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GLOBAL STEIN THEOREM ON HARDY SPACES

ALINE BONAMI, SANDRINE GRELLIER AND BENOIT SEHBA

Abstract. Let f be an integrable function which has integral 0
on Rn. What is the largest condition on |f | that guarantees that f
is in the Hardy space H1(Rn)? When f is compactly supported, it
is well-known that it is necessary and sufficient that |f | belongs to
L logL(Rn). We are interested here in conditions at ∞. We do so
for H1(Rn), as well as for the Hardy space Hlog(Rn) which appears
in the study of pointwise products of functions in H1(Rn) and in
its dual BMO.

Acknowledgements. This paper is dedicated to Nikolai Nikol-
skii for his 70th birthday

1. Introduction

The aim of this article is to generalize a well known result by Stein
relative to the maximal function. Let us recall it.
Theorem (Stein)[8] Assume that f is a nonnegative integrable func-
tion on Rn that is supported in the ball B. Then its maximal function
Mf is integrable if and only if∫

B

f ln+(f)dx <∞.

Here, as usual, ln+ = max(ln, 0) where ln denote the Napierian loga-
rithm.

One may ask about a global version of such a theorem. Of course, it
does not make sense without a modification, since the maximal function
of such a nonzero function is bounded below by c

|x|n at∞. But it makes

sense if the global maximal function is replaced by the local one, that
is, if we consider

M locf(x) = sup
0<r<1

∫
|y−x|<r

|f(y)|dy.

We will give a necessary and sufficient condition on f which ensures
the integrability of M locf on Rn, hence a necessary and sufficient con-
dition for a nonnegative f to belong to the local Hardy space h1(Rn).

Date: november 2021.
1



GLOBAL STEIN THEOREM 2

A nonnegative integrable function cannot be in H1(Rn) since func-

tions in H1(Rn) have mean 0. But one can ask whether f−
(∫

fdy

)
θ

is in H1(Rn). Here θ is a fixed bounded function supported in the unit
cube Q := (−1

2
, 1

2
)n, with integral 1. The characterization is simple and

reminiscent of Stein Theorem.
Theorem. Assume f is a nonnegative integrable function on Rn.

Then f −
(∫

fdy

)
θ is in H1(Rn) if and only if

(1.1)

∫
Rn

f (ln+(f) + ln+(|x|)) dx <∞.

This answers the question raised in the abstract:

Corollary. The vector space of integrable functions that satisfy (1.1)
is the largest space S with the following property: if g is in S and f

is an integrable function such that |f | ≤ |g| and

∫
Rn

fdx = 0, then f

belongs to H1(Rn).
We will not come back to this corollary later on. So let us deduce it

right now from the theorem, which implies in particular that the space
of functions satisfying condition (1.1) has this property. Let us prove
that it is the largest. We choose θ nonnegative, bounded and supported
in Q. We know that θ is in S since it satisfies (1.1). Assume that g is
nonnegative and belongs to S. We want to prove that g satisfies (1.1).
But, since S is stable through addition (we assumed that it is a vector

space), g +

∣∣∣∣∫ gdy

∣∣∣∣ θ is in S. So the function g −
(∫

gdy

)
θ belongs

to H1(Rn), and (1.1) holds for g.

The second aspect of our work is the generalization to other Hardy
spaces. Recall that one equivalent definition ofH1(Rn) is given in terms
of maximal functions Mϕ, where ϕ is a smooth function supported in
the unit ball with nonzero integral. Following, for instance, [10], we
define, for f an integrable function or, more generally, for f a tempered
distribution,

(1.2) Mϕf(x) = sup
t>0
|ϕt ∗ f(x)|,

where, as usual, for t > 0 ϕt = t−nϕ(t−1·). On the other hand, under
adequate assumptions on the Musielak function Ψ : Rn × [0,∞) →
[0,∞), we define the Musielak-Orlicz-type space LΨ(Rn) as the set of
all measurable functions f such that∫

Rn

Ψ

(
x,
|f(x)|
λ

)
dx <∞
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for some λ > 0. Typically the class of integrable functions that satisfy
(1.1) is a Musielak space with

Ψ(x, t) := t (1 + ln+(t) + ln+ |x|) .

