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Abstract: Replication in distributed key-value stores makes scheduling more challenging, as it
introduces processing set restrictions, which limits the number of machines that can process a given
task. We focus on the online minimization of the maximum response time in such systems, that is,
we aim at bounding the latency of each task. When processing sets have no structure, Anand et al.
(Algorithmica, 2017) derive a strong lower bound on the competitiveness of the problem: no online
scheduling algorithm can have a competitive ratio smaller than Ω(m), where m is the number of
machines. In practice, data replication schemes are regular, and structured processing sets may
make the problem easier to solve. We derive new lower bounds for various common structures,
including inclusive, nested or interval structures. In particular, we consider �xed sized intervals of
machines, which mimic the standard replication strategy of key-value stores. We prove that EFT
(Earliest Finish Time) scheduling is (3 − 2/k)-competitive when optimizing max-�ow on disjoint
intervals of size k. However, we show that the competitive ratio of EFT is at least m−k+ 1 when
these intervals overlap, even when unit tasks are considered. We compare these two replication
strategies in simulations and assess their e�ciency when popularity biases are introduced, i.e.,
when some machines are accessed more frequently than others because they hold popular data.
Even though overlapping intervals su�er from a bad worst-case in theory, they enable clusters to
reach a maximum load that is up to 50% higher than with disjoint sets.

Key-words: Flow Time, Lower Bound, Restricted Assignment, Processing Set Restrictions,
Replication, Key-Value Stores.



Bornes sur le temps de réponse dans un ordonnancement en
ligne avec ensembles d'exécution structurés

Résumé : La réplication dans les bases de données distribuées de type clé-valeur complique
l'étape d'ordonnancement, car elle introduit des restrictions sur les ensembles d'exécution qui
limitent le nombre de machines pouvant traiter une tâche donnée. Nous considérons la minimi-
sation du temps de réponse maximum dans ces systèmes, et nous cherchons des garanties sur
le ratio de compétitivité atteignable pour ce problème d'ordonnancement en ligne. Lorsque les
ensembles d'exécution n'exhibent aucune structure, Anand et al. (Algorithmica, 2017) dérivent
une borne inférieure sur le ratio de compétitivité : aucun algorithme en ligne ne peut fournir un
ratio inférieur à Ω(m), avecm le nombre de machines. En pratique, la réplication des données est
régulière, et des ensembles d'exécution structurés peuvent faciliter le problème. Nous calculons
de nouvelles bornes inférieures pour les structures suivantes : inclusive, nested et interval. En
particulier, nous considérons des intervalles de machines de taille �xe a�n d'imiter la stratégie
de réplication standard des bases de données de type clé-valeur. Nous prouvons que la stratégie
EFT (Earliest Finish Time) est (3− 2/k)-compétitive pour l'optimisation du temps de réponse
maximum sur des intervalles disjoints de taille k. Cependant, nous montrons que le ratio de com-
pétitivité de EFT est au moins m− k + 1 lorsque ces intervalles sont non-disjoints, même pour
des tâches unitaires. Nous comparons ces deux stratégies de réplication dans des simulations a�n
d'évaluer leur e�cacité lorsque des biais sur la popularité des clés sont introduits. Même si les
intervalles non-disjoints ne donnent pas de bonnes garanties dans tous les cas, ils permettent aux
clusters d'atteindre une charge maximum jusqu'à 50% plus élevée que les intervalles disjoints.

Mots-clés : Temps de réponse, borne inférieure, allocation restreinte, ensembles d'exécution,
réplication, bases de données clé-valeur.



Bounding the Flow Time in Online Scheduling with Structured Processing Sets 3

1 Introduction

Since more than a decade, a variety of applications increasingly relies on key-value stores to
record user data [1], monitoring information in scienti�c projects [2], activity logs, metadata,
statistics, etc. Such systems deal with a heavy load and while they succeed to process most
requests with reasonable performance, they are prone to high delays for a few tasks (also known
as the tail latency problem [3,4]), which motivates the design of e�cient processing strategies.

The large amount of stored data most commonly requires the replication of the key-value
tuples on distributed resources. This mechanism ensures high availability in the case of a large
number of requests. For instance, Dynamo [5] replicates data on nodes organized as a ring in a
clockwise fashion. This approach inspired other implementations such as Cassandra [6], Riak KV
and Project Voldemort [7]. However, this eligibility constraint of each task to speci�c machines
prevents achieving optimal performance in current systems. Moreover, loads between machines
tend to be heterogeneous [8,9] due to varying popularities between the keys, which constitutes an
additional challenge. Finally, requests vary in size and the moment they are performed cannot
be predicted precisely, leading to a di�cult problem.

In this paper, we focus on the scheduling problems that appear in key-value stores and
other distributed systems using data replication. We consider requests for data in the key-value
store as tasks to be processed on a server (or machine in the scheduling terminology). In key-
value stores, the most common objective is to minimize the response time, which is the time
between the submission of a request (the release of a task) and the moment a server answers
this request (completion time of the task). In the scheduling literature, this is called the �ow
time. Given the dynamic nature of the problem, we focus on simple practical algorithms with
competitive guarantees: we say that an online algorithm (without knowledge of future tasks) is
ρ-competitive if it provides a solution that is always at most ρ times worst than an optimal o�ine
solution. Using Graham's notation [10], we consider the problem P |online−ri|Fmax: minimize
the maximum �ow time (Fmax) on identical machines (P ), with tasks released over time (ri)
without prior knowledge of tasks before their release times (online). For this problem, FIFO
(First In First Out) is known to be a good solution: it is (3 − 2/m)-competitive on m parallel
machines [11,12].

A major di�culty that we need to take into account is that data are not replicated everywhere
in key-value stores: only a subset of servers holds the data for a speci�c request. In the scheduling
literature, processing set restrictions are used to model the fact that only a subsetMi of machines
may process some task Ti. This constraint makes the problem a lot more di�cult: Anand
et al. [13] prove a lower bound of Ω(m) on the competitive ratio of any online algorithm.

However, processing set restrictions often exhibit particular structures such as the clockwise
ring used by Dynamo. In this case, data are replicated on direct neighbors forming an interval
of consecutive machines, and it is unknown if this enables better results. In particular, we show
that EFT, which is equivalent to FIFO for the problem P |online−ri|Fmax (Section 4), is a good
strategy in some cases, but su�ers from ine�cient worst case performance with such realistic
processing set restrictions (Section 6). Moreover, we establish the challenge of this problem,
even with speci�c processing set restrictions, by proving lower bounds on the competitive ratio
of any simple algorithm. Section 7 provides the last contribution by assessing the interaction of
the popularity bias, or load imbalance, with the replication scheme in key-value stores. The rest
of this paper starts by covering related works (Section 2) and presenting the model (Section 3).
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4 Louis-Claude Canon, Anthony Dugois, Loris Marchal

2 Related Work

Max-�ow minimization. Bender et al. were the �rst to propose the max-�ow objective Fmax =
maxi(Ci−ri) [11,14], in which Ci and ri denote the completion and release times of the i-th task,
respectively. They show that the well-known FIFO strategy is a (3−2/m)-competitive algorithm
for minimizing max-�ow on m parallel machines (note that this ratio is tight [15]), and they give
a lower bound of 3/2 on the online problem's competitiveness. The o�ine minimization of max-
�ow is strongly NP-hard since it is a generalization of the parallel makespan problem; Mastrolilli
gives an FPTAS (Fully Polynomial-Time Approximation Scheme) in unrelated setting that runs
in time O(nm(n2/ε)m) [12], where n is the number of tasks. When preemption is allowed, the
problem becomes solvable on unrelated machines, as Fmax is a special case of Lmax, in which
a task's deadline is set to the value of its release time (i.e., di = ri) [16�18]. FIFO has also
been shown to be (3 − 2/m)-competitive for the preemptive problem [12]. Ambühl et al. re�ne
the lower bound for both the preemptive and non-preemptive versions, proving that no online
algorithm can achieve a ratio better than 2 − 1/m [19]. They provide an optimal algorithm
for the preemptive case (i.e., matching the lower bound) and a lower bound of 2 for the non-
preemptive problem when m = 2, implying that FIFO is also optimal on two parallel machines.
In related setting, Bansal et al. derive lower bounds of Ω(m) and Ω(logm) on the competitive
ratio of Slow-Fit and Greedy [20]. They develop a new online algorithm, Double-Fit, that
is 13.5-competitive by combining these two strategies. They also present a PTAS in unrelated
environment, running in time nO(m/ε) [21], and an o�ine O(log n)-approximation [22].

Processing set restrictions. Various surveys have been conducted on scheduling problems
involving processing set restrictions. The majority of such problems concern makespan mini-
mization in a wide range of situations, including preemption, structured sets, release times, and
so on [23�26]. To the best of our knowledge, the only result on online max-�ow minimization
under (unstructured) processing set restrictions is due to Anand et al., who derive a lower bound
of Ω(m) on the competitive ratio of any online algorithm [13].

Table 1 summarizes existing results on online max-�ow minimization. In this table, P , P |Mi,
Q and R respectively denote parallel machines, parallel machines with processing set restrictions,
related machines, and unrelated machines. Note that we have P → Q→ R and P → P |Mi → R,
where A→ B means that A is a special case of B.

3 Model

Even though our problem originates from key-value stores, we formally formulate it using classical
scheduling terms. In particular, we want to schedule a set T of n tasks T1, . . . , Tn on a set M
of m homogeneous machines M1, . . . ,Mm (or n requests on m servers/processors). Each task
Ti has a release time ri ≥ 0 and a processing time pi > 0. Any machine cannot process several
tasks simultaneously and preemption is not allowed. Tasks arrive in the system over time and no
information (release or processing time) on task Ti is available to the scheduler before time ri,
which is noted online−ri. Without loss of generality, we assume tasks are numbered such that
i < j =⇒ ri ≤ rj .

Processing set restrictions (or eligibility constraints) prevent tasks to be processed on any
machine. Formally, a task Ti can only be processed by a subset of machines Mi ⊆ M and we
say thatMi is the processing set of Ti. Let us consider the following special structures for these
processing sets:

Mi(interval). Interval processing sets are such that for all Ti,Mi = {Mj s.t. ai ≤ j ≤ bi} or
Mi = {Mj s.t. j ≤ ai or bi ≤ j}, for some ai ≤ bi.

Inria



Bounding the Flow Time in Online Scheduling with Structured Processing Sets 5

Env. Preemption Algorithm Type Approx./Competitive Ratio Ref.

P Non-preemptive FIFO Online 3− 2/m [11]
any Online ≥ 2− 1/m [19]

Preemptive FIFO Online 3− 2/m [12]
Ambühl et al. Online 2− 1/m [19]
any Online ≥ 2− 1/m [19]

P |Mi Non-preemptive any Online ≥ Ω(m) [13]

Q Non-preemptive Double-Fit Online 13.5 [20]
Slow-Fit Online ≥ Ω(m) [20]
Greedy Online ≥ Ω(logm) [20]

R Non-preemptive Bansal et al. O�ine O(logn) [22]

Bansal O�ine, PTAS 1 + ε in nO(m/ε) [21]
Mastrolilli O�ine, FPTAS 1 + ε in O(nm(n2/ε)m) [12]

Preemptive Legrand et al. O�ine Optimal [18]

Table 1: Existing results on max-�ow optimization.

Mi(nested). Nested processing sets are such that for all Ti, Tj (with i 6= j), eitherMi ⊆Mj ,
Mj ⊆Mi orMi ∩Mj = ∅.

Mi(inclusive). Inclusive processing sets are such that for all Ti, Tj (with i 6= j), eitherMi ⊆
Mj orMj ⊆Mi.

