

Problem P , which is unique. We now use a standard result to deduce that the whole

sequence {un} converges weakly to the unique solution of Problem P . Therefore, using

Definition 2.2 a), we conclude the proof of first part of the theorem.

(ii) Assume now that (K1), (J1), (J4) (K1ε), (J1ε), (J2ε), (J3ε), (J4ε), (J5ε) and (M)

hold. We recall that assumption (J4) implies condition (J3). Moreover, using the fact

that any convex lower semicontinuous function is bounded below by an affine function,

it is easy to see that assumptions (J1) and (J4) imply condition (J2). Therefore, we are

in a position to use the part i) of the theorem to get the unique solvability of Problem

P and the weak convergence of any approximating sequence to its unique solution.

Denote by u the unique solution of Problem P and let {un} be an approximating

sequence. Then, it follows from above that

un⇀u in X . (19)

Let {̃un} be a sequence such that ũn ∈ Kεn for each n ∈ N and

ũn → u in X . (20)

Recall that the existence of such sequence follows from assumption (M)(a). Then,

using assumption (J4) with t = 1
2

, we find that

m

4
‖ũn − un‖

2
X ≤

1

2

[
J (̃un) − J

( ũn + un

2

)]
+

1

2

[
J (un) − J

( ũn + un

2

)]
. (21)

We write

J (̃un) − J
( ũn + un

2

)
= [J (̃un) − Jεn (̃un)]
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+[Jεn (̃un) − J (u)] +
[

J (u) − J
( ũn + un

2

)]
, (22)

and using the convergences (19), (20) and conditions (J4ε), (J5ε), (J1), we get that

J (̃un) − Jεn (̃un) → 0,

Jεn (̃un) − J (u) → 0,

lim sup
[

J (u) − J
( ũn + un

2

)]
≤ 0.

Therefore, it follows that

lim sup
[

J (̃un) − J
( ũn + un

2

)]
≤ 0. (23)

On the other hand, we write

J (un) − J
( ũn + un

2

)
= [J (un) − Jεn(un)]

+
[

Jεn(un) − Jεn

( ũn + un

2

)]

+
[

Jεn

( ũn + un

2

)
− J

( ũn + un

2

)]
. (24)

Using the convergences (19), (20) and condition (J4ε), we get that

J (un) − Jεn (un) → 0,

Jεn

( ũn + un

2

)
− J

( ũn + un

2

)
→ 0,

and moreover, since un is a solution to Problem Pεn , we have

Jεn(un) − Jεn

( ũn + un

2

)
≤ 0.

Therefore, with these three ingredients, equality (24) yields

lim sup
[

J (un) − J
( ũn + un

2

)]
≤ 0. (25)

We now combine inequalities (21), (23) and (25) to deduce that

lim sup ‖ũn − un‖
2
X = 0,

which implies that

un − ũn → 0X in X . (26)

11



Finally, using the convergences (20) and (26), we get un → u in X , which concludes

the proof. ⊓⊔

We end this section with the remark that relevant version of Theorem 3.2 can be

obtained for the particular cases where Kε = K and Jε = J for each ε > 0. Since

the modifications are similar to those presented in Corollaries 3.1 and 3.2, we skip

the details. Nevertheless, if the set Ω(ε) = {uε} is a singleton for each ε > 0, then

Theorem 3.2 provides a weak and strong convergence result, i.e. uε⇀u in X and

uε → u in X , as ε → 0, under corresponding assumptions on the data.

4 The Contact Models

We now turn to the application of our abstract results in the study of 2 elastic con-

tact problems. The physical setting is the following. An deformable body occupies

a bounded domain Ω ⊂ R
d (d = 1, 2, 3) with a Lipschitz continuous boundary Γ ,

divided into three measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0.

The body is fixed on Γ1, and therefore, the displacement field vanishes there. It is acted

upon by a given body force and is submitted to the action of a given surface traction on

Γ2. Moreover, the body is in contact with an obstacle on Γ3, the so-called foundation.

The mechanical process is static, and the contact is frictionless. We assume that the

body is elastic and the foundation is made of a rigid obstacle covered by a deformable

layer of rigid-plastic material of thickness g, say asperities. A two-dimensional version

of the physical setting, corresponding to a rectangular body, is depicted in Fig. 1.

To construct the mathematical models, which correspond to this physical setting,

we denote by u := (ui) and σ := (σi j ) the displacement field and the stress field,

respectively. Here and below, the indices i , j , k, l run between 1 and d , and unless

stated otherwise, the summation convention over repeated indices is used. Moreover,

an index that follows a comma represents the partial derivative with respect to the

corresponding component of the spatial variable x ∈ Ω ∪ Γ , e.g. ui, j = ∂ui/∂x j .

