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A Tykhonov-type well-posedness concept for elliptic hemivariational inequalities

Rong Hu, Mircea Sofonea and Yi-bin Xiao

Abstract. In this paper, we introduce a new Tykhonov-type well-posedness concept for elliptic hemivariational inequalities,
governed by an approximating function h. We characterize the well-posedness in terms of the metric properties of the
family of approximating sets, under various assumptions on h. Then, we use the well-posedness properties in order to
obtain convergence results of the solution with respect to the data. The proofs are based on arguments of monotonicity
combined with the properties of the Clarke directional derivative. Our results provide mathematical tools in the study
of a large number of static problems in Contact Mechanics. To provide an example, we consider a mathematical model
which describes the equilibrium of a rod–spring system with unilateral constraints. We prove the unique weak solvability
of the model, and then we illustrate our abstract convergence results in the study of this contact problem and provide the
corresponding mechanical interpretations.

Mathematics Subject Classification. 35M86, 47J40, 49J52, 74K10, 74M15.
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1. Introduction

Everywhere in this paper, unless stated otherwise, (X, ‖ · ‖X) is a real Banach space, 〈·, ·〉 denotes the
duality pairing between X and its dual X∗, K is a nonempty subset of X, A : X → X∗, j : X → R is a
locally Lipschitz function and f ∈ X∗. We denote by j0(u; v) the generalized directional derivative of j

at the point u in the direction v, see Definition 2. With these notation, we consider the hemivariational
inequality

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) ≥ 〈f, v − u〉 ∀ v ∈ K. (1.1)

Such kind of inequalities arise in Contact Mechanics. They model the equilibrium of elastic bodies
acted upon the body forces and surface tractions, in frictional or frictionless contact with an obstacle.
References in the field are [15,16] and, more recently [2,13,18,22,28,29]. There, existence and uniqueness
results for inequality problems of the form (1.1) can be found, under various assumptions on the data. A
convergence result for such inequalities was provided in [30] and general results on their numerical analysis
of such inequalities can be found in [4–6]. Results on the Tykhonov regularization for hemivariational
inequalities can be found in the recent paper [23].

The current paper was inspired by three types of studies related to the hemivariational inequality (1.1):
the well-posedness in the sense of Tykhonov, the continuous dependence of the solution with respect to
the data, and the perturbation with a convex function, under specific assumptions. We briefly describe
in what follows each of these approaches.

First, the concept of well-posedness in the sense of Tykhonov was introduced for minimization prob-
lems in [24]. Later, it was extended to variational inequalities in [11,12] and to a particular class of
hemivariational inequalities in [3]. References in the field include [8–10,20,21,25,27]. For an inequality of
the form (1.1), the Tykhonov well-posedness is based on the following two ingredients: First, it is assumed
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that inequality (1.1) has a unique solution; second, this solution represents the limit in X, as ε → 0, of
solution sequence, called approximating sequence, to the following problem:

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) + ε ‖v − u‖X ≥ 〈f, v − u〉 ∀ v ∈ K. (1.2)

Hemivariational inequalities of the form (1.2) have been considered in [7,19,26], among others. There,
necessary and sufficient condition for the well-posedness of inequality (1.1) are provided, under various
assumptions on the nonlinear operator A.

Next, we focus on the continuous dependence of the solution with respect to the data and, for simplicity,
we restrict to the dependence of the solution with respect to f . To this end, we consider a perturbation
fε ∈ X∗ of f , together with the hemivariational inequality

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) ≥ 〈fε, v − u〉 ∀ v ∈ K. (1.3)

Then, it is easy to see that the solution of (1.3) satisfies the inequality

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) + ‖fε − f‖X∗‖v − u‖X ≥ 〈f, v − u〉 ∀ v ∈ K,

and using the notation h(ε) = ‖fε − f‖X∗ , we deduce that

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) + h(ε)‖v − u‖X ≥ 〈f, v − u〉 ∀ v ∈ K. (1.4)

It follows from here that the continuous dependence of the solution of (1.1) with respect to f can be
deduced from a convergence result for the solutions of (1.4) to the solution of (1.1).

Finally, consider a perturbed version of inequality (1.1) of the form

u ∈ K, 〈Au, v − u〉 + ϕ(u, v) − ϕ(u, u) + j0(u; v − u) ≥ 〈f, v − u〉 ∀ v ∈ K (1.5)

where ϕ : X × X → R is a functional. Assume now that ϕ(u, ·) = ε ϕ̃(u, ·) for each u ∈ X where ε is a
positive parameter converging to zero and ϕ̃(u, ·) : X → R is a continuous seminorm. Then, there exists
a function h : X → R such that

ϕ(u, v) − ϕ(u, u) = ε ϕ̃(u, v) − ε ϕ̃(u, u) ≤ ε ϕ̃(u, v − u) ≤ εh(u)‖v − u‖X

for all u, v ∈ X. This implies that the solution of (1.5) satisfies the inequality

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) + ε h(u)‖v − u‖X ≥ 〈f, v − u〉 ∀ v ∈ K. (1.6)

Therefore, the convergence of the solution of inequality (1.5) as ε → 0 can be deduced by studying the
convergence of the solution of (1.6) as ε → 0. Such kind of situations arise in Contact Mechanics, as
explained in [13,18]. There, ε is either a friction coefficient or a stiffness coefficient, and establishing such
type of convergence results allows us to establish the link between various contact models and to provide
various mechanical interpretations.

A careful analysis reveals that inequalities (1.2), (1.4), (1.6) are of the form

u ∈ K, 〈Au, v − u〉 + j0(u; v − u) + h(ε, u)‖v − u‖X ≥ 〈f, v − u〉 ∀ v ∈ K (1.7)

with a convenient choice of the function h(ε, u), defined for ε > 0 and u ∈ X. Moreover, both the three
situations described above require to establish convergence results for the solution of (1.7) to the solution
of (1.1), as ε → 0. It follows from here that the study of the perturbed hemivariational inequalities
of the form (1.7) is useful in the study of the hemivariational inequality (1.1), since it could provide its
well-posedness, the continuous dependence of the solution with respect to the data and other convergence
results.