This is a convex function in the variable t, and LΨ is a kind of Orlicz
space with an Orlicz function that varies with the spatial point x. Re-
mark that the dual space of this kind of Musielak spaces is well-known
(see [7], [6]). For the specific space under consideration, a function g
is in its dual if, for some λ,∫

eλ|g(x)|

(1 + |x|)n+1
dx <∞.

One recognizes here an easy consequence of the John-Nirenberg in-
equality for BMO spaces, which can also be deduced from our results.

Other examples of spaces that are defined in terms of a Musielak
functions are Musielak-Orlicz-type Hardy spacesHΨ(Rn). These spaces
generalize Hardy spaces Hp(Rn) for p ≤ 1 (when Ψ does not depend
on the variable x they are the spaces introduced by S. Janson [4]). The
space HΨ(Rn) is the space of tempered distributions f such thatMϕf
belongs to LΨ(Rn). We will consider here the space Hlog(Rn), for which

Ψ(x, t) :=
t

1 + ln+(t) + ln+ |x|
.

This space has been introduced in [2] in relation with products of func-
tions in H1(Rn) and BMO and generalized div-curl lemmas. After the
seminal paper of Ky [5], which followed this first paper, one can find a
large literature on this type of spaces, which are in particular invariant
through singular integrals. Here we will not appeal to the deep prop-
erties developed there, but use only elementary properties to stick to
the generalization of Stein’s theorem. We will see that, for Hlog(Rn),
the class of nonnegative functions for which one has the equivalent of
the theorem above is defined by

(1.3)

∫
B

f (1 + ln+(ln+(f)) + ln+(ln+(|x|))) dx <∞.

Remark that an integrable function belonging to Hlog(Rn) has mean
0. Indeed, since f is in L1(Rn), we know that ϕt ∗ f tends to the con-

stant

∫
fdx for t tending to∞. By Lebesgue’s dominated convergence

Theorem, this constant function belongs to Llog(Rn), which forces the
constant to be 0. So, as for H1(Rn), it makes sense to substract to f

the function

(∫
fdx

)
θ in order to characterize Hlog(Rn).
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This problem has already been tackled in [1] for Hlog(Rn), for func-
tions with compact support. In other words, the authors of [1] estab-
lished the analog of Stein’s theorem. The interest we found in this
paper motivates ours. Here, the new difficulty is the behavior at ∞.
A source of inspiration has also been for the first author the remem-
brance of discussions with François Bouchut in the nineties, and his
manuscript [3], which already contained the condition (1.1).

Acknowledgement. The authors thank François Bouchut for having
shared his results with us.
Notations: In the following, we will write A . B (respectively A & B)
whenever there exists a nonnegative constant c with A ≤ cB (respec-
tively A ≥ cB) and A ' B whenever A . B and A & B. Each time
the constants are assumed to be uniform constants, which depend only
on the dimension of the space.

2. The Hardy space H1(Rn) and its local version h1(Rn)

Let us recall that H1(Rn) is the space of L1(Rn) functions f such
that, for some smooth function ϕ supported in the unit ball,

(2.1) ‖f‖H1 := ‖Mϕ(f)‖1 <∞.
The local space h1(Rn) is the space of L1 functions such that

(2.2) ‖f‖h1 := ‖Mloc
ϕ (f)‖1 <∞.

Here Mloc
ϕ is the local maximal function, which is defined by taking

the supremum on t < 1 and not on all positive t.