Mi(disjoint). Disjoint processing sets are such that for all Ti, Tj (with i 6= j), eitherMi =Mj

orMi ∩Mj = ∅.

The nested, inclusive and disjoint processing set restrictions can be seen as special cases of the
interval processing set restriction because it is always possible to reorder the machines in each
subset Mi so that one obtains contiguous intervals of machines. Furthermore, the inclusive
and disjoint processing set restrictions are special cases of the nested processing set restriction.
Figure 1 summarizes the relations between the di�erent structures in processing set restrictions.

In key-value stores, requests indicate which �le to retrieve based on a key that can be used
multiple times. This implies that multiple tasks may share the same processing time and pro-
cessing set.

We can now de�ne the desired output and objective function. For any scheduling algorithm
S, we note ρSi the time at which Ti is scheduled by S, µSi the index of the machine on which Ti

Mi(nested)

Mi(disjoint)

Mi(inclusive)

Mi(interval) Mi

Figure 1: Reduction graph of structures in processing set restrictions. A → B means that A is
a special case of B.

RR n° 9446



6 Louis-Claude Canon, Anthony Dugois, Loris Marchal

is scheduled by S, and σSi the starting time of Ti under S. In other words, S gives a schedule
ΠS such that ΠS(i) = (µSi , σ

S
i ) for all task Ti. We want to minimize the maximum �ow time

FSmax = maxFSi , where F
S
i = CSi −ri (CSi denotes the completion time of Ti in ΠS : CSi = σSi +pi).

The superscript S is omitted when the considered algorithm is obvious from context.
We say that an online algorithm D has the Immediate Dispatch property if all tasks are

scheduled as soon as they arrive in the system, i.e., for all Ti, we have ri ≤ ρDi < ri + ε, where
0 < ε � 1, and we call D an immediate dispatch algorithm. This property is of particular
importance in systems that need to scale and cannot handle large waiting queues; the scheduling
phase should be as fast as possible. It is often the case in online distributed systems such as load
balancers or replicated key-value stores.

4 Equivalence of FIFO and EFT strategies

FIFO scheduling has been extensively studied in previous work. It consists of a single queue of
tasks, located on a central scheduler, that are pulled whenever some machine is available (see
Algorithm 1). It is known to be (3− 2/m)-competitive when minimizing maximum �ow time on
parallel machines [11,12,14], which makes it optimal on a single machine. In the present paper,
we move our focus to the EFT scheduler (see Algorithm 2), which pushes each released task on
the machine that �nishes the earliest. We show here that both schedulers are equivalent on any
instance of the scheduling problem P |online−ri|Fmax. However, EFT has two main advantages
over FIFO, which motivates our choice:

1. FIFO relies on a centralized queue, whereas EFT allocates tasks to machines as soon as
they arrive (it is an immediate dispatch algorithm). Hence, it does not require a centralized
scheduler with a potentially large queue of jobs, which is impractical in most existing online
systems with critical scalability needs.

2. EFT can easily be extended to scenarios with processing set restrictions, whereas trans-
forming FIFO to allow such constraints would be cumbersome.

For each machineMj ∈M and for any 1 ≤ i ≤ n, let Hj,i denote the subset of tasks T1, . . . , Ti
being assigned to Mj in a schedule Π:

Hj,i = {Ti′ ∈ T s.t. 1 ≤ i′ ≤ i and µi′ = j}.

Then we de�ne Cj,i as the time at which Mj completes its assigned tasks among the �rst i tasks
in Π, i.e.,

Cj,i = max
Ti′∈Hj,i

{Ci′} ,

where Ci′ = σi′ + pi′ is the completion time of Ti′ in Π, with the convention Cj,0 = 0. Finally,
we de�ne Ui as the set of machines that may start the i-th task at the earliest possible time
tmin,i = max

(
ri,minMj∈M {Cj,i−1}

)
, i.e., Ui is the set of machines that are in a tie for Ti:

Ui = {Mj ∈M s.t. Cj,i−1 ≤ tmin,i} . (1)

Note that EFT needs to know the set Ui for each released task Ti, which implies that one must
know the processing time of arriving tasks with precision, in order to compute the completion
times of machines at each step (we are in a clairvoyant setting). In this way, EFT can be readily
modi�ed to account for processing set restrictions by changing Equation (1) to

U ′i =
{
Mj ∈Mi s.t. Cj,i−1 ≤ t′min,i

}
, (2)

Inria



Bounding the Flow Time in Online Scheduling with Structured Processing Sets 7

where t′min,i = max
(
ri,minMj∈Mi {Cj,i−1}

)
.

For both EFT and FIFO strategies, a tie-break policy decides which machine will process
Ti. We consider that ties are broken according to the same policy BreakTie in FIFO and EFT
(in FIFO, ties are broken when at least 2 machines are idle at the same time; we assume the
selected machine runs �rst).

Algorithm 1 FIFO

Require: Global FIFO queue Q
Input: Incoming tasks Ti
Output: Allocated machines µi, starting times σi
1: when a new task Ti is released do
2: enqueue(i ,Q)

In parallel, do:
1: when some machines U are idle at time t do
2: i← dequeue(Q)
3: if i 6= NIL then
4: u← BreakTie(U)
5: µi ← u
6: σi ← t

Algorithm 2 EFT

Input: Incoming tasks Ti
Output: Allocated machines µi, starting times σi
1: when a new task Ti is released do
2: Get Ui according to completion times of machines M (Equation (1))
3: u← BreakTie(Ui)
4: µi ← u
5: σi ← max (ri, Cu,i−1)
6: Update the completion time of Mu

Now we show that EFT is equivalent to FIFO for the problem P |online−ri|Fmax.

Proposition 1. For any instance I of the problem P |online−ri|Fmax, we have FIFO(I) =
EFT(I), i.e., ΠFIFO(i) = ΠEFT(i) for all Ti ∈ T in the instance I.

Proof: Let I denote an arbitrary instance of the problem P |online−ri|Fmax. We prove
the following statement by induction: for any k such that 1 ≤ k ≤ n, ΠFIFO(i) = ΠEFT(i) for
all 1 ≤ i ≤ k, where Ti ∈ T in the instance I.

Base case (k = 1). All machines are idle (thus UFIFO1 = UEFT1 = M). As FIFO and EFT
have the same tie-break policy and it is called on the same machine subset, they will choose the
same machine and execute T1 as soon as it is released.

Induction step. Suppose that for a given k < n, ΠFIFO(i) = ΠEFT(i) for all 1 ≤ i ≤ k. We
show that ΠFIFO(k + 1) = ΠEFT(k + 1).

On the one hand, at time rk+1, EFT will schedule the task Tk+1 on one machine Mu in
the subset UEFTk+1 according to the tie-break policy. Thus, we have µEFTk+1 = u and σEFTk+1 =

max(rk+1, CEFTu,k ).

On the other hand, at time max(rk+1,minj CFIFOj,k ), one of the machine in the subset UFIFOk+1

will wake up �rst according to the tie-break policy. Let Mu′ denote this machine. Mu′ will

RR n° 9446



8 Louis-Claude Canon, Anthony Dugois, Loris Marchal

pull the next task to process from the shared queue Q, which is necessarily Tk+1. Therefore,
µFIFOk+1 = u′ and σFIFOk+1 = max(rk+1, CFIFOu′,k ).

As ΠFIFO(i) = ΠEFT(i) for all 1 ≤ i ≤ k, we deduce that all machines complete at the same
time in ΠFIFO and ΠEFT when the �rst k tasks are considered, i.e., for all j, CFIFOj,k = CEFTj,k .

This implies that UFIFOk+1 = UEFTk+1 . Thus, as FIFO and EFT break ties the same way, we

have u = u′, and then CFIFOu,k = CEFTu′,k . Therefore, µEFTk+1 = µFIFOk+1 and σEFTk+1 = σFIFOk+1 .
The equivalence between EFT and FIFO implies that all existing results for FIFO also

apply to EFT in the context of max-�ow minimization on parallel machines without processing
set restrictions.

5 Online Minimization of Max-Flow

In this section, we recall and give some results about the minimization of maximum �ow time
when there are no processing set restrictions, that is, when tasks can be scheduled on any
machine. The o�ine problem P |ri|Fmax is clearly strongly NP-hard, as it is a generalization of
P ||Cmax.

For the online version P |online−ri|Fmax, FIFO has been proven to be a (3−2/m)-competitive
online algorithm. We describe the proof here, as the existing proof of Bender et al. is not entirely
correct.

Theorem 1 (Bender et al. [11]). FIFO is (3−2/m)-competitive for the problem P |online−ri|Fmax.

Let Tt denote the set of tasks released before time t and not yet started in schedule Π, i.e.,

Tt = {Ti ∈ T such that ri ≤ t and σi > t},

and let δt,j be the remaining processing time of the task Ti being executed by machine Mj at
time t in Π, i.e., δt,j = Ci − t, where µi = j and σi ≤ t ≤ Ci. Obviously, if no task is being
processed on Mj at time t, δt,j is set to 0. Then, the total work waiting to be processed at time
t in Π is de�ned as

Wt =
∑
j

δt,j +
∑
Ti∈Tt

pi.

We also de�ne the maximum processing time among T1, . . . , Ti as pmax,i. The maximum �ow
time among T1, . . . , Ti in schedule Π is noted Fmax,i.

Lemma 1. For any task Ti, W
FIFO
ri ≤WOPT

ri +(m−1) pmax,i, where OPT is an optimal o�ine
strategy.

Proof: Let us proceed by induction.
Base case (i = 1). At time r1, all machines are idle and we have WFIFO

r1 = WOPT
r1 = p1.

Induction step. Suppose that WFIFO
ri ≤WOPT

ri + (m− 1) pmax,i for a given i. We consider
two cases:

(i) All machines are busy between ri and ri+1 in ΠFIFO. We have

WFIFO

ri+1
= WFIFO

ri −m(ri+1 − ri) + pi+1.

Moreover, WOPT
ri+1

≥WOPT
ri −m (ri+1− ri) + pi+1 (there may be idle times between ri and

ri+1 in OPT ). Then, WOPT
ri+1

−WOPT
ri ≥WFIFO

ri+1
−WFIFO

ri .

Inria



Bounding the Flow Time in Online Scheduling with Structured Processing Sets 9

Hence,

WFIFO

ri+1
≤WOPT

ri+1
+WFIFO

ri −WOPT
ri

≤WOPT
ri+1

+ (m− 1) pmax,i

≤WOPT
ri+1

+ (m− 1) pmax,i+1.

(ii) There is at least one idle machine between ri and ri+1 in ΠFIFO. At time ri+1, there
is thus no waiting tasks except Ti+1 (otherwise, it would have already started on an idle
machine). In the worst case, m− 1 machines start to process some tasks just before time
ri+1 for pmax,i time units. Then we have WFIFO

ri+1
≤ pi+1 + (m− 1) pmax,i.

Furthermore, in the best case Ti+1 is the only task in the system at time ri+1 in ΠOPT ,
thus WOPT

ri+1
≥ pi+1.

Therefore,

WFIFO

ri+1
≤ pi+1 + (m− 1) pmax,i

≤WOPT
ri+1

+ (m− 1) pmax,i

≤WOPT
ri+1

+ (m− 1) pmax,i+1.