For simplicity, we do not indicate explicitly the dependence of various functions on

the x. Also, ǫ and Div will represent the deformation and the divergence operators,

respectively, i.e.

ǫ(u) := (εi j (u)), εi j (u) :=
1

2
(ui, j + u j,i ), Div σ := (σi j, j ).

We denote by ν := (νi ) the outward unit normal at Γ , which exists almost everywhere,

and uν , uτ will represent the normal and tangential components of u on Γ given by

uν := u · ν and uτ := u − uνν, respectively. Moreover, σν and σ τ will represent the

normal and tangential tractions on Γ , i.e. σν := (σν) · ν and σ τ := σν − σνν. Here

and below, Aω represents a short hand notation for the value of the tensor A in the

element ω, and therefore, σν represents the Cauchy stress vector. We use S
d for the

space of second-order symmetric tensors on R
d and recall that the inner product and

norm on R
d and S

d are defined by

u · v := uivi , ‖v‖ := (v · v)
1
2 ∀ u = (ui ), v = (vi ) ∈ R

d ,

12



Fig. 1 Physical setting

σ · τ := σi jτi j , ‖τ‖ := (τ · τ )
1
2 ∀ σ = (σi j ), τ = (τi j ) ∈ S

d .

Finally, the zero element of the spaces S
d and R

d will be denoted by 0.

The first contact model we consider in this section is as follows.

Problem Q Find a displacement field u : Ω → R
d and a stress field σ : Ω → S

d

such that

σ = Eǫ(u) + α(ǫ(u) − PBǫ(u)) in Ω, (27)

Div σ + f 0 = 0 in Ω, (28)

u = 0 on Γ1, (29)

σν = f 2 on Γ2, (30)

uν ≤ g,

σν = 0, if uν < 0

−F ≤ σν ≤ 0, if uν = 0

σν = −F, if 0 < uν < g

σν ≤ −F, if uν = g

⎫
⎪⎪⎬
⎪⎪⎭

on Γ3, (31)

σ τ = 0 on Γ3. (32)

We now provide a short description of the equations and boundary conditions in

Problem Q.

First, Equ. (27) represents the elastic constitutive law of the material, in which E

is a fourth-order elasticity tensor, α is a positive elastic coefficient, B is a nonempty

closed convex set in the space S
d and PB : S

d → B denotes the projection operator.

Such kind of constitutive laws could model the behaviour of some real materials like

metals and have been used in [6,7,34,35], for instance. Usually, the set B is defined

by

K := { τ ∈ S
d : F(τ ) ≤ 0 }, (33)

where F : S
d → R is a convex continuous function such that F(0) < 0. Recall that

τ = PBτ iff τ ∈ B, and therefore, we see from (27) that σ = Eǫ(u) iff ǫ(u) ∈ B.

It follows from here that the material behaves linearly as far as the strain tensor ǫ(u)

belongs to B. The behaviour of the material is nonlinear only for strain tensors ǫ(u)

13



Fig. 2 Contact condition (31)

such that ǫ(u) /∈ B. We conclude from above that the set B represents the domain of

linearly elastic behaviour of the material (27).

Equation (28) is the equation of equilibrium, and conditions (29) and (30) represent

the displacement and the traction boundary conditions, respectively. There, f 0 denotes

the density of body force and f 2 represents the density of surface traction. Finally,

condition (32) represents the frictionless contact condition.

We now turn to the contact condition (31), which is described by the maximal

monotone multivalued relation between the normal displacement and the opposite of

the normal stress represented in Fig. 2 and which was used in a large number of papers,

including [8,36]. This condition can be derived in the following way. First, we assume

that the normal stress has an additive decomposition of the form

σν = σ P
ν + σ R

ν on Γ3, (34)

in which σ P
ν describes the reaction of the deformable layer and σ R

ν describes the

reaction of the rigid obstacle.

We assume that σ P
ν satisfies the condition

− F ≤ σ P
ν ≤ 0, σ P

ν =

{
0, if uν < 0

−F, if uν > 0,
(35)

where F is a given positive coefficient, which could depend on the spatial variable x.

Using (35), we have

−F < σ P
ν ≤ 0 �⇒ uν ≤ 0,

σ P
ν = −F �⇒ uν ≥ 0.