(2.3) Mloc
ϕ f(x) = sup

0<t<1
|ϕt ∗ f(x)|,

Remark 1. It is important to notice that Mloc
ϕ (f) ≤ CM locf for all f

as, for nonnegative functions, a reverse inequality is also valid whenever
ϕ si nonnegative. In particular, it is equivalent, for a nonnegative
function, to use the local maximal Hardy-Littlewood function in place
of Mloc

ϕ .

In the following, we will note

Q :=

(
−1

2
,
1

2

)n
, Qk := k +Q for k ∈ Zn, and fk := fχQk

,

χE being the characteristic function of the set E.
We first consider the case of the local Hardy space. The following
statement, which has its own interest, holds.

Theorem 1. Let f be an integrable function. Then M locf belongs to
L1(Rn) if and only if f =

∑
fk satisfies

(2.4)
∑
k∈Zn

∫
|fk(x)|

(
1 + ln+

(
|fk(x)|
‖fk‖1

))
dx <∞.
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In particular, if f satisfies condition (2.4) then f belongs to h1(Rn),
the reverse being true if f is nonnegative.

One would prefer to have global integrals, but unfortunately this is
not the case. Remark that the condition

(2.5)

∫
|f |(1 + ln+ |f |) dx <∞

is necessary. We get a sufficient condition when we add the following
one

(2.6)
∑
k

‖fk‖1 ln+(‖fk‖−1
1 ) <∞.

This last condition may be interpreted as an amalgam condition: the
sequence (‖fk‖1) belongs to a kind of ` log ` space of sequences.

Proof of the sufficient condition. By subadditivity of the maximal func-
tion,

‖M loc(f)‖1 ≤
∑
k

‖M loc(fk)‖1.

We will consider each term separately. We first remark that M loc(fk)
has support in k + 2Q, and, on this cube,

M loc(fk) ≤M(fk).

The classical L logL inequality (see @[8] for instance) written for the
normalized function fk

‖fk‖1
gives

(2.7)

∫
k+2Q

Mfk dx . ‖fk‖1 +

∫
|fk| ln+

(
fk
‖fk‖1

)
dx.

We conclude at once. �

Proof of the necessary condition. As for the sufficient condition, it is
sufficient to have an estimate for each fk. We claim that the following
estimate holds for v supported in Q,

(2.8)

∫
Q

M locv dx &
∫
Q

|v| ln+(|v|) dx.

The proof is a variant of the proof of [8] for the local maximal function.
We write it for the sake of completeness. Consider the family Q of
dyadic sub-cubes of Q. The maximal dyadic function is defined on Q
by

(2.9) Mdv(x) := sup
x∈R,R∈Q

1

|R|

∫
R

|v(y)| dy.
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The following classical estimate is the key of the proof. For v with
norm 1, and s > 1,

(2.10) |{x,Md(v)(x) > s}| ≥ 1

s

∫
|v|>s

|v|dx

Let `(R) be the length of the sides of the cube R. The following
lemma compares the two maximal functions.

Lemma 1. Let v be an integrable function supported in Q with norm
1. For x ∈ Q,

(2.11) M locv(x) ≥ c sup
1

|R|

∫
R

|v(y)| dy,

where the supremum is taken on dyadic cubes R such that `(R)
√
n ≤ 1.

Here c = n−n/2|B(0, 1)|−1.

Proof. Each dyadic cubeR is contained in the ballB(x, `(R)
√
n), which

has the volume nn/2|B(0, 1)||R|. So

1

|B(x, `(R)
√
n)|

∫
B(x,`(R)

√
n)

|v|dx > c
1

|R|

∫
R

|v|dx.

This ball has radius bounded by 1 when `(R)
√
n ≤ 1. The inequality

between suprema follows at once. �

We claim that the supremum defined in the lemma coincides with
Mdv(x) when Mdv(x) >

√
n
n
. Indeed, for larger dyadic cubes, we have

1

|R|

∫
R

|v(y)|dy ≤
√
n
n
∫
Q

|v|dy =
√
n
n
.