Proof of Theorem 1: We consider an online schedule ΠFIFO built by FIFO and an optimal
o�ine schedule ΠOPT . We start by describing two lower bounds for FOPT

max,i:

FOPT
max,i ≥ pmax,i, (3)

FOPT
max,i ≥WOPT

ri /m. (4)

Lower bound (3) is immediate. Lower bound (4) follows from the fact that there is always a non-
�nished task Ti′ such that ri′ ≤ ri and that will necessarily complete after time ri +WOPT

ri /m.
Now let Ti be a task in ΠFIFO. Then�as it is scheduled by FIFO�it is the last task in

T FIFOri , and it will not be able to start before time ri+(WFIFO
ri −pi)/m in the worst case. Hence,

FFIFOi ≤WFIFO

ri /m+ pi −
pi
m
≤WFIFO

ri /m+

(
1− 1

m

)
pmax,i

is an upper bound for FIFO. By Lemma 1, we know that WFIFO
ri ≤WOPT

ri + (m− 1) pmax,i for
each task Ti. Then,

FFIFOi ≤WFIFO

ri /m+

(
1− 1

m

)
pmax,i

≤WOPT
ri /m+ 2

(
1− 1

m

)
pmax,i

≤
(

3− 2

m

)
FOPT
max,i (by lower bounds (3) and (4)).

As a corollary, the problem is polynomial on a single-machine; FIFO is optimal in this case.
It is also known that P |ri|Fmax is polynomial on parallel machines for homogeneous tasks [27].
As it solves a more general problem, the proposed algorithm is quite complex; we show that
FIFO is su�cient to solve P |ri, pi = p|Fmax.

RR n° 9446



10 Louis-Claude Canon, Anthony Dugois, Loris Marchal

Processing Set Structure Algorithm Type Competitive Ratio Ref.

inclusive Immediate Dispatch ≥ blog2(m) + 1c Th. 3
|Mi| = k Immediate Dispatch ≥ blogk(m)c Th. 4
nested Online ≥ 1

3
blog2(m) + 2c Th. 5

disjoint, |Mi| = k EFT 3− 2/k Cor. 1
interval, |Mi| = k Online ≥ 2 Th. 7

EFT ≥ m− k + 1 Th. 8, 9, 10

Table 2: Competitive ratio guarantees for the problem P |online−ri,Mi|Fmax with various pro-
cessing set restrictions and depending on the type of algorithm.

Theorem 2. FIFO solves the problem P |online−ri, pi = p|Fmax to optimality.

Proof: Let OPT be an optimal o�ine strategy and ΠOPT an optimal schedule. If on
each machine, tasks are processed by non-decreasing release time, then OPT corresponds to an
execution of the FIFO algorithm: two tasks starting simultaneously on two machines may be
allocated on di�erent machines in OPT and FIFO, but it does modify neither their completion
time nor the completion times of other tasks. If this is not the case, let Ti and Tj be two tasks
in ΠOPT such that ri ≤ rj , and where Ti starts after Tj (σi ≥ σj). Ti can be on any machine,
as well as Tj . Thus σi + p ≥ σj + p, and then Ci ≥ Cj (pi = pj = p).

Their contribution to the objective is F = max(Ci − ri, Cj − rj) = Ci − ri because ri ≤ rj
and Ci ≥ Cj . Consider what happens if we swap Ti and Tj . Note that this is possible as Tj
was originally started �rst although Ti is released before Tj . Their contribution to the maximum
�ow becomes F ′ = max(C ′i − ri, C ′j − rj). By construction, C ′i = Cj and C ′j = Ci. We have
C ′i− ri = Cj − ri ≤ Ci− ri (because Ci ≥ Cj), and C ′j − rj = Ci− rj ≤ Ci− ri (because ri ≤ rj).
Hence, F ′ ≤ F .

It follows that we can transform ΠOPT in another optimal schedule ΠFIFO by swapping
repeatedly non-sorted tasks. Then, FIFO is optimal.

As we proved the equivalence of FIFO and EFT in Section 4, all the results of the current
section also apply to EFT.

6 Bounds under Processing Set Restrictions

Obviously, the problem P |ri,Mi|Fmax is NP-hard in the o�ine context, that is, when all details
on tasks are available beforehand. However, when considering tasks with unit processing times,
Brucker et al. show that the problem P |ri, pi = 1,Mi|

∑
wiTi is solvable in polynomial time [23].

Thus, P |ri, pi = 1,Mi|Lmax is also polynomial, and by setting the deadline di = ri for all tasks,
it follows that P |ri, pi = 1,Mi|Fmax is polynomial.

Anand et al. show that P |online−ri, pi = 1,Mi|Fmax has a lower bound of Ω(m) on the
competitive ratio of any online algorithm [13] (even the ones that do not have the Immediate
Dispatch property). However, their proof is only valid for the general constraint Mi, and it is
unknown if special structures of the processing sets make the problem easier.

We provide here lower bounds on the competitive ratios of scheduling algorithms when con-
sidering that the processing sets follow a particular structure. Table 2 gives a summary of the
results presented here.

We �rst study the inclusive structure of processing sets. We show in Theorem 3 that re-
stricting to this structure reduces the lower bound on the competitive ratios to blog2(m) + 1c for
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Bounding the Flow Time in Online Scheduling with Structured Processing Sets 11

immediate dispatch algorithms. This is also true for the nested and interval structures, as they
generalize the inclusive structure.

Theorem 3. The competitive ratio of any immediate dispatch algorithm is at least blog2(m) + 1c
for the problem P |online−ri, pi = p,Mi(inclusive)|Fmax.

Proof: Let us assume that we work on a number of machines m that is a power of

2, i.e., m = 2blog2(m
′)c, where m′ is the actual number of machines. Let D be an arbitrary

online immediate dispatch algorithm. We build the following adversary. For each ` such that
1 ≤ ` ≤ log2(m), let T (`) denote the set of m

2`
tasks with pi = p > log2(m) and ri = `− 1 for all

Ti ∈ T (`). A �nal task is released at time ri = log2(m).
Then we de�neM(1) = {M1, . . . ,Mm} and for all ` > 1,M(`) denotes the subset of machines

ofM(`−1) of size m
2`−1 with at least (`− 1) m

2`−1 allocated tasks in total after step `− 1 (we prove

below that such a set exists). Finally, for each ` and for all Ti ∈ T (`), we setMi =M(`).
Let us prove by induction that the construction of M(`) is valid, i.e., that such a subset

exists for all ` > 0. Note that as D is an immediate dispatch algorithm, all tasks of T (`) are
irremediably scheduled at time `−1 on some machines ofM(`). For the construction ofM(2), we
start fromM(1) = {M1, . . . ,Mm} where m

2 tasks have been allocated on the �rst step. We select

forM(2) the subset of machines where these tasks have been allocated, possibly with additional
machines to reach the proper size m

2 .

We now assume that M(`) has been constructed and prove that we can build M(`+1). By
induction,M(`) has been allocated (`− 1) m

2`−1 tasks up to step `− 1, and m
2`

new tasks on step

`. This makes a total of (2` − 1)m
2`

tasks. We select for M(`+1) the m
2`

machines that are the

most loaded inM(`). We consider two cases:

(i) Each of the selected machines has at least ` tasks. Then in total, we have at least `m
2`

tasks, as requested.

(ii) There exists a selected machine with at most `− 1 tasks. This means that all non-selected
machines have at most `−1 tasks (otherwise, we would have selected one of them instead),
for a total work (on the m

2`
non-selected machines) of at most (` − 1)m

2`
tasks. Thus, on

selected machines, the number of tasks is at least

(2`− 1)
m

2`
− (`− 1)

m

2`
= `

m

2`
.

At step log2(m),M(log2(m)) is reduced to two machines, with at least 2(log2(m)−1) allocated
tasks, where a single task is scheduled at time log2(m)−1. This leaves one machine with at least
log2(m) tasks, where we �nally allocate the last task at time log2(m), leading to a maximum
�ow of (log2(m) + 1)p− log2(m). Note that

log2(m) + 1 = log2(2blog2(m
′)c) + 1

= blog2(m′)c+ 1 = blog2(m′) + 1c .

The optimal strategy consists in scheduling each set T (`) on the machines ofM(`) \M(`+1), for
a max-�ow of p. Thus, as p→∞, we have a competitive ratio of blog2(m′) + 1c.

The previous result may be adapted for processing sets that do not present any particular
structure, but have all the same size k.

Theorem 4. The competitive ratio of any immediate dispatch algorithm is at least blogk(m)c
for the problem P |online−ri, pi = p,Mi, |Mi| = k|Fmax.
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12 Louis-Claude Canon, Anthony Dugois, Loris Marchal

Proof: Let us assume that we work on a number of machines m that is a power of k, i.e.,

m = kblogk(m
′)c, where m′ is the actual number of machines. Let D be an arbitrary immediate

dispatch algorithm. We proceed by building the following adversary. For each ` such that
1 ≤ ` ≤ logk(m), let T (`) denote the set of m

k`
tasks with pi = p > logk(m) and ri = `− 1 for all

Ti ∈ T (`).
Note that asD is an immediate dispatch algorithm, all tasks of T (`) are irremediably scheduled

at time `−1. Then we de�neM(`) as the set of machines on which the tasks of T (`) are scheduled
at this speci�c time, with the particular caseM(0) = M . Finally, for each ` and for all Ti ∈ T (`),
we set Mi ⊆ M(`−1), with |Mi| = k. Moreover, all processing sets of tasks that belong to the
same set T (`) are mutually disjoint, i.e.,Mi ∩Mj = ∅ for all Ti, Tj ∈ T (`) such that i 6= j.
D will be forced to schedule each set T (`) on the exact same machines that are already busy

with the tasks of the previous set T (`−1). As all processing sets are mutually disjoint, we know
that the tasks T (`) are scheduled on

∣∣T (`)
∣∣ = m

k`
machines exactly. Moreover, there are exactly

`m
k`

waiting tasks on these machines at step `. Thus, at the last step ` = logk(m), the completion
time is logk(m)p. Therefore, the maximum �ow time is logk(m)p− (logk(m)− 1). Note that

logk(m) = logk(kblogk(m
′)c)

= blogk(m′)c .

The optimal strategy consists in scheduling each set T (l) on the machinesM(l−1) \M(l), for a
max-�ow of p. Thus, as p→∞, we have a competitive ratio of blogk(m′)c.

When considering online algorithms that do not have the Immediate Dispatch property (and
thus may allocate tasks only when machines are available for computation), we can still prove
a similar lower bound on the competitive ratio, as long as the processing sets are nested. The
proof is an adaptation of Anand et al. [13], which did not consider any structure.

Theorem 5. The competitive ratio of any online algorithm is at least 1
3 blog2(m) + 2c for the

problem P |online−ri, pi = 1,Mi(nested)|Fmax.

Proof: Let us assume that we work on a number of machines m that is a power of 2,

i.e., m = 2blog2(m
′)c, where m′ is the actual number of machines. Let N be an arbitrary online

scheduling algorithm. Machines are numbered from 1 to m, and let F be a number such that
F ≥ log2(m) + 2. We construct the following instance. At time t0 = 0, we consider the interval
of machines of size s0 and starting from u0 (that is, {Mu0 ,Mu0+1, . . . ,Mu0+s0−1}), denoted by
I(u0, s0), where u0 = 1 and s0 = m. We submit s0 unit tasks at time t0, with the processing set
restriction Mi = I(u0, s0). Let G1,0 denote this set of tasks. For each machine Mj ∈ I(u0, s0),
we release one unit task at each time t0, t0 + 1, . . . , t0 + F − 1 and feasible only on the machine
Mj . Let G2,0 denote this set. Note that at time t0 + F − 1, algorithm N should have completed
the tasks of G1,0, otherwise the maximum �ow time would be greater than log2(m) + 2.