This shows that the layer does not allow penetration (and, therefore, it behaves like a

rigid body) as far as the inequality −F < σ P
ν ≤ 0 holds. It could allow penetration only

14



when σ P
ν = −F , and in this case, it offers no additional resistance. We conclude from

here that the deformable layer has a rigid-plastic behaviour, as claimed. Moreover, the

function F could be interpreted as its yield limit.

On the other hand, the rigid body does not allow penetration, and therefore, we

assume that the normal displacement satisfies condition

uν ≤ g on Γ3. (36)

Here, recall, g > 0 is a given bound, which represents the thickness of the rigid-plastic

layer. In addition, the part σ R
ν of the normal stress satisfies the Signorini condition in

the form with the gap g, i.e.

σ R
ν ≤ 0, σ R

ν (uν − g) = 0 on Γ3. (37)

We now gather conditions (34, 35, 36, 37) and claim that, in this way, we obtain

the contact condition (31). Indeed:

(a) If uν < 0, then (35) implies that σ P
ν = 0, (37) implies that σ R

ν = 0, and therefore,

equality (34) shows that σν = 0.

(b) If uν = 0, then (35) implies that −F ≤ σ P
ν ≤ 0, (37) implies that σ R

ν = 0, and

therefore, equality (34) shows that −F ≤ σν ≤ 0.

(c) If 0 < uν < g, then (35) implies that σ P
ν = −F , (37) implies that σ R

ν = 0, and

therefore, equality (34) shows that σν = −F .

(d) If uν = g, then (35) implies that σ P
ν = −F , (37) implies that σ R

ν ≤ 0, and

therefore, equality (34) shows that σν ≤ −F .

We conclude from above that, in any case, condition (31) is satisfied, which proves

the claim. Moreover, we have the following comments on these contact conditions.

First, the foundation has a geometry conformal with the contact surface Γ3, which

could not be planar. In the deformed configuration, the points of Γ3 are in one of the

following four status: separation with the foundation, contact without penetration of

the deformable layer, contact with partial penetration of the deformable layer, contact

with the rigid obstacle (since the deformable layer is completely squeezing). These

four status correspond to the situations a)-d) described above and divide the surface Γ3

into four regions, which are not known a priori, are part of the problem and represent

free boundaries.

The second contact model we consider in this section is governed by a parameter

ε > 0 and is stated as follows.

Problem Qε Find a displacement field u : Ω → R
d and a stress field σ : Ω → S

d

such that

σ = Eǫ(u) + αε(ǫ(u) − PBǫ(u) ) in Ω, (38)

Div σ + f 0ε = 0 in Ω, (39)

u = 0 on Γ1, (40)

σν = f 2ε on Γ2, (41)
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uν ≤ gε,

σν = 0, if uν < 0

−σν =
Fuν√

u2
ν + k2

ε

, if 0 < uν < gε

σν ≤ −
Fgε√

g2
ε + k2

ε

, if uν = gε

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

on Γ3, (42)

σ τ = 0 on Γ3. (43)

The equations and boundary conditions (38, 39, 40, 41, 42, 43) have a similar

meaning as the corresponding ones in Problem Q. A brief comparison between the 2

contact models show that in Problem Qε we replace the data α, f 0, f 2 and g with their

perturbation αε, f 0ε, f 2ε and gε, respectively. The second difference arises from the

contact condition (42), which represents a regularization of the contact condition (31).

Here, kε represents a deformability coefficient and r+ denotes the positive part of r ,

i.e. r+ = max {0, r}. This condition models the contact with a rigid body covered by

a layer of elastic material of thickness gε. It can be deduced using arguments similar

to those used to deduce the contact condition (31). Note that (42) shows that, if there

is penetration on the elastic material, i.e. 0 < uν < gε, then the foundation exerts a

pressure on the body, which depends on the penetration.

In the study of Problems Q and Qε, we need to introduce further notation and

preliminary material. Everywhere below, we use the standard notation for Sobolev and

Lebesgue spaces associated with Ω and Γ . In particular, we use the spaces L2(Ω)d ,

L2(Γ2)
d , L2(Γ3) and H1(Ω)d , endowed with their canonical inner products and the

associated norms. For an element v ∈ H1(Ω)d , we still write v for the trace γ v of v

to Γ . Moreover, we consider the space

X := { v ∈ H1(Ω)d : v = 0 on Γ1 },

which is a real Hilbert space endowed with the canonical inner product

(u, v)X :=

∫

Ω

ǫ(u) · ǫ(v) dx

and the associated norm ‖ · ‖X. Recall that the completeness of the space X follows

from the assumption meas (Γ1) > 0, which allows the use of Korn’s inequality. Also,

there exists c0 > 0 depending on Ω , Γ1 and Γ3 such that

‖v‖L2(Γ )d ≤ c0‖v‖X for all v ∈ X , (44)

which represents a consequence of the Sobolev trace theorem.