Motivated by the previous remarks, in this paper we study the link between the solutions of inequalities
(1.1) and (1.7), under various assumptions on the data. Our aim is to introduce a new Tykhonov-type
well-posedness concept for inequality (1.1), to derive convergence results and to provide mathematical
tools useful in the study of mathematical models which describe the contact of deformable bodies and
structures.
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The rest of the paper is structured as follows. In Sect. 2, we recall some preliminary material which
is needed in the rest of the paper. In Sect. 3, we introduce and study a new Tykhonov-type concept
of well-posedness which extends that in ([3,19]). In Sect. 4, we use the results in Sect. 3 in order to
establish new convergence results of the solution to inequality (1.1) with respect to the data K, A, j

and f . Finally, in Sect. 5, we illustrate the results in Sect. 4 in the study of a rod–spring system with
unilateral constraints.

2. Preliminaries

Everywhere below, we use ‖ · ‖X for the norm of space X. Unless stated otherwise, all the limits, upper
limits and lower limits below are considered as n → ∞, even if we do not mention it explicitly. The
symbols “⇀” and “→” denote the weak and the strong convergence in the space X.

We start with some definitions related to the operator A and function j.

Definition 1. An operator A : X → X∗ is said to be:

(a) monotone, if for all u, v ∈ X, we have 〈Au − Av, u − v〉 ≥ 0;
(b) strongly monotone, if there exists mA > 0 such that

〈Av1 − Av2, v1 − v2〉 ≥ mA‖v1 − v2‖2

X ∀ v1, v2 ∈ X; (2.1)

(c) bounded, if A maps bounded sets of X into bounded sets of X∗;
(d) pseudomonotone, if it is bounded and un ⇀ u in X with

lim sup 〈Aun, un − u〉 ≤ 0

implies

lim inf 〈Aun, un − v〉 ≥ 〈Au, u − v〉 for all v ∈ X.

Definition 2. The generalized (Clarke) directional derivative of a locally Lipschitz function j : X → R at
the point u ∈ X in the direction v ∈ X is defined by

j0(u; v) = lim sup
x→u, λ↓0

j(x + λv) − j(x)

λ
.

The generalized (Clarke) gradient (subdifferential) of j at u is a subset of the dual space X∗ given by

∂j(u) = { ξ ∈ X∗ | j0(u; v) ≥ 〈ξ, v〉 ∀ v ∈ X }.

Definition 3. A locally Lipschitz function j : X → R is said:

(a) to be regular (in the sense of Clarke) at the point u ∈ X if for all v ∈ X the one-sided directional
derivative j′(u; v) exists and j0(u; v) = j′(u; v);

(b) to satisfy the relaxed monotonicity condition if there exists αj > 0 such that

〈ξ1 − ξ2, u1 − u2〉 ≥ −αj ‖u1 − u2‖2

X ∀ui ∈ X, ξi ∈ ∂j(ui), i = 1, 2.

We now recall the following properties related to the directional derivative and Clarke subdifferential.

Proposition 4. Assume that j : X → R is a locally Lipschitz function. Then the following holds.
(a) For every u ∈ X, the function X ∋ v �→ j0(u; v) ∈ R is positively homogeneous and subadditive,

i.e., j0(u;λv) = λj0(u; v) for all λ ≥ 0, v ∈ X and j0(u; v1 +v2) ≤ j0(u; v1)+j0(u; v2) for all v1, v2 ∈ X,
respectively.

(b) For every u, v ∈ X, we have j0(u; v) = max { 〈ξ, v〉 | ξ ∈ ∂j(u) }.
(c) The function X ×X ∋ (u, v) �→ j0(u; v) ∈ R is upper semi-continuous, i.e., for all u, v ∈ X, {un},

{vn} ⊂ X such that un → u and vn → v in X, we have lim sup j0(un; vn) ≤ j0(u; v).
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For more details on the definitions and properties above, we refer to the books [1,13,15], for instance.
In the study of inequality (1.1), we consider the following assumptions.

(K1) K is a nonempty closed convex subset of X.
(A1) A : X → X∗ is a pseudomonotone operator.
(A2) A : X → X∗ is a strongly monotone operator with constant mA > 0.
(j1) j : X → R is a locally Lipschitz function.
(j2) There exists αj ≥ 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj‖v1 − v2‖2

X ∀ v1, v2 ∈ X.

(j3) αj < mA.
(j4) There exist c0, c1 ≥ 0 such that ‖ξ‖X∗ ≤ c0 + c1‖v‖X ∀ v ∈ X, ξ ∈ ∂j(v).
(f) f ∈ X∗.

It can be proved that for a locally Lipschitz function j : X → R, condition (j2) is equivalent to the
relaxed monotonicity condition introduced in Definition 3(b). A proof of the statement can be found
in, e.g., [13]. Note also that if j : X → R is a convex function, then condition (j2) holds with αj = 0,
since it reduces to the monotonicity of the (convex) subdifferential. Examples of functions which satisfy
conditions (j1), (j2) and (j4) can be found in [13,14], for instance. Nevertheless, for the convenience of
the reader, we provide below such an example.

Example 5. Let Ω be a bounded domain of R
d with a smooth boundary Γ and let Γ0 be a measurable

part of Γ such that measΓ0 > 0. Let X = H1(Ω) be the Sobolev space endowed with its usual Hilbertian
structure. Assume that⎧

⎨
⎩

p : R → R is such that
(a) |p(r1) − p(r2)| ≤ Lp|r1 − r2| for all r1, r2 ∈ R, with Lp > 0;
(b) p(0) = 0.