Now, for all k > 0, we set tk = tk−1 + F and sk = 1
2sk−1. We choose uk such that

uk−1 ≤ uk ≤ uk−1 + sk−1 − sk = uk−1 + sk (in other words, I(uk, sk) is a subinterval of
I(uk−1, sk−1)), and such that |G0,k| is maximized, where G0,k ⊂ G2,k−1 is the set of tasks that are
submitted before tk but not completed at this time, and that can be executed on one machine
only in the interval I(uk, sk). Then we submit task sets G1,k and G2,k as previously: G1,k is made
of sk tasks with processing set I(uk, sk) released at time tk, and G2,k contains F tasks for each
machine Mj ∈ I(uk, sk) submitted at times tk, tk + 1, . . . , tk +F − 1 and that must be processed
on Mj .

Figure 2 illustrates a schedule of the described instance.
We prove the following statements by induction: for all k ≥ 0, (i) sk = m/2k and (ii) there

are at least ksk uncompleted tasks on I(uk, sk) at time tk before sending G1,k and G2,k, i.e.,
|G0,k| ≥ ksk.
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I(uk−1, sk−1)

I(uk, sk)

tk−1 tk tk+1

F F

G0,∗
G1,∗
G2,∗

Figure 2: Example of scheduling for the described adversary.

For the base case (k = 0), we have s0 = m/20 = m, and G0,k = ∅, so there is no completed
task on I(1,m) at time 0 before sending G1,0 and G2,0.

Now assume that sk = m/2k is true at a certain step k. At step k + 1, we have sk+1 = 1
2sk

by de�nition, so sk+1 = 1
2 (m/2k) = m/2k+1, which proves the statement (i).

Suppose that there are at least ksk uncompleted tasks on I(uk, sk) at time tk, i.e., |G0,k| ≥ ksk.
Then we send G1,k and G2,k, which means that there are at least

ksk + sk + Fsk − Fsk = (k + 1)sk

uncompleted tasks on I(uk, sk) at time tk+1 = tk + F .
Now we choose the subinterval I(uk+1, sk+1) ⊂ I(uk, sk) maximizing |G0,k+1| at time tk+1.

Let us divide I(uk, sk) into 2 disjoint subintervals of size 1
2sk and by contradiction, assume that

no such subinterval contains (k+ 1) 1
2sk uncompleted tasks, i.e., there are at most (k+ 1) 1

2sk− 1
uncompleted tasks on each of these subintervals. Thus, there are at most 2 ((k + 1) 1

2sk − 1) =
(k + 1)sk − 2 uncompleted tasks on I(uk, sk), which contradicts the fact that I(uk, sk) holds at
least (k + 1)sk uncompleted tasks. Then, the chosen subinterval I(uk+1, sk+1) contains at least
(k+ 1) 1

2sk = (k+ 1)sk+1 uncompleted tasks at time tk+1 before sending G1,k+1 and G2,k+1 (that
is, |G0,k+1| ≥ (k + 1)sk+1), which proves the statement (ii).

We stop when we reach the step k such that sk = 1. This means that m/2k = 1, i.e.,
k = log2(m). Therefore, there remains at least ksk = log2(m) uncompleted tasks on an interval
of size 1 at time tk, plus 1 task of G1,k and 1 task of G2,k, which gives a maximum �ow time of
at least log2(m) + 2. Thus, on all m′ machines, we have a maximum �ow of

log2(m) + 2 = log2(2blog2(m
′)c) + 2

= blog2(m′)c+ 2 = blog2(m′) + 2c .

The optimal strategy consists, at each step 0 ≤ k < log2(m), in executing all tasks of G1,k on the
subinterval I(uk, sk) \ I(uk+1, sk+1), for a max-�ow of 3: tasks of G1,k are scheduled �rst (with
�ow 2), followed by tasks of G2,k, which have a �ow at most 3.

The case of disjoint processing sets is particular: we may apply a competitive algorithm
independently on each set, which leads to an algorithm with adapted competitive ratio.

Theorem 6. From any f(m)-competitive algorithm for the problem P |online−ri|Fmax, we can
design an adapted algorithm with a competitive ratio of maxi {f(|Mi|)} for the disjoint case
(P |online−ri,Mi(disjoint)|Fmax).
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14 Louis-Claude Canon, Anthony Dugois, Loris Marchal

Proof: Let I be an arbitrary instance of the problem P |online−ri,Mi(disjoint)|Fmax, and
let N be an f(m)-competitive algorithm for P |online−ri|Fmax. By de�nition of the disjoint
processing set restriction, we haveMi ∩Mj = ∅ orMi =Mj for all tasks Ti, Tj (with i 6= j) of
the instance I. LetM denote the set of all subsetsMi.

Then, for all Mu ∈ M, we construct the set of tasks Tu = {Ti ∈ T s.t.Mi = Mu}. As
Mu ∩Mv = ∅ for allMu,Mv ∈M such that u 6= v, we clearly have Tu ∩ Tv = ∅. Moreover,⋃

Mu∈M
Tu = T.

Hence, for all Mu ∈ M, Tu and Mu can clearly constitute an instance Iu of the problem
P |online−ri|Fmax. We design an online algorithm N ′ for the original problem by applying N in
parallel to each instance Iu.

By de�nition of the competitive ratio of N , we have FNmax(Iu) ≤ f(|Mu|)FOPT
max (Iu), where

OPT is an optimal o�ine strategy. As Iu is a subproblem of I, we also have

FOPT
max (Iu) ≤ FOPT ′

max (I)

for all Iu, where OPT ′ is an optimal o�ine strategy built by applying OPT in parallel on each
instance Iu. Then, FNmax(Iu) ≤ f(|Mu|)FOPT ′

max (I), and

FN
′

max(I) = max
u

{
FNmax(Iu)

}
≤ max

u
{f(|Mu|)}FOPT ′

max (I).

This result has an important corollary for EFT on disjoint processing sets.

Corollary 1. EFT is (3−2/max |Mi|)-competitive for the disjoint case and (3−2/k)-competitive
when |Mi| = k for allMi.

We now move to the study of processing sets that are intervals of �xed size, which we outlined
in the introduction as being representative of the replication scheme used in key-value stores.
We show that the competitive ratio of any algorithm (even without the Immediate Dispatch
property) is not smaller than 2.

Theorem 7. The competitive ratio of any online algorithm is at least 2 for the �xed-size interval
problem P |online−ri, pi = p,Mi(interval), |Mi| = k|Fmax.

Proof: Let N be an arbitrary online algorithm. At time 0, the adversary sends one task
T1 with processing time p and withM1 = {M2,M3}. Now there are two cases: N executes this
task (i) on M2 or (ii) on M3, and we denote its starting time by σ1. Note that if σ1 ≥ p, the �ow
time for this task is at least 2p, while an optimal algorithm could schedule this task at time 0
with a �ow time of 1, leading to a ratio larger than, or equal to 2. We thus assume that σ1 < p.

Let us assume N executes T1 on M2 (i). Then the adversary sends two tasks T2 and T3 at
time σ1 + 1 with processing time p and with M2 = M3 = {M1,M2}. N will schedule at least
one task at time σ1 +p at the earliest, and this task will complete at time σ1 + 2p at the earliest,
for a max-�ow of at least 2p − 1. The optimal schedule consists in executing T1 on M3 at time
0, to let the next two tasks execute on M1 and M2 at time 1, for a max-�ow of p. As p → ∞,
the competitive ratio is 2. The case (ii) is proved analogously by sending two tasks on interval
{M3,M4}.

The lower bound on the competitive ratio can be largely increased when considering imme-
diate dispatch algorithms, and in particular EFT, as de�ned in Algorithm 2 in Section 4. Note
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that among immediate dispatch algorithms, EFT is a very reasonable candidate: when a new
task is submitted, it is allocated to the machine that will �nish it the earliest. Without pro-
cessing set restrictions, this is known to produce a very good load balancing, as well as good
performance for the max-�ow [11]. It turns out that this is not the case when adding processing
interval restrictions. We prove in Theorems 8, 9 and 10 that the competitive ratio of EFT is
larger than m− k + 1 in a variety of settings.

To exhibit this result, we need to focus on a speci�c tie-break function. We start by studying
the Min tie-break function: in the set Ui of candidate machines that may �nish task Ti at the
earliest, we choose the machine with smallest index. The obtained algorithm is called EFT-Min

(Algorithm 3) and its competitive ratio is bounded in Theorem 8.

Algorithm 3 EFT-Min

1: when a new task Ti is released do
2: Get U ′i according to completion times of machinesMi (Equation (2))
3: u←Min(U ′i)
4: µi ← u
5: σi ← max (ri, Cu,i−1)
6: Update the completion time of Mu

Theorem 8. The competitive ratio of EFT-Min is at least m− k+ 1 for the �xed-size interval
problem P |online−ri, pi = 1,Mi(interval), |Mi| = k|Fmax, where 1 < k < m.

We show that the competitive ratio of EFT-Min is at least m − k + 1 for the problem of
minimizing max-�ow when the processing set is an interval of size k, with 1 < k < m, even when
tasks are unitary. For ease of reading, we say that a given task Ti is of type λ if its processing
interval restriction starts on machine Mλ, i.e., Mi = {Mλ, . . . ,Mλ+k−1}, and we say that it is
of type ≥ λ′ (resp. ≤ λ′) if λ ≥ λ′ (resp. λ ≤ λ′).

Let us build the following adversary (we illustrate an EFT-Min schedule of this adversary
in Figure 3). At each time t, we send m tasks such that:

(i) for 1 ≤ i ≤ m− k, task Ti is of type m− k − i+ 2 (blue task in Figure 3);

(ii) for m− k < i ≤ m, task Ti is of type 1 (red task in Figure 3).

This adversary relies on the key observation that EFT-Min is naive: when several machines
present the minimum load value among all machines, it will choose the �rst machine that satis�es
its load-minimality criterion, i.e., the machine whose index is the lowest.

Note that at time t, just before sending them next tasks,mt tasks have already been scheduled
in ΠEFT, and each machine Mj completes at time Cj,mt. Let wt(j) = max(0, Cj,mt − t) be the
work allocated on machine Mj and waiting to be processed, just before the adversary releases
the m tasks. We call wt the schedule pro�le of EFT at time t.

The proof consists in showing that EFT-Min converges to a stable schedule pro�le wτ such
that for all j,

wτ (j) = min(m− j,m− k).

Figure 4 shows an example of a schedule pro�le wt, which is behind the stable pro�le wτ .

De�nition 1. For any t 6= t′, we say that

(i) wt = wt′ if wt(j) = wt′(j) for all j;
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Figure 3: An EFT-Min schedule of the adversary from time t = 0 to t = 3, for m = 6 and k = 3.
Colored tasks are released in-order at each time t.

M1

M2

M3

M4

M5

M6

t = 2

wt

wτ

Figure 4: The schedule pro�le wt of EFT-Min at time t (in green), just before the adversary
sends m new tasks. wt is strictly behind the stable pro�le wτ we want to reach (in purple).

(ii) wt ≤ wt′ if wt(j) ≤ wt′(j) for all j (wt is behind wt′);

(iii) wt < wt′ if wt ≤ wt′ and there is at least one machine Mj such that wt(j) < wt′(j) (wt is
strictly behind wt′).

The proof consists in two phases: �rst, we show that when the schedule pro�le is strictly
behind wτ , there exists a future time such that the schedule pro�le is closer to wτ (Lemma 3);
second, we show that at any time, either we can �nd a past time such that the schedule pro�le
exceeds wτ , or the current schedule pro�le is behind wτ (Lemma 4).

Before we dive into the proof, we start with the following lemma, which proves that for any
t, wt is a non-increasing function. This will be of particular importance when proving Lemma 3.

Lemma 2. At any time t and for all j such that 1 ≤ j < m, wt(j + 1) ≤ wt(j).