So, using the inequality (2.10) for the dyadic maximal function, we get

(2.12) |{x ∈ Q,M loc(v)(x) > s}| & 1

s

∫
|v|>s/c

|v|dx

for s > c
√
n
n
. We integrate both sides from c

√
n
n

to ∞, and find∫
Q

M locv dx &
∫
|v| ln+

(
|v|√
n
n

)
dx.

Since the norm of v is 1, the estimate (2.8) on |v| ln+(|v|) follows at

once, using the fact that ln+(t) ≤ ln+

(
t√
n
n

)
+ ln+(

√
n
n
).

To conclude for the proof, we remark that M locf ≥ M locfk on Qk.
Hence, applying the inequality (2.8) to each fk and summing on k
allows to get the necessary condition. �



GLOBAL STEIN THEOREM 7

We now turn to global Hardy space H1(Rn). For f ∈ L1(Rn), let us
define

(2.13) Tθf := f −
(∫

f dx

)
θ.

Here, θ is a fixed bounded function supported in the unit cube with∫
θ = 1.

As said in the introduction, it was proved by Bouchut in informal notes
(see [3]) that the function Tθf is in H1(Rn) whenever f belongs to the
Musielak space of functions g such that∫

|g(x)| (1 + ln+ |g(x)|+ ln+ |x|) dx <∞.

The following theorem may be seen as a global Stein’s theorem (see
[8]) and gives as well the necessary condition.

Theorem 2. Let Tθ be defined as in (2.13). Let f be an integrable
function. Then Tθf is a function of H1(Rn) if

(2.14)

∫
|f(x)| (1 + ln+ |f(x)|+ ln+ |x|) dx <∞.

Moreover, if f is nonnegative and Tθf is in H1(Rn), then condition
(2.14) holds.

In particular, a function f of integral 0 satisfying (2.14) belongs to
H1(Rn).

Proof. Even if the sufficient condition has already been established by
Bouchut (see the remark below), we will give a slightly different but
complete proof of it.

Let us remark first that f belongs to h1(Rn). Indeed, let us prove
that the two sufficient conditions given in (2.5), (2.6) are satisfied. It is
straightforward for the first one. We now want to prove that condition
(2.14) implies

∑
k 6=0 µk ln+(µ−1

k ) <∞, with µk = ‖fk‖1. We divide this

last sum into two, depending on the fact that µk > k−(n+1) or not. For
the first sum, the inequality comes from the assumption∫

|f(x)|(1 + ln+ |x|) dx <∞

since∫
|f(x)|(1+ln+ |x|) dx &

∑
k

(1+ln+ |k|)
∫
|fk(x)| dx =

∑
k

µk(1+ln+ |k|).

For µk ≤ |k|−(n+1), |k| ≥ 1 using that x 7→ x ln+(x−1) is nondecreasing,
the sum of the corresponding terms is bounded by∑

|k|≥1

|k|−(n+1) ln |k| <∞.
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Hence, f belongs to the local Hardy space h1(Rn). It remains to deal
with the non local part.
Without loss of generality, we assume ‖f‖1 = 1. As before, we write
f =

∑
k fk, with fk = fχQk

, k ∈ Zn. We have as well

Tθf =
∑(

fk −
(∫

fk dx

)
θ

)
.

We write

Tθfk = fk −
(∫

fk dx

)
χQk

+

(∫
fk dx

)
(χQk

− θ).

We will consider separately the two parts.
We first prove the following proposition.

Proposition 1. Let fk be defined as above and h :=
∑
hk, where

hk := fk −
(∫

fk dx

)
χQk

and assume condition (2.4). Then h is in

H1(Rn).

Proof. We prove that the hk’s are in H1(Rn) and that∑
‖Mϕhk‖1 <∞.