(2.2)

Next, consider the functions q : R → R and j : X → R defined by

q(r) =

r∫

0

p(s) ds ∀ r ∈ R, (2.3)

j(v) =

∫

Γ0

q(v) dΓ ∀ v ∈ X. (2.4)

Note that here and below, we write v for the trace of the function v ∈ X to Γ. Using standard arguments
([13, Lemma 3.50 (iii)], for instance), it follows that

q0(r; s) = p(r) s ∀ r, s ∈ R, (2.5)

where q0(r; s) denotes the generalized directional derivative of q at the point r in the direction s. Therefore,
using (2.2) and [13, Corollary 4.15] it follows that j satisfies conditions (j1) and (j4) and, in addition,

j0(u; v) =

∫

Γ0

p(u)v dΓ ∀u, v ∈ X. (2.6)

Hence, given v1, v2 ∈ X we have

j0(v1; v2 − v1) + j0(v2; v1 − v2) =

∫

Γ0

(p(v1) − p(v2))(v2 − v1) dΓ.

Moreover, using assumption (2.2) we obtain that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ Lp‖γ‖2‖v1 − v2‖2

X ,

4



where, here and below, ‖γ‖ denotes the norm of the trace operator defined on X with values in L2(Γ0).
This inequality shows that j satisfies condition (j2) with αj = Lp‖γ‖2.

We now recall the following existence and uniqueness result.

Theorem 6. Assume that X is a reflexive space and (K1), (A1), (A2), (j1), (j2), (j3), (j4), (f) hold.
Then, there exists a unique solution u to the hemivariational inequality (1.1).

A proof of Theorem 6 can be found in [18, Chapter 5]. It is carried out in several steps, by using the
properties of the subdifferential, a surjectivity result for pseudomonotone multivalued operators and the
Banach fixed point argument.

3. Well-posedness results

In this section, we introduce and study a general concept of well-posedness for the hemivariational inequal-
ity (1.1). To this end, for each ε > 0, we consider the set Ω(ε) defined as follows:

Ω(ε) = {u ∈ K : 〈Au, v − u〉 + j0(u; v − u) + h(ε, u)‖v − u‖X ≥ 〈f, v − u〉 ∀ v ∈ K } (3.1)

where, recall, h : (0,+∞) × X → R is a given function. We refer to the family of sets {Ω(ε)}ε>0 as the
family of approximating sets. Moreover, we denote by S the set of solutions of inequality (1.1), i.e.,

S = {u ∈ K : 〈Au, v − u〉 + j0(u; v − u) ≥ 〈f, v − u〉 ∀ v ∈ K } (3.2)

and we recall that S is said to be a singleton if S has a unique element.
Next, we proceed with the following definitions.

Definition 7. A sequence {un} ⊂ X is called an approximating sequence for the hemivariational inequality
(1.1) if there exists a sequence {εn} ⊂ R such that 0 < εn → 0 and un ∈ Ω(εn), for each n ∈ N.

Definition 8. The hemivariational inequality (1.1) is said to be well-posed if it has a unique solution and
every approximating sequence for (1.1) converges in X to its solution.

Note that this concept of well-posedness above extends that used in [19,26]. Indeed, the later can be
recovered in the particular case when

h(ε, u) = ε ∀ ε > 0, u ∈ X. (3.3)

Moreover, this concept is quite different from that introduced in [3] for hemivariational inequalities with
constraints.

Our aim in what follows is to characterize the well-posedness of hemivariational inequality (1.1) in
terms of the metric properties of the approximating sets {Ω(ε)}ε>0 and to indicate sufficient conditions
on the data which guarantee this well-posedness. To this end, we recall the following definition.

Definition 9. Let Ω be a nonempty subset of X. Then the diameter of Ω, denoted diam(Ω), is defined by
equality

diam(Ω) = sup
a, b∈Ω

‖a − b‖X .

Moreover, we consider the following additional assumptions.

(K2) K is a nonempty closed subset of X.
(h1) h(ε, u) ≥ 0 ∀u ∈ X, ε > 0.
(h2) h(εn, un) → 0 whenever 0 < εn → 0 and {un} ⊂ X is bounded.
(h3) 0 < ε1 < ε2 =⇒ h(ε1, u) ≤ h(ε2, u) ∀u ∈ X.
(h4) There exists Lh : ]0,+∞[→ R such that
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(a) |h(ε, u) − h(ε, v)| ≤ Lh(ε)‖u − v‖X ∀u, v ∈ X, ε > 0,
(b) Lh(ε) → 0 as ε → 0.
Our main result in this section is the following.

Theorem 10. Let X be a Banach space. The following statements hold.
(a) Under assumption (j1), (h1) and (f), the hemivariational inequality (1.1) is well-posed if and only

if its set of solution S is nonempty and diam(Ω(ε)) → 0 as ε → 0.
(b) Under assumptions (K2), (A1), (j1), (h1), (h2), (h3) and (f), the hemivariational inequality (1.1)

is well-posed if and only if the set Ω(ε) is nonempty for each ε > 0 and diam(Ω(ε)) → 0 as ε → 0.
(c) Under assumptions (A2), (j1), (j2), (j3), (h1), (h2), (h4) and (f), the hemivariational inequality

(1.1) is well-posed if and only if the set S is a singleton.
(d) If X is a reflexive space, then under assumptions (K1), (A1), (A2), (j1), (j2), (j3), (j4), (h1),

(h2), (h4) and (f), the hemivariational inequality (1.1) is well-posed.

Proof. (a) We work under the assumption (j1), (h1) and (f) and note that, in this case, for each ε > 0
we have

S ⊂ Ω(ε). (3.4)

Assume that (1.1) is well-posed. Then, by definition, S is a singleton and, therefore, S �= ∅. Arguing by
contradiction, we assume that diam(Ω(ε)) �→ 0 as ε → 0. Then, there exist δ0 ≥ 0, a sequence {εn} ⊂ R

and two sequences {un}, {vn} ⊂ X such that 0 < εn → 0, un, vn ∈ Ω(εn) and

‖un − vn‖X ≥ δ0

2
∀n ∈ N. (3.5)

Now, since both {un} and {vn} are approximating sequences for the hemivariational inequality (1.1), the
well-posedness of (1.1) implies that un → u and vn → u in X where u denotes the unique element of S.
This is in contradiction with (3.5). We conclude from here that diam(Ω(ε)) → 0 as ε → 0.