Proof: Let us proceed by induction.
Base case (t = 0). No task arrived yet, so w0(j) = 0 for all machines j.
Induction step. Now we assume that for a given t, wt(j + 1) ≤ wt(j) for all j such that

1 ≤ j < m. By contradiction, suppose there exists j such that wt+1(j + 1) > wt+1(j). We begin
by showing that, as a consequence, only one task can have been scheduled on machine Mj+1 at
time t, which will lead to a contradiction.

Let Ti be the last allocated task on machine Mj+1. By induction hypothesis, we know that
wt(j + 1) ≤ wt(j), and we assumed that wt+1(j + 1) > wt+1(j), thus Ti has been scheduled at a
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Ti

wt(j)

wt+1(j)

wt(j + 1)

wt+1(j + 1)

Mj

Mj+1

t t+ 1

wt

wt+1

Figure 5: Schedule pro�les onMj andMj+1 at times t and t+1, under the described hypotheses.

time comprised between t and t+ 1 (let t+ ε denote this speci�c time).
If we had wt+ε(j) > wt+ε(j + 1), then Ti could not be the last allocated task on Mj+1 at

time t + 1, because we assumed that wt+1(j + 1) > wt+1(j), and EFT-Min is an immediate
dispatch algorithm. Therefore, we necessarily had wt+ε(j) ≤ wt+ε(j + 1) at time t + ε, just
before scheduling Ti. We can deduce that we have Mi = {Mj+1, . . . ,Mj+k}, otherwise we
would have scheduled Ti on the less-loaded machine Mj (then we say that Ti is of type j + 1).
Furthermore, all machines Mj+2, . . . ,Mj+k were at least as much loaded as Mj+1 at time t+ ε
(wt+ε(j

′) ≥ wt+ε(j + 1) for all j′ such that j + 1 < j′ ≤ j + k), otherwise we would not have
scheduled Ti on Mj+1.

By construction of the adversary, the tasks sent before Ti at time t cannot have been placed
onMj+1 because their interval restriction starts afterMj+1 (they are of type ≥ j+2). Moreover,
the tasks sent after Ti at time t cannot have been placed on Mj+1 as well (otherwise, Ti would
not be the last task on Mj+1). Hence, Ti is the only task scheduled on Mj+1 between times t
and t+ 1.

We consider two cases:

(i) First, suppose that wt(j + 1) = 0. This means that EFT-Min makes Ti starting at time t
on Mj+1, and then Ti completes at time t+ 1. We proved that Ti is the only task that is
scheduled on Mj+1 at time t, and as it completes at time t+ 1, we can say that there is no
remaining work at this exact time, i.e., wt+1(j + 1) = 0. This contradicts our hypothesis
wt+1(j + 1) > wt+1(j) ≥ 0.

(ii) Now suppose that wt(j + 1) > 0. Following our two hypothesis wt(j + 1) ≤ wt(j) and
wt+1(j + 1) > wt+1(j), and from the consequent fact that exactly one task has been
scheduled on Mj+1 between t and t + 1, the only way to match all these assumptions is
when there is as much waiting work onMj as onMj+1 at time t, i.e., wt(j) = wt(j+1), and
no task is scheduled on Mj between t and t+ 1. Figure 5 helps to visualize the described
situation.

But the last task Ti scheduled on Mj+1 is of type j + 1, which means that, by construc-
tion, at least one task of type j arrived after Ti at time t. We showed that all machines
Mj+2, . . . ,Mj+k were at least as much loaded as Mj+1 at time t + ε, thus they were at
least as much loaded as Mj . As a consequence, at least one task must have been scheduled
by EFT-Min on Mj between t+ ε and t+ 1, which is a contradiction.

Now we are able to show the �rst part of our proof: when the schedule pro�le of EFT-Min

is strictly behind the stable pro�le wτ , there must exist a future time t′ such that the waiting
work volume is greater than the current volume, i.e.,

∑
j wt(j) <

∑
j wt′(j).
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Lemma 3. At any time t such that wt < wτ , there exists a time t′ > t such that:

(i) for all t1 such that t ≤ t1 < t′, we have
∑
j wt1(j) =

∑
j wt(j);

(ii)
∑
j wt(j) <

∑
j wt′(j).

Proof: Idleness property. The �rst thing to notice is that when wt is empty for a
given machine that is not the last one, i.e., there exists j < m such that wt(j) = 0, we know
that all subsequent machines have no remaining work to do as well: wt(j

′) = 0 for all j′ > j
(Lemma 2). When it happens, EFT-Min will not schedule any task on the last machine, because
the only eligible task is the �rst one, which is of type m− k + 1; that task will be scheduled on
Mmax(j,m−k+1) (the �rst lightly-loaded compatible machine) at time t.

Therefore, m new tasks are released by the adversary and at most m− 1 tasks are processed
(no work can be done by the last machine), so we have∑

j

wt+1(j) ≥
∑
j

wt(j) +m− (m− 1),

and thus
∑
j wt+1(j) >

∑
j wt(j).

This means that if wt(j) = 0 for some j < m, we have
∑
j wt+1(j) >

∑
j wt(j). The proof is

mainly based on this useful property that we call the Idleness Property. If the schedule pro�le
is strictly behind wτ , we will show that there must exist a plateau on some machines, and this
plateau will necessarily propagate on next machines step by step, until we reach a time t such
that wt(m− 1) = 0.

Existence of a plateau. Now suppose that the schedule pro�le wt is strictly behind wτ
(wt < wτ ). By De�nition 1, this means that wt(j) ≤ wτ (j) for all j, and there is at least one
machine Mj′ such that

wt(j
′) < wτ (j′). (5)

Let j′ be the highest index of such a machine; then we have

wt(j) = wτ (j) for all j > j′, (6)

and in particular, wt(j
′+ 1) = wτ (j′+ 1). Let us show that there is a plateau on Mj′ and Mj′+1

at time t, i.e., that wt(j
′) = wt(j

′ + 1). First, note that by de�nition of wτ , we have

wτ (j) = wτ (j + 1) + 1 for all k ≤ j < m. (7)

We have j′ ≥ k, because if wt(j) < wτ (j) for some j < k, schedule pro�les of all machines
Mj+1, . . . ,Mk are also strictly behind the stable pro�le wτ (by Lemma 2 and de�nition of wτ ), and
we de�ned j′ as the highest index; furthermore, j′ < m, because we assumed that wt(j

′) < wτ (j′)
and by de�nition wτ (m) = 0 (wt(m) cannot be lower than 0). Therefore,

wt(j
′ + 1) ≤ wt(j′) < wτ (j′) (by Lemma 2 and Eq. (5))

< wτ (j′ + 1) + 1 (by Eq. (7))

< wt(j
′ + 1) + 1 (by Eq. (6))

which gives

wt(j
′ + 1) ≤ wt(j′) ≤ wt(j′ + 1), (8)

and then wt(j
′) = wt(j

′ + 1).
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Figure 6: Propagation of the plateau from machinesMj′ andMj′+1 at time t to machinesMj′+1

and Mj′+2 at time t+ 1.

By de�nition, wτ (m) = 0, and as wt < wτ , wt(m) = 0. If j′ = m − 1, we have wt(j
′) =

wt(m− 1) = wt(m) = 0, and by the Idleness Property, the conclusion is immediate. Otherwise,
j′ < m−1, so wt(m−1) = wτ (m−1) = 1. By Lemma 2, wt(j) ≥ 1 for all j < m, and then EFT-
Min will schedule the �rst task on the last machine. Overall, m tasks will be processed at time t,
and m tasks are sent by the adversary; therefore,

∑
j wt+1(j) =

∑
j wt(j)−m+m =

∑
j wt(j).

Propagation of the plateau. Now we show that the plateau propagates on the next
machine in the next step, i.e., as j′ < m−1, wt(j

′) = wt(j
′+1) implies wt+1(j′+1) = wt+1(j′+2).

By Eq. (6), wt(j) = wτ (j) for all j > j′, which means that the �rst m− j′ − 1 tasks will be
scheduled on their last machine (µmt+i = m− i+ 1 for each 1 ≤ i < m− j′). The corresponding
machines will process one task at time t. Thus, wt+1(j) = wt(j)−1+1 = wt(j) for all j > j′+1,
and in particular,

wt+1(j′ + 2) = wt(j
′ + 2). (9)

As wt(j
′) = wt(j

′ + 1), the (m − j′)-th task will not be scheduled on Mj′+1 (the index of the
machine it will be placed on is at most j′: µmt+m−j′ < j′ + 1). All remaining tasks will be
scheduled on machines M1, . . . ,Mj′ , because they are of type ≤ j′ − k + 1. Figure 6 shows the
propagation process.

Then Mj′+1 does not receive any additional task at time t, but it still processes one task at
this time, so we have:

wt+1(j′ + 1) = wt(j
′ + 1)− 1

= wτ (j′ + 1)− 1 (by Eq. (6))

= wτ (j′ + 2) (by Eq. (7))

= wt(j
′ + 2) (by Eq. (6))

= wt+1(j′ + 2). (by Eq. (9))

This shows that the plateau propagates on machinesMj′+1 andMj′+2 at time t+1. By repeating
the process, we reach a time at which j′+1 = m−1 and j′+2 = m, thus wt(m−1) = wt(m) = 0,
and the Idleness Property applies. This concludes the proof.

The second phase of our proof consists in showing that either there exists a past time such
that the schedule pro�le exceeds the stable pro�le wτ , or the current pro�le is behind wτ .
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Lemma 4. At any time t, either (i) there exists a time t′ ≤ t such that wt′(j) > m−k for some
j or (ii) wt ≤ wτ .

Proof: Let us proceed by induction.
Base case (t = 0). Obviously, the base case is true (w0 = 0 ≤ wτ ).
Induction step (case (i)). First suppose there exists a time t′ ≤ t such that wt′(j) > m−k

for some j. This is obviously still true at time t+ 1.
Induction step (case (ii)). Now suppose that wt ≤ wτ for some t. By contradiction, let us

assume that there exists a machine Mj such that wt+1(j) > wτ (j). Combined to the fact that
wt(j) ≤ wτ (j), we have wt+1(j) ≥ wt(j) + 1. Let q denote the number of tasks scheduled on Mj

at time t, such that wt(j) + q − 1 = wt+1(j). Then, wt(j) + q − 1 ≥ wt(j) + 1, i.e., q ≥ 2.
So at least 2 tasks must have been scheduled on machine Mj at time t. Let j be the highest

index of such a machine. Two subcases arise:

(a) j ≤ k. Then by construction wτ (j) = m− k, and we have wt+1(j) > wτ (j) = m− k. This
proves the induction.

(b) j > k. By induction hypothesis, we know that wt(m) = 0 (because wτ (m) = 0), and by
construction, at most one task can be scheduled on the last machine at time t. Therefore,
wt+1(m) = 0, so j < m. Let Ti be the last allocated task on Mj , with σi its starting time:

σi = t+ 1 + wt+1(j)− 1 = t+ wt+1(j).

Let λi be the type of Ti, i.e.,Mi = {Mλi , . . . ,Mλi+k−1}. As Ti has been allocated to Mj ,
we necessarily have λi ≤ j ≤ λi + k − 1.

Suppose λi = j. By construction, all tasks sent before Ti at time t cannot have been
scheduled on Mj , because their machine interval starts after Mλi . As Ti is the last task of
Mj , no task sent after Ti at time t can have been scheduled on this machine. Then Ti is
the only task scheduled on Mj between t and t+ 1, which contradicts the fact that at least
2 tasks must have been scheduled on Mj . Hence, λi < j.

Now, as Ti has been allocated on Mj and not on Mj−1, we know there was already a task
Ti′ on Mj−1 when the scheduling of Ti occurred, with σi′ = σi = t+ wt+1(j).