In the study of the contact problem (27, 28, 29, 30, 31, 32), we assume that the

elasticity tensor E and the set B satisfy the following conditions.

(a) E = (Ei jkl) : Ω × S
d → S

d ,

(b) Ei jkl = Ekli j = E j ikl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d,

(c) There exists mE > 0 such that

Eτ · τ ≥ mE‖τ‖2 ∀ τ ∈ S
d , a.e. in Ω.

(45)
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B is a closed convex subset of S
d such that 0 ∈ B. (46)

For the rest of the data, we assume that

α > 0, (47)

f 0 ∈ L2(Ω)d , f 2 ∈ L2(Γ2)
d , (48)

F ∈ L2(Γ3), F(x) ≥ 0 a.e. x ∈ Γ3, (49)

g > 0. (50)

Under these assumptions, we introduce the set K ⊂ X and the functional J : X → R

defined by

K := { v ∈ X : vν ≤ g a.e. on Γ3 }, (51)

J (v) : =
1

2

∫

Ω

Eǫ(v) · ǫ(v) dx +
α

2

∫

Ω

‖ǫ(v) − PK ǫ(v)‖2 dx

−

∫

Ω

f 0 · v dx −

∫

Γ2

f 2 · v da +

∫

Γ3

Fv+
ν da ∀ v ∈ X . (52)

Assume now that (u, σ ) represents a regular solution of Problem Q. Then, using

standard arguments, it can be shown that, for any v ∈ K , the following inequalities

hold.

Eǫ(u) · (ǫ(v) − ǫ(u)) ≤
1

2
Eǫ(v) · ǫ(v) −

1

2
Eǫ(u) · ǫ(u) a.e. in Ω,

(ǫ(u) − PBǫ(u)) · (ǫ(v) − ǫ(u))

≤
1

2
‖ǫ(v) − PBǫ(v)‖2 −

1

2
‖ǫ(u) − PBǫ(u)‖2 a.e. in Ω,

−σ˚(v˚ − u˚) ≤ Fv+
ν − Fu+

˚
a.e. on Γ3.

Using these inequalities, notation (51), (52) and the Green formula, we deduce the

following variational formulation of Problem Q.

Problem QV Find a displacement field u such that

u ∈ K , J (u) ≤ J (v) ∀ v ∈ K . (53)

Next, in the study of Problem Qε, we assume the following additional assumptions

for each ε > 0.

αε > 0, (54)

kε > 0, (55)

f 0ε ∈ L2(Ω)d , f 2ε ∈ L2(Γ2)
d , (56)
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gε > 0. (57)

Under these assumptions, we introduce the set Kε ⊂ X and the functional Jε : X → R

defined by

Kε := { v ∈ X : vν ≤ gε a.e. on Γ3 }, (58)

Jε(v) : =
1

2

∫

Ω

Eǫ(v) · ǫ(v) dx +
αε

2

∫

Ω

‖ǫ(v) − PBǫ(v)‖2 dx

−

∫

Ω

f 0ε · v dx −

∫

Γ2

f 2ε · v da +

∫

Γ3

F

√
(v+

ν )2 + k2
ε da ∀ v ∈ X .

(59)

Assume now that (u, σ ) represents a regular solution of Problem Qε. Then, it is

easy to check that, for any v ∈ Kε, the following inequality holds:

−σν(vν − uν) ≤ F

√
(v+

ν )2 + k2
ε − F

√
(u+

ν )2 + k2
ε a.e. on Γ3.

Using this inequality, notation (58), (59) and arguments similar to those used to obtain

inequality (53), we deduce the following variational formulation of Problem Qε.

Problem QV
ε Find a displacement field u such that

u ∈ Kε, Jε(u) ≤ Jε(v) ∀ v ∈ Kε. (60)

The analysis of Problem QV and QV
ε , including existence, uniqueness and various

convergence results, will be provided in the next section. Here, we restrict ourselves

to mention that a function u satisfying (53) is called a weak solution of the elastic

contact problem (27, 28, 29, 30, 31, 32) and a function u satisfying (60) is called a

weak solution of the elastic contact problem (38, 39, 40, 41, 42, 43).