Conversely, assume that S is nonempty and diam(Ω(ε)) → 0 as ε → 0. We claim that S is a singleton.
Indeed, let u, u′ ∈ S and let {un} be an approximating sequence for (1.1). Then there exists a sequence
{εn} ⊂ R such that 0 < εn → 0 and un ∈ Ω(εn) for all n ∈ N. Using (3.4) and Definition 9, we have

‖u − u′‖X ≤ ‖u − un‖X + ‖u′ − un‖X ≤ 2 diam(Ω(εn)) → 0,

which implies that u = u′ and proves the claim. Moreover, for any approximating sequence {un}, we
have

‖u − un‖X ≤ diam(Ω(εn)) → 0,

which implies that un → u in X and, therefore, (1.1) is well-posed.
(b) We work under the assumptions (K2), (A1), (j1), (h1), (h2), (h3) and (f). Assume that (1.1)

is well-posed. Then, we use the part (a) of the theorem and inclusion (3.4) to see that the set Ω(ε) is
nonempty for each ε > 0 and diam(Ω(ε)) → 0 as ε → 0.

Conversely, assume that the set Ω(ε) is nonempty for each ε > 0 and diam(Ω(ε)) → 0 as ε → 0. Then,
using (3.4), again, and Definition 9 we deduce that the hemivariational inequalities (1.1) admits at most
one solution. Let {un} be an approximating sequence for (1.1). Then there exists a sequence {εn} ⊂ R

such that 0 < εn → 0 and un ∈ Ω(εn) for all n ∈ N. Since diam(Ω(ε)) → 0, for any δ > 0 there exists a
positive integer Nδ such that

diam(Ω(εn)) ≤ δ ∀n ≥ Nδ. (3.6)

Let n, m ∈ N be such that n, m ≥ Nδ and assume that εm ≤ εn. Then using assumption (h3) we have
h(εm, um) ≤ h(εn, um) and, therefore (3.1) implies that um ∈ Ω(εn). On the other hand, Definition 7
guarantees that un ∈ Ω(εn), too. Therefore, (3.6) implies that

‖un − um‖X ≤ δ.
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This inequality holds if εm > εn, too, since in this case un, um ∈ Ω(εm). We conclude from here that
{un} is a Cauchy sequence in X and, since X is assumed to be a Banach space, there exists u ∈ X such
that

un → u in X. (3.7)

This convergence combined with assumption (K2) yields

u ∈ K. (3.8)

We now prove that u solves the hemivariational inequality (1.1) and, to this end, we use a pseu-
domonotonicity argument. First, the inclusion un ∈ Ω(εn) implies that

〈Aun, un − v〉 ≤ j0(un; v − un) + 〈f, un − v〉 + h(εn, un)‖un − v‖X ∀ v ∈ K, n ∈ N.

Next, we pass to the upper limit as n → ∞ in this inequality and use the convergence (3.7), Proposition 4
(c) and assumption (h2) to deduce that

lim sup 〈Aun, un − v〉 ≤ j0(u; v − u) + 〈f, u − v〉 ∀ v ∈ K. (3.9)

On the other hand, regularity (3.8) allows us to test with v = u in (3.9) to find that

lim sup 〈Aun, un − u〉 ≤ 0.

Therefore, by the pseudomonotonicity of the operator A, guaranteed by assumption (A1), we obtain

lim inf 〈Aun, un − v〉 ≥ 〈Au, u − v〉 ∀ v ∈ X. (3.10)

We now combine (3.8), (3.9) and (3.10) to see that u is a solution to the hemivariational inequality (1.1),
which implies that S is a singleton. This together with (3.7) indicates that any approximating sequence
of (1.1) converges to the unique element of S. It follows from here that the hemivariational inequality
(1.1) is well-posed, which concludes the proof of (b).

(c) We work under the assumptions (A2), (j1), (j2), (j3), (h1), (h2), (h3) and (f). Assume that
inequality (1.1) is well-posed. Then, by Definition 7 it follows that S is a singleton.

Conversely, assume that S is a singleton and denote by u ∈ K the unique solution of (1.1). Let
{un} ⊂ X be an approximating sequence for the hemivariational inequality (1.1). Then there exists a
sequence {εn} ⊂ R such that 0 < εn → 0 and

〈Aun, v − un〉 + j0(un; v − un) + h(εn, un)‖v − un‖X ≥ 〈f, v − un〉 ∀ v ∈ K. (3.11)

Letting v = un in inequality (1.1) and v = u in inequality (3.11), we add the resulting inequalities to see
that

〈Aun − Au, un − u〉 ≤ j0(un;u − un) + j0(u;un − u) + h(εn, un)‖un − u‖X .

We now use assumptions (A2) and (j2) to obtain that

(mA − αj)‖un − u‖X ≤ h(εn, un). (3.12)

Next, we use assumption (h4)(a) to write

h(εn, un) = h(εn, un) − h(εn, u) + h(εn, u) ≤ L(εn)‖un − u‖X + h(εn, u)

and, therefore, (3.12) yields

(mA − αj − L(εn))‖un − u‖X ≤ h(εn, u). (3.13)

Note that Definition 7 guarantees that εn → 0. Therefore, passing to the upper limit in (3.13) and using
conditions (h4)(b), (h2) and the smallness condition (j3) yield

lim sup ‖un − u‖X ≤ 0.

We deduce from here that un → u in X and conclude the proof of (c).
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(d) We work under the assumptions (K1), (A1), (A2), (j1), (j2), (j3), (j4), (h1), (h2), (h3) and (f).
Moreover, we assume that the space X is reflexive. We use Theorem 6 to deduce that inequality (1.1)
has a unique solution. Then we apply part (c) of the theorem to conclude the proof. �

We end this section with two remarks. First, the statement (a)–(c) in Theorem 10 provides equivalence
results. They do not guarantee the well-posedness of the hemivariational inequality (1.1). In contrast,
sufficient conditions which guarantee its well-posedness are provided by the statement (d) of the theorem.
Second, the function h : (0,∞) × X → R defined by (3.3) satisfies assumptions (h1)–(h4). Therefore,
Theorem 10 works in this particular case and allows us to recover part of the result obtained in [19,26].