At time t, just before the adversary releases them tasks,Mj−1 completes at time Cj−1,mt =
t + wt(j − 1). We have wt(j − 1) ≤ wτ (j − 1) (induction hypothesis); we supposed that
wt+1(j) > wτ (j); �nally, wτ (j − 1) = wτ (j) + 1 (by construction of wτ ). Therefore,

t+ wt(j − 1) ≤ t+ wτ (j − 1)

≤ t+ wτ (j) + 1

< t+ wt+1(j) + 1 = σi′ + 1,

which means that σi′ ≥ t + wt(j − 1). In other words, Ti′ starts after time Cj−1,mt.
Hence, the scheduling of Ti′ occurred between t and t + 1, before the scheduling of Ti
(t ≤ ρi′ < ρi < t+ 1). Let λi′ be the type of Ti′ . We necessarily have λi′ > λi.

If k = 2, this is a contradiction, because Ti′ cannot have been scheduled on Mj−1 (we
proved that λi < j, soMi = {Mj−1,Mj}, and then λi′ > j − 1).

If k > 2, we deduce that Ti′ has been scheduled on Mj−1 because all the machines
Mj , . . . ,Mλi′+k−1 are planned to �nish at or after time σi′ . In particular, we have

Cj+1,i′ ≥ σi′ ≥ t+ wt+1(j) > t+ wτ (j).
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Then,

Cj+1,i′ − 1 > t+ wτ (j)− 1 = t+ wτ (j + 1).

Moreover, Cj+1,i′ ≤ Cj+1,m(t+1) = t+ 1 + wt+1(j + 1). Therefore,

t+ wt+1(j + 1) > t+ wτ (j + 1),

i.e., wt+1(j + 1) > wτ (j + 1). This is a contradiction, because we had chosen j to be the
highest index such that wt+1(j) > wτ (j). This concludes the proof.

Proof of Theorem 8: To exhibit the lower bound of m− k+ 1 on the competitive ratio of
EFT-Min, we �rst show there exists a time t such that wt = wτ or wt(j) > m− k for some j.

For a given time t, we know by Lemma 4 that either (i) there exists a time t′ ≤ t such that
wt′(j) > m − k for some j or (ii) wt ≤ wτ . If case (i) is true, then we found a time t such that
wt(j) > m− k for some j. If case (ii) is true, either wt < wτ or wt = wτ . Suppose that wt < wτ .
Then by Lemma 3, we can �nd a future time t′ such that

∑
wt′(j) >

∑
wt(j). Therefore, while

we have wt < wτ , we can always �nd a future time such that the schedule pro�le is closer to wτ .
If we proceed step by step, we necessarily reach a time t′ such that wt′ = wτ . This proves our
initial claim.

Now, if wt(j) > m−k for some t, j, there exists a task Ti such that Fi ≥ m−k+1. If wt = wτ
for some t, EFT-Min will schedule one task on each machine (by de�nition of the adversary and
wτ ). Hence, the k last tasks will be allocated on the k �rst machines, and they will have a �ow
time of m− k + 1. In any case, we have Fmax ≥ m− k + 1.

On the described instance, at each time step, the optimal strategy consists in scheduling each
task of type ≥ k + 1 on the compatible machine of highest index. This allows reserving the k
�rst machines to the k last tasks, and avoid any delay accumulation. Therefore, for all tasks Ti,
we have FOPT

i = 1, and then FOPT
max = 1.

The previous bound on the competitive ratio of EFT-Min can be extended to the case
where EFT uses a random tie-break function Rand, and we call this algorithm EFT-Rand

(Algorithm 4). The only condition for Theorem 9 to hold is that among a set of candidate
machines, the random tie-break function chooses each machine with positive probability, i.e., no
machine is systematically discarded when it is a possible candidate.

Algorithm 4 EFT-Rand

1: when a new task Ti is released do
2: Get U ′i according to completion times of machinesMi (Equation (2))
3: u← Rand(U ′i)
4: µi ← u
5: σi ← max (ri, Cu,i−1)
6: Update the completion time of Mu

Theorem 9. The competitive ratio of EFT-Rand is at least m− k + 1 (almost surely) for the
�xed-size interval problem P |online−ri, pi = 1,Mi(interval), |Mi| = k|Fmax, where 1 < k < m.
In other words, there exists an instance for which we have

P
(
Fmax ≥ (m− k + 1)FOPT

max

)
= 1.

Before starting the proof, we de�ne the weighted distance on machine Mj at time t as

ϕt(j) = 2wτ (j)(m− k + 1− wt(j)).
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For any j1, j2 such that 1 ≤ j1 ≤ j2 ≤ m, the partial weighted distance between Mj1 and Mj2 at
time t is de�ned as

Φt(j1, j2) =

j2∑
j=j1

ϕt(j),

and the total weighted distance is denoted by Φt = Φt(1,m). Intuitively, this distance quanti�es
the proximity between the schedule at time t and a simpli�ed version of the stable schedule
pro�le wτ . In the Lemma 5, we show that this distance decreases with t.

Lemma 5. At any time t, (i) if there exists a task Ti≤m−k released at t and that is not scheduled
on its last machine, i.e., µmt+i 6= m− i+ 1, then Φt+1 < Φt, (ii) otherwise Φt+1 ≤ Φt.

Proof: Case (i). At a given time t, suppose there exists at least one task Ti≤m−k
released at t and that is not scheduled on its last machine, i.e., µmt+i 6= m − i + 1. Let i be
the highest index of such a task. We will study the value of Φt − Φt+1 in two steps: �rst,
the value of Φt(1,m − i) − Φt+1(1,m − i) on machines M1, . . . ,Mm−i; second, the value of
Φt(m− i+ 1,m)− Φt+1(m− i+ 1,m) on machines Mm−i+1, . . . ,Mm.

From 1 to m − i. We choose i to be the highest index such that Ti is not put on its last
machine; this means that all tasks Ti′ such that i < i′ ≤ m − k are scheduled on their last
machine Mm−i′+1, and the last k tasks are scheduled on any of the �rst k machines (because
they are of type 1). In summary, all tasks Ti′ such that i ≤ i′ ≤ m are scheduled on the �rst
m− i machines, and there are m− i+ 1 such tasks.

Any machine Mj among M1, . . . ,Mm−i can process at most 1 task between t and t+ 1. Let
qt,j be the number of tasks released at time t and scheduled on Mj .

Hence, wt+1(j) ≥ wt(j)− 1 + qt,j , and then

2wτ (j)(m− k + 1− wt+1(j)) ≤ 2wτ (j)(m− k + 1− wt(j) + 1− qt,j).

Therefore, ϕt+1(j) ≤ ϕt(j) + 2wτ (j) − 2wτ (j)qt,j .

By summing over j, we have

m−i∑
j=1

ϕt+1(j) ≤
m−i∑
j=1

ϕt(j) +

m−i∑
j=1

2wτ (j) −
m−i∑
j=1

2wτ (j)qt,j .

Note that

m−i∑
j=1

2wτ (j)qt,j ≥
m∑
i′=i

2wτ (µmt+i′ ),

as we have shown that at least the last m − i + 1 tasks released at t are scheduled on the �rst
m− i machines.

Then,

Φt+1(1,m− i) ≤ Φt(1,m− i) +

m−i∑
j=1

2wτ (j) −
m∑
i′=i

2wτ (µmt+i′ ). (10)
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Now we notice that

m∑
i′=i

2wτ (µmt+i′ ) = 2wτ (µmt+i) +

m−k∑
i′=i+1

2wτ (µmt+i′ ) +

m∑
i′=m−k+1

2wτ (µmt+i′ )

= 2wτ (µmt+i) +

m−i∑
j=k+1

2m−j +

k∑
j=1

2m−k

= 2wτ (µmt+i) +

m−i∑
j=1

2wτ (j).

Finally, by simplifying Eq. (10),

Φt(1,m− i)− Φt+1(1,m− i) ≥ 2wτ (µmt+i). (11)

From m− i+1 to m. We saw earlier that the last m− i+1 tasks released at time t must have
been scheduled on the �rst m− i machines. We deduce that only the �rst i− 1 tasks can have
been put on the last i machines. There are more machines than tasks; therefore, there exists
at least one machine Mj such that j > m − i that did not receive any task at time t. Mj can
process at most one task between t and t+ 1, so we have wt+1(j) ≥ wt(j)− 1, and then

ϕt(j)− ϕt+1(j) ≥ −2wτ (j).

In the worst case, all machines Mj such that j > m− i receive no task. Then we have

m∑
j=m−i+1

(ϕt(j)− ϕt+1(j)) ≥ −
m∑

j=m−i+1

2wτ (j),

and then

Φt(m− i+ 1,m)− Φt+1(m− i+ 1,m) ≥ −
m∑

j=m−i+1

2wτ (j). (12)

Now we sum Eq. (11) and (12), and we get

Φt − Φt+1 ≥ 2wτ (µmt+i) −
m∑

j=m−i+1

2wτ (j).

Because µmt+i ≤ m− i, we have 2wτ (µmt+i) ≥ 2wτ (m−i), and as i ≤ m− k, 2wτ (m−i) = 2i and
m− i+ 1 ≥ k + 1. Therefore,

Φt − Φt+1 ≥ 2i −
m∑

j=m−i+1

2m−j = 2i −
i−1∑
j′=0

2j
′

= 2i −
(
2i − 1

)
= 1,

and we conclude that Φt − Φt+1 > 0.
Case (ii). Now suppose that at a given time t, all tasks Ti≤m−k released at t are scheduled

on their last machine, i.e., µmt+i = m− i+ 1.
From 1 to k. Only the last k tasks released at time t can have been put on the �rst k

machines. Moreover, these machines can process at most k tasks between t and t+ 1. Hence,

k∑
j=1

wt+1(j) ≥
k∑
j=1

wt(j) + k − k =

k∑
j=1

wt(j),
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and then

2m−k
k∑
j=1

(m− k + 1− wt+1(j)) ≤ 2m−k
k∑
j=1

(m− k + 1− wt(j)),

which gives

k∑
j=1

2wτ (j)(m− k + 1− wt+1(j)) ≤
k∑
j=1

2wτ (j)(m− k + 1− wt(j)).

Therefore,

Φt(1, k)− Φt+1(1, k) ≥ 0. (13)

From k + 1 to m. All tasks Ti≤m−k are put on their last machines. Then all machines
Mk+1, . . . ,Mm receive exactly one task at time t, and we have wt+1(j) = wt(j) for these machines,
i.e., ϕt(j)− ϕt+1(j) = 0.

Hence,

m∑
j=k+1

(ϕt(j)− ϕt+1(j)) = 0,

and then

Φt(k + 1,m)− Φt+1(k + 1,m) = 0. (14)

By summing Eq. (13) and (14), we get Φt − Φt+1 ≥ 0.
Now we prove that if we have no choice at a given time t (i.e., there is no tie-break) and if

all tasks released at this time are put on their last machine, then we have reached a pro�le that
is similar to the stable pro�le wτ , where the load of machines decreases with their index.

Lemma 6. At any time t, if µmt+i = m− i+ 1 and |Umt+i| = 1 for all task Ti≤m−k released at
t, then wt(j + 1) < wt(j) for all k ≤ j < m.

Proof: Suppose that for a given time t, all tasks Ti≤m−k are scheduled on their last
machine. This means that all machines Mk+1, . . . ,Mm receive only one task at time t. Let Ti
be such a task (we have µmt+i = m − i + 1). Suppose that there is no tie for Ti (|Umt+i| = 1).
By de�nition of the tie, we have

Cm−i+1,mt+i−1 < Cj,mt+i−1

for all j such that m− k− i+ 2 ≤ j < m− i+ 1. Moreover, we have Cm−i+1,mt+i−1 = Cm−i+1,mt

and Cj,mt+i−1 = Cj,mt, because all tasks Ti′<i have been put on their last machine Mm−i′+1, and
we have m− i′ + 1 > m− i+ 1.