5 Existence, Uniqueness and Convergence Results

For the results we present in this section, we need some convergence conditions on

the data, gathered in the following assumptions.

αε → α as ε → 0, (61)

kε → 0 as ε → 0, (62)

f 0ε⇀ f 0 in L2(Ω)d , f 2ε⇀ f 2 in L2(Γ2)
d as ε → 0, (63)

gε → g as ε → 0. (64)

Our first result in this section is the following.

Theorem 5.1 (i) Under assumptions (45, 46, 47, 48, 49, 50 ), there exists a unique

solution to Problem QV .
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ii) Under assumptions (45), (46), (49), (54, 55, 56, 57), there exists a unique solution

to Problem QV
ε .

iii) Under assumptions (45, 46, 47, 48, 49, 50), (54, 55, 56, 57), (61, 62, 63, 64), the

solution of Problem QV
ε converges in X to the solution of Problem QV , as ε → 0.

Proof i) Since g > 0, it is clear that the set K defined by (51) satisfies condition (K2).

Moreover, using the properties of the projection operator and the trace operator, it

follows that J is a continuous functional, and therefore, condition (J1) holds. On the

other hand, using (45), (47), (49) and (44), we see that there exists a positive constant

c such that

J (v) ≥
mE

2
‖v‖2

X − c (‖ f 0‖L2(Ω)d + ‖ f 2‖L2(Γ2)
d )‖v‖X ∀ v ∈ X . (65)

This inequality shows that condition (J2) holds, too. Finally, note that the function

v �→
α

2

∫

Ω

‖ǫ(v) − PBǫ(v)‖2 dx

is convex since it is Gâteaux differentiable on X and its gradient, given by

v �→ α(ǫ(v) − PBǫ(v)) ∀ v ∈ X ,

is a monotone operator. The details of the proof can be found in [34]. In addition,

using the convexity of the function r �→ r+, it follows that the function

v �→ −

∫

Ω

f 0 · v dx −

∫

Γ2

f 2 · v da +

∫

Γ3

Fv+
ν da

is a convex function, too. Moreover, a simple calculation based the properties of the

tensor E shows that

(1 − t)

∫

Ω

Eǫ(v) · ǫ(v) dx + t

∫

Ω

Eǫ(v) · ǫ(v) dx

−

∫

Ω

Eǫ((1 − t)u + tv) · ǫ((1 − t)u + tv) dx = t(1 − t)

∫

Ω

Eǫ(v − u) · ǫ(v − u) dx

≥ mE t(1 − t) ‖u − v‖2
X (66)

for all u, v ∈ X and t ∈ [0, 1]. We gather all these properties to see that the functional

J satisfies condition (J4). It follows from here that J satisfies condition (J3), too. The

unique solvability of Problem QV is now a consequence of Theorem 2.1 (ii).

(ii) The unique solvability of Problem QV
ε follows from arguments similar as those

used above. First, we use the continuity of the function

v �→

∫

Γ3

F

√
(v+

ν )2 + k2
ε da (67)
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to see that condition (J1ε) is satisfied. Moreover, using the trace inequality (44), we

deduce that there exists c > 0 such that

Jε(v) ≥
mE

2
‖v‖2

X − c (‖ f 0ε‖L2(Ω)d + ‖ f 2ε‖L2(Γ2)
d )‖v‖X (68)

for all v ∈ X . This shows that condition (J2ε) hold, too. On the other hand, the strict

convexity of the functional Jε, guaranteed by inequality (66), and the convexity of the

function (67) show that Jε satisfies condition (J3). Since condition (K1ε) is obviously

satisfied, the existence of a unique solution to Problem QV
ε follows from Theorem 2.1

ii).

(iii) We use Theorem 3.2 ii). To this end, we recall that, as seen above, conditions

(K2), (J1), (J4), (K1ε), (J1ε), (J2ε) are satisfied. Moreover, condition (J3ε) is a direct

consequence of inequality (68) combined with the convergence (62).

Assume now that 0 < εn → 0 and {un} ⊂ X is a weakly convergent sequence.

Then, an elementary calculus shows that

Jεn(un) − J (un) =
1

2
(αεn − α)

∫

Ω

‖ǫ(un) − PBǫ(un)‖2 dx

−

∫

Ω

( f 0εn
− f 0) · un dx −

∫

Γ2

( f 2ε − f 2) · un da

+

∫

Γ3

F(

√
(u+

nν)
2 + k2

ε − u+
nν) da.