4. Convergence results

In this section, we use Theorem 10 in order to prove two convergence results for the solution of inequality
(1.1). To this end, for each ε > 0, we consider an operator Aε : X → X∗, a function jε : X → R and an
element fε ∈ X∗. With these data we consider the following perturbed version of inequality (1.1):

u ∈ K, 〈Aεu, v − u〉 + j0

ε (u; v − u) ≥ 〈fε, v − u〉 ∀ v ∈ K. (4.1)

Consider now the following assumptions.

(hA) There exists hA : ]0,+∞[×X → R such that
(a) ‖Aεu − Au‖X∗ ≤ hA(ε, u) ∀u ∈ X, ε > 0,
(b) hA satisfies assumptions (h1), (h2) and (h4) with LhA

: ]0,+∞[→ R.
(jε) jε : X → R is a locally Lipschitz function.
(hj) There exists hj : ]0,+∞[×X → R such that

(a) j0
ε (u; v) − j0(u; v) ≤ hj(ε, u)‖v‖X ∀u, v ∈ X, ε > 0,

(b) hj satisfies assumptions (h1), (h2) and (h4) with Lhj
: ]0,+∞[→ R.

(fε) fε → f in X∗ as ε → 0.

We complete these assumptions with the following two examples which will be useful in the next
section.

Example 11. An example of operator Aε : X → X∗ which satisfies assumption (hA) is given by Aεu =
Au + εTu for all u ∈ X, ε > 0, where T : X → X∗ is a Lipschitz continuous operator. Indeed, it is easy
to see that in this case condition (hA) is satisfied with hA(ε, u) = ε‖Tu‖X∗ and LhA

(ε) = εLT , LT being
the Lipschitz constant of the operator T .

Example 12. An example of functions jε, j which satisfy assumption (hj) can be constructed by using
the notation presented in Example 5 in the one-dimensional case. Let L > 0, Ω = (0, L) and let

X = { v ∈ H1(0, L) | v(0) = 0 } (4.2)

which is a real Hilbert space with the inner product

(u, v)X =

L∫

0

u′v′ dx ∀ u, v ∈ X. (4.3)

and the associated norm ‖·‖X . Here and below the prime denotes the derivative with respect to x ∈ (0, L),
i.e., u′ = du

dx
. Assume that p is a function which satisfies condition (2.2) and let Γ0 = {L}. Then, using

(2.4), we deduce that j(v) = q(v(L)) for all v ∈ X where, recall, q is given by (2.3). Moreover, (2.6)
implies that

j0(u; v) = p(u(L))v(L) ∀u, v ∈ X. (4.4)
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Let ε > 0 and replace the function p by the function

pε(r) = p(r) + εr ∀ r ∈ R. (4.5)

Then, it is easy to see that the function pε satisfies condition (2.2). Moreover, the corresponding function
jε is given by jε(v) = qε(v(L)) for all v ∈ X where

qε(r) =

r∫

0

pε(s) ds ∀ r ∈ R. (4.6)

In addition,

j0

ε (u; v) = pε(u(L))v(L) ∀u, v ∈ X. (4.7)

Finally, an elementary calculation shows that

|v(L)| ≤
√

L ‖v‖X ∀ v ∈ X. (4.8)

We now use (4.4), (4.7) and (4.5), (4.8) to see that the functions jε, j satisfy conditiontion (hj) with
hj(ε, u) = Lε‖u‖X and Lhj

(ε) = Lε.

We have the following existence, uniqueness and convergence result.

Theorem 13. Assume that X is a reflexive space and (K1), (A1), (A2), (j1), (j2), (j3), (j4), (f), (hA),
(hj), (jε) and (fε) hold. Moreover, assume that for each ε > 0 the element uε is a solution to inequality
(4.1) and let be u the solution of inequality (1.1) provided in Theorem 6. Then

uε → u in X as ε → 0. (4.9)

Proof. The proof is structured in three steps, as follows.
(i) The perturbed hemivariational inequality. Let ε > 0. We claim that if w is a solution to inequality

(4.1) then w satisfies the inequality of form (1.7) with h : ]0,+∞) × X → R given by

h(ε, u) = hA(ε, u) + hj(ε, u) + ‖fε − f‖X∗ ∀u ∈ X, ε > 0. (4.10)

Indeed, assume that w is a solution of (4.1) and let v ∈ K. Then,

〈Aw, v − w〉 + 〈Aεw − Aw, v − w〉 + j0(w; v − w)

+j0

ε (w; v − w) − j0(w; v − w) + 〈f − fε, v − w〉 ≥ 〈f, v − w〉,
which imples that

〈Aw, v − w〉 + ‖Aεw − Aw‖X∗‖v − w‖X + j0(w; v − w)

+j0

ε (w; v − w) − j0(w; v − w) + ‖f − fε‖X∗‖v − w‖X ≥ 〈f, v − w〉.
We now use assumptions (hA)(a) and (hj)(a) to see that

〈Aw, v − w〉 + hA(ε, w)‖v − w‖X + j0(w; v − w)

+hj(ε, w)‖v − w‖X + ‖f − fε‖X∗‖v − w‖X ≥ 〈f, v − w〉
and, combining this inequality with the definition (4.10) of the function h we obtain that w is a solution
of (1.7), as claimed.

(ii) Properties of the function h. We claim that the function h defined by (4.10) satisfies conditions
(h1), (h2) and (h4). Indeed, this statement is a direct consequence of the definition of h combined with
assumptions (hA)(b), (hj)(b) and (fε).