Hence,

Cm−i+1,mt < Cj,mt,

and then

t+ wt(m− i+ 1) < t+ wt(j),
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which gives wt(m− i+ 1) < wt(j). In particular, wt(m− i+ 1) < wt(m− i). As this is true for
all 1 ≤ i ≤ m− k, we have wt(j + 1) < wt(j) for all k ≤ j < m.

Before starting the proof of Theorem 9, we describe the class of random tie-break functions
that we consider: Rand corresponds to any randomized policy for which there exists a constant
θ > 0 such that the probability to put any task on its last machine is lower than, or equal to
1−θ, if there exists a tie for this task. In other words, Rand never discards a candidate machine
during a tie.

Proof of Theorem 9: It is clear from Lemma 5 that Φ is non-increasing: at any time t,
Φt+1 ≤ Φt. Then there are two cases: either (i) for all time t, we can �nd t′ > t such that
Φt′ < Φt, or (ii) there exists a time t such that Φt′ = Φt for all t

′ > t.
Case (i). Suppose that for all t, there exists a future time t′ > t such that Φt′ < Φt. As

Φt ∈ Z for all t, there must exist a time t∗ such that Φt∗ ≤ 0, i.e.,
∑
j ϕt∗(j) ≤ 0. Then, there

exists at least one j such that ϕt∗(j) ≤ 0. By de�nition, we deduce that m− k+ 1−wt∗(j) ≤ 0,
thus wt∗(j) ≥ m− k + 1.

The last scheduled task Ti on Mj will complete at time t∗ +m− k + 1, and we have ri ≤ t∗.
Therefore, Fmax ≥ Fi ≥ m− k + 1.

Case (ii). Now suppose that there exists a time t such that Φt′ = Φt for all future time
t′ > t. By contraposition of Lemma 5, for all t′ > t, we have µmt′+i = m− i+ 1 for all Ti≤m−k
released at time t′, i.e., the �rst m− k tasks released at each t′ are put on their last machine.

We consider �rst the scenario in which for all t′ > t, there is at least one task Ti≤m−k released
at t′ for which there is a tie (i.e., |Umt′+i| > 1). Since the �rst m − k tasks released at each
t′ are put on their last machine, its implies that Rand has selected the last machine through
a tie-break for all t′ > t. By de�nition, Rand schedules each such task on any other machine
than its last one with a non-zero probability. Therefore, Rand repeatedly makes this decision
an in�nite number of time with a probability of zero and the initial scenario thus occurs with
the same probability.

Then, with probability 1, there exists at least one time t′ > t such that |Umt′+i| = 1 for
all Ti≤m−k released at t′. By Lemma 6, we have wt′(j + 1) < wt′(j) for all k ≤ j < m, i.e.,
wt′(k) ≥ m−k. Therefore, there exists a task scheduled on machineMk and released before time
t′ that will necessarily complete at time t′+m−k. We conclude that Fmax ≥ t′+m−k−(t′−1) =
m− k + 1.

Finally, this result holds for any tie-break function provided that tasks are not anymore of
unitary duration.

Theorem 10. The competitive ratio of EFT (with any tie-break policy) is at least m − k + 1
for the �xed-size interval problem P |online−ri,Mi(interval), |Mi| = k|Fmax.

Proof: The proof relies on the same instance as in Theorem 8, with some additional tasks
with smaller duration. Original tasks from the instance of Theorem 8 are called regular tasks.
Our objective is to enforce the following property:

Property 1. Consider a machineMi at time t, right before the allocation of regular tasks released
at t. During time interval [t− 1; t], Mi has h ≥ 0 regular tasks waiting for execution (excluding
the eventual one that is already started). These tasks will be completed at time t+ h+ iδ.

The value of δ will be set later to a very small value so that (i) m delays of δ is smaller
than the duration of a regular task (1 time unit) and (ii) the total volume of small tasks can
be considered as negligible in the optimal solution. Once a value of δ < 1/m is chosen, we set
ε < δ/(2m). As we will see below, the iδ delays on each processor allow emulating the original

RR n° 9446



26 Louis-Claude Canon, Anthony Dugois, Loris Marchal

EFT-Min algorithm, which breaks ties among available processors by choosing the one with
minimum index.

We now explain how small tasks are added to the original schedule. Consider any integer
time t (including t = 0). We have two rounds of small tasks submitted at time t, right before the
regular tasks. We consider the set of processors that do not process regular tasks during time
interval [t−1, t] (all processors in the case of t = 0). Let midle be the number of such processors.

Intuitively, we �rst submit midle small dummy tasks at time t that are scheduled by EFT
using its tie-break policy (which we do not control). All dummy tasks have di�erent durations
such that there is no tie anymore among these machines for the second round. In the second
round, we submit tasks whose duration is carefully crafted to ensure that each machine �nishes
its computation at the prescribed time t+ iδ.

First round. We �rst initialize a counter c← 1. At time t, while there exists an idle processor
Mic with ic ≥ 0, we submit a task T 1

c of duration cε with an interval covering processor
Mic (i.e. Mic ∈ M(T 1

c ), for example interval [ic, ic + k] if ic + k < m, and [m − k,m]
otherwise). We then increment the counter c← c+ 1.

Second round. When all tasks of the �rst round are submitted and allocated, we submit new
tasks based on the allocation of the tasks of the �rst round. For each c = 1, . . . ,midle ,
we consider the processor Mi where the task T

1
c of the �rst round has been allocated. We

submit a task T 2
c,i of duration iδ − cε with an interval covering Mi (as above).

T 2
2,4T 1

2

T 2
1,5T 1

1

T 2
2,4T 1

2

T 2
1,3T 1

1

timet− 1 t

M1 (h = 0)

M2 (h = 0)

M3 (h = 1)

M4 (h = 0)

M5 (h = 0)

M6 (h = 2)

Figure 7: Illustration of the construction of the instance for Theorem 10 when adding small tasks
at time t. Regular tasks submitted before t are depicted in blue. Small tasks added to ensure
the common delay of iδ are in red (dark red for step t, light red for step t− 1), and regular tasks
submitted at step t are in green. Only two processors are not processing any regular tasks before
time t (M4 and M5) and require small tasks to ensure the common delay of iδ.

We now prove that Property 1 is veri�ed at all time, by induction on the time t.
Let us �rst consider the beginning of the schedule (t = 0): small tasks are submitted for

all idle processors Mi with i ≥ 0, before the submission of regular tasks. Each task T 1
c of the

�rst round must be allocated and started at time t = 0 on some idle processor, not necessarily
Mic . However, at the end of this �rst round, all processors must be processing a small task, as
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the scheduling algorithm never leaves a processor idle when there is some task to perform on it.
Tasks submitted during the �rst round will complete at times t + cε, with c = 1, . . . ,m. Thus,
the latest completion time for the �rst round is equal to t+mε.

We now move to the second round. Note that since ε < δ/(2m), the duration of a task T 2
c,i

of the second round is greater than (i− c/(2m))δ and is positive as c < m and i ≥ 1. Note also
that Mi is the �rst machine available in the interval of T 2

c,i: and on all other machines, either
the small task of the �rst round completes later, or it has already been allocated a task of the
second round, which lasts at least iδ −mε > mε and thus will complete later. Hence, task T 2

c,i

is necessarily allocated to Mi, and completes at time t + (cε) + (iδ − cε) = t + iδ. This proves
the property for time t = 0.

We now prove the property for t + 1, assuming it is correct for t. We consider a machine
Mi, which has h ≥ 0 regular tasks waiting for execution during interval [t− 1; t] and r ≥ 0 new
regular tasks released at time t are allocated to Mi. We distinguish two cases:

� During interval [t; t+ 1], Mi starts a regular task either because it has at least one waiting
task in interval (h > 1) or a new task released at time t is allocated to it (r > 1). By
induction, the machine Mi will start this task at time t+ iδ and end it at time t+ 1 + iδ.
Excluding the started task, there remains h′ = h + r − 1 ≥ 0 waiting tasks in interval
[t; t+1]. All the regular tasks waiting for execution will be completed at time t+1+iδ+h′ =
(t+ 1) + h′ + iδ with h′ ≥ 0. Hence, the property is true at time t+ 1 for Mi.

� During interval [t; t + 1], Mi starts no regular task (h = 0 and r = 0). At time t + 1,
all machines are either idle like Mi (when h = 0 and r = 0) or computing a regular task
(allocated before t+1). Mi is allocated a small task T 1

c in the �rst round at time t+1 (it is
available by induction hypothesis) and completes at time t+1+cε. Since there are at most
m machines without regular tasks in interval [t; t+ 1], all small tasks of the �rst round are
completed before or at time t + mε < t + δ. In the second round, we prove that the task
T 2
c,i must be allocated on Mi. As seen before, at time t + 1 + cε, all idle machines either

completes their tasks of the �rst round later thanMi or are already computing a task of the
second round that completes later. Machines Mj with j ≥ 0 that are computing regular
tasks will be available at the soonest at time t + jδ to start a regular task by induction
hypothesis. Thus, each machine Mj will completes at time t+ 1 + jδ, which is much later
than when Mi completes its task from the �rst round. Hence, T 2

c,i is allocated to Mi, and
completes at time t+ 1 + iδ.

Lemma 7. With the additional (non regular) tasks, the execution of any FIFO algorithm (with
any tie-break policy) follows the original FIFO policy (with tie-break by selecting the processor
with smallest index), up to a delay of iδ for each processor Mi.

This lemma is proven by noticing that compared to the original setting, processors are not
available simultaneously for regular tasks, but with a small delay iδ of increasing value for
increasing processor index. Hence, whenever a regular task can be processed on several processors
in the original setting, now the FIFO policy forces the processor with smaller index to execute
it, as it was done in the original FIFO policy.

The instance used in the proof of Theorem 10 requires at most m3 steps (each made of m
tasks) to reach a maximum �ow of m − k + 1 for the EFT-Min policy. The modi�ed instance
enforces such a maximum �ow for a EFT scheduler with any tie-break policy. The total volume
of small tasks added to this instance at each time step is bounded by

∑m
i=1 iδ = m(m + 1)δ/2.

Hence the total volume of small tasks during the whole instance is bounded by m5δ/2. Choosing
δ = o(1/m5) makes this total volume negligible is front of the duration of a single regular task.
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We consider an optimal schedule of the original schedule and allocate the additional small tasks
to any processor of their interval. The maximum delay for any processor is of order o(1). Hence
the maximum �ow of this modi�ed optimal algorithm is 1 + o(1), which proves the asymptotic
competitive ratio of m− k + 1.

7 Experimental Results

In this section, we evaluate the relative impact of structured processing set restrictions on the
performance of simple scheduling heuristics. We focus on both interval processing sets, because
they are used in actual systems [5�7], and disjoint processing sets, because it is the restrictions
for which we have the best, and only, approximation ratio (Theorem 6). Moreover, the perfor-
mance of actual systems are a�ected by the popularity of requests, which is not uniform, i.e.,
certain tasks restricted to the same processing set appear more frequently than others. We begin
by explaining our model of popularity before developing the process we used to evaluate the
theoretical maximum load permitted by data item replication. Finally, we perform simulations
to provide an experimental perspective to the bounds derived in the previous section. All the
related code, data and analysis are available online1.