We now use the properties of the projection operator PB , the compactness of the

embedding X ⊂ L2(Ω)d , the compacteness of the trace operator γ : X → L2(Γ )d ,

inequality

∣∣∣
√

(u+
nν)

2 + k2
ε − u+

nν

∣∣∣ ≤ kε a.e. on Γ3

and the convergences (61)–(64) to see that each term of the previous equality converges

to zero. We deduce from here that Jεn (un) − J (un) → 0, and therefore, condition

(J4ε) is satisfied.

Assume now that 0 < εn → 0 and un → u in X . Then, for each n ∈ N, we have

Jεn (un) − Jεn (u) =
1

2

∫

Ω

Eǫ(un) · ǫ(un) dx −
1

2

∫

Ω

Eǫ(u) · ǫ(u) dx

+
αεn

2

∫

Ω

(
‖ǫ(un) − PBǫ(un)‖2 − ‖ǫ(u) − PBǫ(u)‖2

)
dx

−

∫

Ω

f 0εn
· (un − u) dx −

∫

Γ2

f 2ε · (un − u) da

+

∫

Γ3

F
(√

(u+
nν)

2 + k2
ε −

√
(u+

ν )2 + k2
ε

)
da.
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We now use the continuity of the bilinear form

(u, v) �→

∫

Ω

Eǫ(u) · ǫ(v) dx ∀ u, v ∈ X ,

the properties of the projection operator PB , the compactness of the embedding X ⊂

L2(Ω)d and the trace operator γ : X → L2(Γ )d , inequality

∣∣∣
√

(u+
nν)

2 + k2
ε −

√
(u+

nν)
2 + k2

ε

∣∣∣ ≤ |u+
nν − u+

ν | ≤ ‖un − u‖ a.e. on Γ3

and the convergences (61, 62, 63, 64) to see that each term of the previous equality

converges to zero. We deduce from here that Jεn (un) − Jεn (u) → 0, and therefore,

condition (J5ε) holds.

Finally, using definitions (51), (58) combined with assumptions (50), (57) and (64),

we see that Kε =
gε

g
K for all ε > 0. Based on this equality, it is easy to see that

condition (M) is satisfied.

It follows from above that we are in position to apply Theorem 3.2 ii) to see that

Problem QV is well posed with the family of sets {Ω(ε)}ε>0 defined by (7). Now,

since both the set of solutions to Problem QV and the set Ω(ε) are singletons, as noted

at the end of Sect. 3, it follows that uε → u in V as ε → 0, which concludes the

proof. ⊓⊔

Note that Theorem 5.1 (i), (ii) provides the unique weak solvability of Problems

Q and Qε, respectively. Next, in order to provide the mechanical interpretation of

the convergence result given by Theorem 5.1 (iii), we denote in what follows by

uε(αε, kε, f 0ε, f 2ε, gε) the solution of Problem QV
ε constructed with the data αε, kε,

f 0ε, f 2ε, gε satisfying (54, 55, 56, 57). In addition, we denote by u(α, f 0, f 2, g) the

solution of Problem Q constructed with the data α, f 0, f 2, g satisfying (47, 48, 49,

50). It follows from Theorem 5.1 iii) that, if the convergences (61, 62, 63, 64) hold,

then

uε(αε, kε, f 0ε, f 2ε, gε) → u(α, f 0, f 2, g) in X as ε → 0. (69)

On the other hand, a careful analysis based on the definitions (52) and (59) of the

functionals J and Jε reveals that, if kε = 0, then Problem QV
ε reduces to Problem

QV . Therefore,

uε(αε, 0, f 0ε, f 2ε, gε) = u(αε, f 0ε, f 2ε, gε). (70)

We now take kε = 0 in (69) and use equality (70) to deduce that, if (61), (63) and (64)

hold, then

u(αε, f 0ε, f 2ε, gε) → u(α, f 0, f 2, g) in X as ε → 0. (71)

In addition to the mathematical interest in the convergence result (71), it is important

from mechanical point of view since it shows that the weak solution of the contact
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problem QV depends continuously on the densities of the applied force, the yield limit

and the thickness of the rigid-plastic layer of the foundation.

Finally, the convergence result (69) shows that, if (62) holds, then

uε(α, kε, f 0, f 2, g) → u(α, f 0, f 2, g) in X as ε → 0. (72)

The convergence result (72) shows that the weak solution of the contact problem with

a rigid body covered by a layer of rigid-plastic material can be approached by the

solution of the contact problem with a rigid body covered by a layer of elastic material

when the deformability coefficient of this material is small enough.
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