(iii) End of proof. In this step, we assume that for each ε > 0 the element uε is a solution to inequality
(4.1) and show that uε → u in X as ε → 0. In fact, let Ω(ε) be the set defined by (3.1) with the function
(4.10). Then, the step (i) shows that

uε ∈ Ω(ε). (4.11)
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Assume now that {εn} is a sequence of positive numbers such that εn → 0. It follows from inclusion
(4.11) that uεn

∈ Ω(εn) for each n ∈ N and, therefore, Definition 7 shows that {uεn
} is an approximating

sequence for the inequality (1.1). On the other hand, step (ii) guarantees that all the assumptions of
Theorem 10 (d) are satisfied and, therefore, we deduce that inequality (1.1) is well-posed with respect to
the family {Ω(ε)}ε>0. We now use Definition 8 to see that uεn

→ u in X as n → ∞ which proves the
convergence (4.9). �

We now move to a second convergence result and, to this end, for each ε > 0 we consider a set Kε

together with the following perturbed version of inequality (1.1):

u ∈ Kε 〈Au, v − u〉 + j0(u; v − u) ≥ 〈fε, v − u〉 ∀ v ∈ Kε. (4.12)

Consider now the following assumptions.

(Ã) There exists LA > 0 such that

‖Au − Av‖X∗ ≤ LA‖u − v‖X ∀u, v ∈ X.

(j̃) There exists Lj > 0 such that

j0(u;w) − j0(v;w) ≤ Lj‖u − v‖X‖w‖X ∀u, v, w ∈ X.

(K̃) There exists θ ∈ X and for each ε > 0 there exist cε > 0, dε ∈ R such that

(a) Kε = cεK + dεθ,
(b) cε → 1, dε → 0 as ε → 0.

Our second result in this section is the following.

Theorem 14. Assume that X is a reflexive space and (K1), (K̃), (Ã), (A2), (j1), (j2), (j3), (j4), (f),

(j̃) hold. Then the hemivariational inequality (1.1) has a unique solution u ∈ K and, for each ε > 0 the
hemivariational inequality (4.12) has a unique solution uε ∈ Kε. Moreover, uε → u in X as ε → 0.

Proof. It is well known that any monotone Lipschitz continuous operator is pseudomonotone, and there-

fore, assumptions (Ã), (A2) imply that A satisfies condition (A1). On the other hand, it is easy to check

that assumptions (K1), (K̃)(a), imply that for any ε > 0 the set Kε is non empty, closed and convex, i.e.,
it satisfies condition (K1). The existence and uniqueness of the solution to the hemivariational inequalities
(1.1) and (4.12) is now a direct consequence of the Theorem 6.

Assume now that ε > 0 is fixed and denote by uε the solution of inequality (4.12). Then, using

assumption (K̃), it follows that there exists ũε ∈ K such that

uε = cεũε + dεθ. (4.13)

Therefore, since v ∈ K implies that cεv + dεθ ∈ Kε, inequality (4.12) combined with Proposition 4 (a)
yield

ũε ∈ K, 〈A(cεũε + dεθ), v − ũε〉 + j0(cεũε + dεθ; v − ũε) ≥ 〈f, v − ũε〉 ∀ v ∈ K. (4.14)

We now introduce the operator Aε : X → X∗, the function jε : X → R and the element fε defined by

Aεv = cεA(cεv + dεθ), jε(v) = j(cεv + dεθ) ∀ v ∈ X (4.15)

fε = cεf. (4.16)

Note that the function jε is locally Lipschitz and, therefore, condition (jε) is satisfied. Moreover, an
elementary calculation based on Definition 2 implies that

j0

ε (u; v) = cεj
0(cεu + dεθ; v) ∀u, v ∈ X. (4.17)

Next, we multiply inequality (4.14) with cε > 0, then use equalities (4.15)–(4.17) to deduce that

ũε ∈ K, 〈Aεũε, v − ũε〉 + j0

ε (ũε; v − ũε) ≥ 〈fε, v − ũε〉 ∀ v ∈ K. (4.18)
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Our aim in what follows is to use Theorem 13 to prove that

ũε → u in X as ε → 0 (4.19)

and, to this end, we prove in what follows the validity of conditions (hA), (hj) and (fε). Below in the
proof, we assume that u, v ∈ X and ε > 0 are given.

First, we use (4.15) to see that

Aεv − Av = (cε − 1)A(cεv + dεθ) + A(cεv + dεθ) − Av

and, using assumption (Ã), we deduce that

‖Aεv − Av‖X∗ ≤ |cε − 1| ‖A(cεv + dεθ)‖X∗ + LA‖(cε − 1)v + dεθ‖X .

This proves that condition (hA)(a) holds with function

hA(ε, v) = |cε − 1| ‖A(cεv + dεθ)‖X∗ + LA‖(cε − 1)v + dεθ‖X (4.20)

which clearly satisfies condition (h1). Since A is a Lipschitz continuous operator, using assumption (K̃)(b)

it is easy to see that the function (4.20) satisfies condition (h2), too. Finally, using assumption (Ã), again,
it follows that

|hA(ε, u) − hA(ε, v)| ≤ LA|cε − 1|(cε + 1)‖u − v‖X .

This inequality combined with the convergence cε → 1 shows that the function hA defined by (4.18)
satisfies condition (h4) with LhA

= LA|cε − 1|(cε + 1). We conclude from above that condition (hA) is
satisfied.

Next, we use (4.17) to write

j0

ε (u; v) − j0(u; v) = (cε − 1)j0(cεu + dεθ; v) + j0(cεu + dεθ; v) − j0(u; v)

and, using assumption (j̃), we find that

j0

ε (u; v) − j0(u; v) ≤ |cε − 1| |j0(cεu + dεθ; v)| + Lj‖(cε − 1)u + dεθ‖X‖v‖X . (4.21)

On the other hand, by Proposition 4 (b) and assumption (j4), we have

|j0(cεu + dεθ; v)| ≤ |max{〈ξ, v〉 | ξ ∈ ∂j(cεu + dεθ)}|
≤ (c0 + c1‖cεu + dεθ‖X)‖v‖X ,

and substituting this inequality in (4.21), we deduce that condition (hj) holds with function

hj(ε, u) = (c0 + c1‖cεu + dεθ‖X)|cε − 1| + Lj‖(cε − 1)u + dεθ‖X , (4.22)

which satisfies condition (h1) and (h2). Note that

|hj(ε, u) − hj(ε, v)| ≤ (c1cε + Lj)|cε − 1|‖u − v‖X ,

which shows that the function hj defined by (4.22) satisfies condition (h4) with Lhj
(ε) = (c1cε+Lj)|cε−1|.