7.1 Model of Popularity

Let us consider a cluster of m machines, where tasks have a unit processing time and are released
according to a Poisson process with parameter λ (in other words, λ tasks are released in average
at each time unit). λ/m measures the average load on the whole cluster; thus, when λ = m, the
cluster is loaded at 100%.

For now, suppose that each task can be processed by only one speci�c machine, i.e., we have
|Mi| = 1 for all task Ti. This corresponds to what happens in key-value stores when data items
are not replicated: each task Ti carries a key, which is uniquely associated to a data item in
the system, and this data item is held by only one machine of the cluster. Therefore, Ti has no
choice but to be sent and processed on this speci�c machine.

In practice, some data items are requested more frequently than others during the service
lifetime; depending on the data partitioning and popularity bias on requested keys, some ma-
chines will potentially have to process more tasks than others, leading to a biased distribution
on machine popularity. Let Ej be the event in which a task must be processed by machine Mj

(because it requests a key held by Mj), which occurs with probability P (Ej). Thus, λP (Ej)
is the average number of tasks sent on Mj at each time unit, and measures the load of Mj .
Note that because of the non-uniform popularity bias P (Ej), the load of a given machine can be
greater than 100% (even if the average cluster load is below 100%). In this case, the machine
completely saturates as there is no replication.

Let us consider that the machine popularity follows a Zipf distribution, which has been
advocated to model popularity distributions [28]. We have P (Ej) = 1

jsHm,s
, where s ≥ 0 is the

shape parameter of the distribution and Hm,s is the m-th generalized harmonic number of order
s. We use s to control the popularity bias: the larger s, the more the popularity heterogeneity
increases. In the following, we focus on three speci�c situations. When s = 0, the distribution
degenerates to the uniform distribution, i.e., no machine is more popular than another (we call
this case theUniform case). When s > 0, the Zipf distribution has the particularity to generate
a monotonically decreasing load on machines M1, . . . ,Mm. This corresponds to a worst case,
as the �rst machines concentrate most of the workload (Worst-case). Finally, we randomly

1https://doi.org/10.6084/m9.figshare.19123139.v1
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permute P (Ej) to match with more realistic settings (Shu�ed case). As realistic bias strongly
depends on the dataset and system usage, each permutation is chosen uniformly as we assume
no prior knowledge. Figure 8 shows an example of load distribution for each case.

7.2 Analysis of Theoretical Maximum Load

We want to �nd the theoretical maximum cluster load (that is, �nding the maximum value of
λ such that the load on each machine is below 100%) one can achieve when data items are
replicated across the cluster. Up to now, as we did not consider replication yet, we supposed
that each task could only be processed by a single machine (the one holding its requested key).
In this case, we clearly have λ ≤ 1/maxj P (Ej).

Let us give more choices to each task by adding more machines to the processing sets Mi.
This can be seen as replicating data items. Our goal is to study how extending Mi under a
popularity bias a�ects performance metrics such as the maximum �ow time or the maximum
cluster load, and how structures in processing sets impact them.

For each task Ti, we build a new setM′i fromMi by de�ning a replication strategy; in other
words, starting from a set with a single machine Mi = {Mu}, we replicate the keys held by
Mu on all machines ofM′i. We focus on strategies that consist in adding k − 1 machines (with
1 ≤ k ≤ m) to the set, such that M′i constitutes an interval of size k, i.e., M′i = Ik(u). We
describe two manners to build Ik(u) from Mu. Figure 9 illustrates these constructions.

Overlapping intervals. There are m distinct overlapping replication intervals of size k, ar-
ranged as a ring:

Ik(u) = {Mj s.t. j = (j′ − 1) mod m+ 1

for all u ≤ j′ ≤ u+ k − 1}.

This constitutes the basic replication strategy of key-value stores: machines are arranged as a
ring, and data items held by a given machine are replicated on the successors of this machine [5,6].
We have seen in Theorems 8, 9 and 10 that EFT does not always provide a good competitive
ratio when minimizing maximum �ow time with this structure.

Disjoint intervals. We divide the cluster into
⌈
m
k

⌉
disjoint replication intervals of size k:

Ik(u) = {Mj s.t. u
′ + 1 ≤ j ≤ min(m,u′ + k)},

where u′ = k
⌊
u−1
k

⌋
. This corresponds to the situation seen in Theorem 6 and related corollar-

ies. EFT guarantees a good competitive ratio when minimizing maximum �ow time with this
structure.

1 2 3 4 5 6
0

0.5

1

1.5

j

λ
P

(E
j
)

(a) Uniform case

1 2 3 4 5 6
0

0.5

1

1.5

j

(b) Worst-case

1 2 3 4 5 6
0

0.5

1

1.5

j

(c) Shu�ed case

Figure 8: Example of load distribution on a cluster of m = 6 machines, with λ = m, for each
case.
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1 2 3 4 5 6

1

2

3

4

55

66

1

2

3

4

5

6

Mi (no replication)

M′i (disjoint)
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Figure 9: Example of replication strategies in overlapping and disjoint settings, with k = 3. For
example, suppose that a task Ti is feasible on M3 only (Mi = {M3}). Then, in overlapping
setting (resp. disjoint setting), the new processing set restriction of Ti is M′i = {M3,M4,M5}
(resp.M′i = {M1,M2,M3}).

After replication, all tasks that could only run on a given machine Mj can now be processed
by any machine of Ik(j). To quantify the gain on maximum cluster load permitted by a given
replication strategy, we solve the following optimization problem modeled as a Linear Program:

maximize λ (15a)

subject to ∀j,
∑
i

aij = λP (Ej), (15b)

∀i,
∑
j

aij ≤ 1, (15c)

∀i, j s.t. Mi /∈ Ik(j), aij = 0, (15d)

∀i, j, aij ≥ 0, (15e)

λ ≥ 0. (15f)

aij denotes the average amount of work (in tasks per time unit) that is eventually processed by
machine Mi and that corresponds to tasks originally restricted to machine Mj . We consider the
following constraints:

� The total work corresponding to tasks originally restricted on Mj is exactly equal to the
initial work of Mj (Equation (15b)).

� The average work eventually processed on Mi does not exceed 1 (Equation (15c)).

� We can transfer work from Mj to Mi if and only if Mi belongs to the interval of size k
generated fromMj according to the considered replication strategy, i.e., all tasks that could
originally run exclusively on Mj can now also run on Mi (Equation (15d)).

7.3 Experimental Evaluation of Theoretical Maximum Load

In the following experiments, we set the cluster size m to 15, which is a common setup when
conducting experiments with scheduling in real key-value store systems [29,30]. Figure 10a shows
the result of our Linear Program (Equations (15)) as a function of bias s and interval size k, for
both previously described replication strategies, in the Shu�ed case (median over 100 di�erent
permutations).
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(a) Maximized load obtained by solving the LP (15)
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Figure 10: Maximized load for both overlapping and disjoint strategies, for each 0 ≤ s ≤ 5 (by
steps of 0.25) and 1 ≤ k ≤ m, in the Shu�ed case. In Figure (a), we show the median value
obtained from 100 di�erent permutations of weights P (Ej). In Figure (b), we show the ratio
between the median max-loads of both replication strategies.

At �rst glance, it seems that the disjoint strategy is less e�cient than the overlapping strategy
to cope with high cluster load when non-uniform popularity biases are introduced. For example,
for s = 1 and k = 5, Figure 10a indicates that the cluster can theoretically tolerate a maximum
load of 100% when intervals overlap, whereas the disjoint strategy allows reaching a maximum
load of 70%.

The overlapping strategy superiority is clearly con�rmed by Figure 10b, which shows the gain
on the maximum load permitted by overlapping replication intervals over the disjoint strategy.
The overlapping strategy allows the cluster to handle loads that are up to 50% higher than the
disjoint strategy (e.g., for s = 1.25 and k = 6), and we can observe a gain up to 35% for common
situations in key-value stores, when 0 < s ≤ 1.5 (moderate popularity bias) and k = 3 (standard
replication factor in most implementations). Note that the popularity bias has obviously no e�ect
when data are fully replicated (k = m), and that replication strategies exhibit no di�erence on
the tolerable load when no bias is introduced (s = 0).
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100 52 66 36 59

Uniform case, s = 0 Shu�ed case, s = 1 Worst-case, s = 1

20 40 60 80 100 10 20 30 40 50 60 10 20 30 40 50 60

1

3

5

7

9

11

13

15

Average load (%)

F
m

a
x

Heuristic

EFT-Min

EFT-Max

Strategy

Overlapping

Disjoint

Figure 11: Maximum �ow time given by both heuristics EFT-Min and EFT-Max as a function
of the average load when k = 3, for both the overlapping (solid lines) and disjoint (dashed lines)
strategies. Each facet corresponds to a distinct case (for the Worst-case and Shu�ed case,
we set s = 1). Finally, each vertical red line shows the theoretical maximum load value given by
the LP (15) in the corresponding case.

7.4 Simulations with Popularity Bias

Now we simulate EFT scheduling onm = 15 machines with a popularity bias, on 10 000 generated
unit tasks, which is su�cient to reach a steady state. Figure 11 illustrates the impact of both
replication strategies on maximum �ow time in the EFT-Min scheduler and its counterpart
EFT-Max (which selects the candidate machine with highest index). We consider the three
cases of popularity bias (in Worst-case and Shu�ed case, we set s = 1). We repeat the
experiment 10 times, and we take the median among max-�ow values. We set k = 3 to match
with a realistic key-value store system.

In the Uniform case, no di�erence is visible between EFT-Min and EFT-Max; however,
overlapping replication intervals give better results than the disjoint strategy (e.g., for an average
cluster load of 90%, EFT exhibits a max-�ow of 5 when intervals overlap, whereas it gives a max-
�ow of 10 with disjoint intervals). When randomly dispatched popularity biases are introduced
(Shu�ed case), we see the relative gain of the overlapping strategy increasing. This is even
more obvious when we consider theWorst-case. We also see EFT-Max becoming more e�cient
than EFT-Min for the overlapping strategy, which is consistent with the situation in Theorem 8:
when breaking a tie, EFT-Min will select the most popular machine, whereas EFT-Max does
the opposite (as we are in a worst-case, popularity biases are sorted in decreasing order), leading
to a smaller max-�ow. However, the gain permitted by the scheduling heuristic is rather marginal
compared to the gain allowed by a carefully chosen replication structure.

The replication strategy where intervals overlap, commonly used in key-value stores, exhibits
better results than the disjoint strategy when popularity biases are introduced, even if the max-
�ow of EFT in disjoint setting is bounded (Theorem 6). However, there is no e�cient worst-case
guarantee for the overlapping strategy, as seen in Theorem 8. The question of whether there
exists a replication strategy giving both good practical results and theoretical guarantees on
EFT scheduling remains open.
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8 Conclusion

The high throughput and scalability needs of key-value stores require immediate dispatch algo-
rithms in which requests are allocated to servers as soon as they arrive (such as EFT). In the
absence of processing set restrictions, EFT bene�ts from favorable competitive guarantee for
the maximum �ow time. However, storage constraints usually prevent replicating all data on
all servers; this is modeled by introducing restrictions on the task processing sets. We provide
bounds on the competitive ratio for several structured processing sets. In particular, we show
that the competitive ratio of EFT goes from (3− 2/m) to m− k+ 1 for interval processing sets,
which are the most commonly used in key-value stores. However, despite the poor theoretical
guarantee for EFT, we show experimentally that interval processing sets allow a load up to 50%
larger than disjoint processing sets.

Future directions include devising a structured processing set, or replication strategy, that
would provide e�cient performance on average and in the worst case. Moreover, the current
bound on the competitive ratio of EFT with interval processing sets could be extended to other
immediate dispatch algorithms.
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