Finally, since cε → 1 and fε = cεf , condition (fε) is obviously satisfied. We are now in a position
to use Theorem 13 in order to see that the convergence (4.19) holds. We now use (4.13), (4.19) and

assumption (K̃)(b) to see that uε → u in X as ε → 0, which concludes the proof. �
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Fig. 1. The rod–spring system with unilateral constraints

5. A spring–rod system with unilateral constraints

The abstract results we present in this paper are useful in the study of various mathematical models
which describe the equilibrium of elastic bodies in frictional contact with a foundation. In this section, we
present a simple example which illustrate the applicability of these results. The boundary value problem
under consideration is the following.

Problem 15. Find a displacement field u : [0, L] → R and a stress field σ : [0, L] → R such that

σ(x) = F(x, u′(x)) for x ∈ (0, L), (5.1)

σ′(x) + f0(x) = 0 for x ∈ (0, L), (5.2)

u(0) = 0, (5.3)⎧
⎪⎪⎨
⎪⎪⎩

g1 ≤ u(L) ≤ g2,

−σ(L) = p(u(L)) if g1 < u(L) < g2,

−σ(L) ≤ p(u(L)) if u(L) = g1,

−σ(L) ≥ p(u(L)) if u(L) = g2.

(5.4)

Problem 15 represents a mathematical model which describes the equilibrium of a rod–spring system
with unilateral constraints, submitted to the action of body forces. In the reference configuration the
rod occupies the interval [0, L] on the Ox axis, L being a given positive constant. The physical setting is
depicted in Fig. 1. A brief description of the equations and boundary conditions in this problem is the
following.

First, equation (5.1) represents the elastic constitutive law in which F denotes a nonlinear constitutive
function. Here and everywhere below the prime denotes the derivative with respect to x, i.e., u′ = du

dx
.

Concrete examples of nonlinear elastic constitutive laws of the form (5.1) can be found in [18], for instance.
Equation (5.2) is the equilibrium equation in which f0 denotes the density of body forces acting on the
rod. Condition (5.3) represents the displacement condition. We use it here since the rod is assumed to be
fixed at the end x = 0.

Finally, conditions (5.4) represent the boundary conditions in which g1 and g2 are given bounds and
p is a real-valued function which will be described below. Such conditions model the physical setting in
which the extremity x = L of the rod is attached to a spring which prevents its motion. The spring has
an elastic behaviour, as far as the displacement of the point x = L, denoted by u(L), belongs to the
open interval (g1, g2). Its behavior is described with the stiffness function p, assumed to be positive for a
positive argument and negative for a negative one. This property of p shows that the spring push the rod
when it is in compression and pull it when it is in extension. When u(L) = g2 the spring is completely
compressed and when u(L) = g1 the spring is completely extended. In both these cases, it behaves
like a rigid and, therefore, it does not allow further extension or compression of the rod, respectively.
Mathematical models which describe the equilibrium of spring–rod systems in similar physical settings
can be found in [14,17], together with various mechanical interpretations.
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We now turn to the variational formulation of Problem 15, and to this end, we assume that the
constitutive function F and the stiffness function p satisfy the following conditions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)F : (0, L) × R → R.

(b)There exists LF > 0 such that
|F(x, ε1) − F(x, ε2)| ≤ LF |ε1 − ε2|

∀ ε1, ε2 ∈ R, a.e. x ∈ (0, L).
(c) There exists mF > 0 such that

(F(x, ε1) − F(x, ε2))(ε1 − ε2) ≥ mF |ε1 − ε2|2
∀ ε1, ε2 ∈ R, a.e. x ∈ (0, L).

(d)The mapping x �→ F(x, ε) is measurable on(0, L),
for anyε ∈ R.

(e)The mappingx �→ F(x, 0) belongs to L2(0, L).

(5.5)

{
p : R → R satisfies condition (2.2) and, moreover,
p(r) > 0 if r > 0 and p(r) ≤ 0 if r < 0.

(5.6)

We also assume that the density of body force has the regularity

f0 ∈ L2(0, L) (5.7)

and, finally,

g1 < 0 < g2. (5.8)

We use the space (4.2) which is a real Hilbert space with the canonical inner product (4.3) and the
associated norm ‖ · ‖X . We denote by X∗ and 〈·, ·〉 the dual of X and the duality pairing between X∗ and
X, respectively and by q : R → R the function defined by (2.3). We also define the set K, the operator
A : X → X∗, the function j : X → R and the element f ∈ X∗ by equalities

K = {u ∈ X | g1 ≤ u(L) ≤ g2 }, (5.9)

〈Au, v〉 =

L∫

0

F(u′) v′ dx ∀u, v ∈ X, (5.10)

j(v) = q(v(L)) ∀ v ∈ X, (5.11)

〈f, v〉 =

L∫

0

f0v dx ∀ v ∈ X. (5.12)

Then, the variational formulation of Problem 15, obtained by using standard arguments, is as follows.

Problem 16. Find a displacement field u such that the inequality below holds:

u ∈ K, (Au, v − u)X + j0(u; v − u) ≥ (f, v − u)X ∀v ∈ K. (5.13)

Let

k0 > 0, (5.14)

K0 = [−k0, k0] (5.15)

and denote by P0 : R → K0 the projection operator on K0, that is

P0r =

⎧
⎨
⎩

−k0 if r < k0,

r if − k0 ≤ r ≤ k0,

k0 if r < k0

(5.16)
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Moreover, for any ε > 0 define the operator Aε : X → X∗, the function jε : X → R and the element
fε ∈ X∗ by equalities

〈Aεu, v〉 =

∫ L

0

Fu′ v′ dx + ε

∫ L

0

(u′ − P0u
′)v′ dx for all u, v ∈ X, (5.17)

jε(v) = q(v(L)) +
ε

2
(v(L))2 for all v ∈ X, (5.18)

〈fε, v〉 =

∫ L

0

(f0 + ε)v dx for all v ∈ X. (5.19)

With these notation, we consider the following perturbation of Problem 16.

Problem 17. Find a displacement field u such that the inequality below holds:

u ∈ K, (Aεu, v − u)X + j0

ε (u; v − u) ≥ (fε, v − u)X ∀ v ∈ K. (5.20)

Our main result in this section is the following.

Theorem 18. Assume (5.5)–(5.8), (5.14), and moreover, assume that

LpL < mF . (5.21)

Then Problem 16 has a unique solution u and, for each ε which satisfies the smallness condition

0 < ε <
mF

L
− Lp, (5.22)

Problem 17 has a unique solution, denoted uε. In addition, uε → u in X as ε → 0.

Proof. For the existence and uniqueness part we use Theorem 6 on the space X given by (4.2). To this
end we use assumption (5.8) to see that the set K given by (5.9) is a nonempty closed convex subset of
X, and therefore, it satisfies assumption (K1). Next, we use assumption (5.5) to see that the operator A

defined by (5.10) satisfies the inequalities

(Au − Av, u − v)X ≥ mF ‖u − v‖2

X ∀u, v ∈ X, (5.23)

‖Au − Av‖X∗ ≤ LF‖u − v‖X ∀u, v ∈ X. (5.24)

This show that A is strongly monotone and Lipshitz continuous and, therefore, conditions (A1) and (A2)
hold, the second one with mA = mF . Next, the results presented in Example 5 show that the function
j defined by (5.11) satisfies the properties (j1) (j2) and (j4) with αj = Lp‖γ‖2. On the other hand,

using inequality (4.8) it is easy to see that ‖γ‖ ≤
√

L and, therefore, assumption (5.21) guarantees that
condition (j3) is satisfied, too. We are now in a position to use Theorem 6 to obtain the existence of a
unique solution to Problem 16.

The unique solvability of Problem 17 follows from similar arguments. In this case, an elementary
calculus shows that for each ε > 0 the operator Aε is Lipschitz continuous with Lipschitz constant
LF + 2ε and strongly monotone with constant mAε

= mF . In addition, since jε(v) = qε(v(L)) for all
v ∈ X where qε is defined by (4.6), it it easy to see that the function jε satisfies conditions (j1), (j2)
and (j4) with αjε

= (Lp + ε)L. Therefore, if (5.22) holds we deduce that αjε
< mAε

which shows that
condition (j3) holds in this case, too.

For the convergence part, we use Theorem 13. To this end, we define the operator T : X → X∗ be
equality

〈Tu, v〉 =

L∫

0

(u′ − P0u
′)v′ dx for all u, v ∈ X, (5.25)

and use the properties of the projection map to see that T is a Lipschitz continuous operator. We now use
equalities (5.10), (5.25) and (5.17) to see that we are in the framework of Example 11. We conclude from
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here that condition (hA) holds. On the other hand, Example 12 guarantees that assumption (hj) holds,
too. Finally, condition (fε) is a consequence of equalities (5.12) and (5.19). We are now in a position to
use Theorem 13 to see that uε → u in X as ε → 0, which concludes the proof. �

Once the displacement field u is known, the stress field σ can be easily obtained by using the consti-
tutive law (5.1). A function u which satisfies (5.1) is called a weak solution to the contact Problem 15.
We conclude by Theorem 10 that the Problem 15 has a unique weak solution.

We now illustrate the convergence result in Theorem 14, and to this end, we consider the set

Kε = { v ∈ X | g1ε ≤ v(L) ≤ g2ε}, (5.26)

together with the following assumptions

g1ε < 0 < g2ε, (5.27)

g1ε → g1 and g2ε → g2 as ε → 0. (5.28)

We also consider the following perturbation of Problem 16.

Problem 19. Find a displacement field u ∈ Kε such that

u ∈ Kε, (Au, v − u)X + j0(u; v − u) ≥ (f, v − u)X ∀ v ∈ Kε. (5.29)

We have the following existence, uniqueness and convergence result.

Theorem 20. Assume (5.5)–(5.8), (5.21), (5.22), (5.27) and (5.28). Then Problem 16 has a unique solution
u ∈ K and, for each ε > 0, Problem 19 has a unique solution uε ∈ Kε Moreover, uε → u in X as ε → 0.

Proof. Let ε > 0. We note that assumption (5.8) allows us to define the constants cε and dε, by equalities

cε =
g1ε − g2ε

g1 − g2

and dε =
g2εg1 − g1εg2

g1 − g2

. (5.30)

Also, let θ be a function such that

θ ∈ X and θ(L) = 1. (5.31)

Assume now that u and v are two elements of X such that

v =
g1ε − g2ε

g1 − g2

u +
g2εg1 − g1εg2

g1 − g2

θ.

Then, using (5.31) it is easy to check that g1 ≤ u(L) ≤ g2 if and only if g1ε ≤ v(L) ≤ g2ε and, therefore,
equalities (5.30) show that u ∈ K if and only if cεu + dεθ ∈ Kε. We conclude from here that

Kε = cεK + dεθ. (5.32)

On the other hand, assumption (5.28) shows that

cε → 1 and dε → 0 as ε → 0, (5.33)

It follows from (5.32) and (5.33) that condition (K̃) is satisfied. Theorem 20 is now a direct consequence
of Theorem 14. �

We end this section with some mechanical interpretation of our convergence results. First, we note
that Problem 17 represents the variational formulation of a problem similar to Problem 15, in which the
constitutive law (5.1) was replaced by the constitutive law σ(x) = F(x, u′(x)) + ε(u′(x) − P0u

′(x)), the
stiffness function r �→ p(r) was replaced by the function r �→ p(r) + εr and the density of the body forces
f0 was replaced by f0 + ε. Thus, the convergence result in Theorem 18 shows that the weak solution of
equilibrium problem of the spring–rod system can be approached as close as one wish by the weak solution
of the equilibrium problem of the spring–rod system with the above perturbed constitutive law, stiffness
function and body forces, for a small parameter ε. In addition, the convergence result in Theorem 18
shows that small perturbations on the data g1 and g2, lead to small perturbation of the weak solution of
Problem 16.
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