Inside k+2Q, we consider the two terms of hk separately. We conclude
directly for the part involving the characteristic function of Qk, while,
for fk we use (2.7), which we recall here:

(2.15)

∫
k+2Q

Mfk dx .

(
‖fk‖1 +

∫
|fk| ln+

(
fk
‖fk‖1

)
dx

)
.

From condition (2.4), the sum on k of the right hand side is bounded.
It follows that

‖
∑
k

(Mhk)χk+2Q‖1 <∞.

It remains to prove that

‖
∑
k

(Mϕhk)χ(k+2Q)c‖1 <∞.

By the zero-mean of hk, the maximal function Mϕhk is bounded by
‖hk‖1/|x− k|n+1. So∫

Rn\(k+2Q)

Mϕhk dx . ‖hk‖1 . ‖fk‖1.

The sum of the corresponding integrals is bounded by some uniform
constant. It allows to conclude. �
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We consider now the remaining part g := Tθf − h. Recall that

g :=
∑
k

∫
fk dx (χQk

− θ) .

The next lemma gives a sufficient condition for g to be in H1(Rn).

Lemma 2. There exists a constant C, which depends only on the di-
mension, with the following property. Let a be bounded by 1, of mean
0, and assume that a is supported in Q0 ∪Qj, with |j| > 2. Then

(2.16) ‖a‖H1(Rn) . 1 + ln |j|.

Proof. Remark that |j|−1a is an atom ofH1(Rn), and thus has bounded
norm. But we need a better estimate. As before, we use the classical
inequality

(2.17) |Mϕa(x)| . |j|
|x|n+1

for |x| > 2|j|. For |x| < 2|j| we use the elementary inequality

(2.18) |Mϕa(x)| .MχQ0(x) +MχQj
(x) .

1

1 + |x|n
+

1

1 + |x− j|n
.

We get

(2.19) ‖Mϕa‖1 . 2+

∫
|x|>2|j|

|j|dx
|x|n+1

+

∫
1<|x|<2|j|

dx

|x|n
+

∫
1<|x−j|<3|j|

dx

|x− j|n
.

The conclusion follows easily that (2.16) holds. �

We have the following proposition.

Proposition 2. Let λj be a sequence of real numbers indexed by Zn
and let g :=

∑
gj, with gj := λj(χQj

− θ). Then g is in H1(Rn) if

(2.20)
∑
j

|λj| (1 + ln+ |j|) <∞.

Moreover, if the λ′js are nonnegative, it is a necessary condition for

having g in H1(Rn).

The sufficiency of the condition comes from Lemma 2.
Let us now assume that the λ′js are nonnegative and prove the necessity
of the condition. We choose ϕ such that 0 ≤ ϕ ≤ 1, and ϕ = 1 on the
ball B(0, 1/2).

We will give a bound below of |ϕr ∗ g|(x) for |x| >
√
n and r = 4|x|.

We first prove that

−ϕr ∗ g(x) =
∑
j

λj(ϕr ∗ θ(x)− ϕr ∗ χQj
(x))
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is nonnegative as a sum of nonnegative terms. Indeed, for |x| >
√
n

and r = 4|x|, the support of θ is entirely contained in the set of y for
which ϕr(x− y) = 1. So, on one hand

ϕr ∗ θ(x) =
1

rn
.

On the other hand, since 1 is the maximum of ϕ, the other terms
ϕr ∗ χQj

(x) are bounded by r−n. We have proved our claim on the
sign of −ϕr ∗ g(x). Now, a bound below is given by r−n

∑
j∈J λj where

J = {j ∈ Zn ; B(x, r)∩Qj = ∅}. Indeed, for such j’s, ϕr ∗ χQj
(x) = 0.

But this set of indices contains all j’s such that |j| ≥ 6|x| since, under
these conditions,

dist(B(x, 4|x|), j) ≥ |x| ≥
√
n = diam(Qj).

Eventually,

|Mϕg(x)| ≥ |ϕ4|x| ∗ g(x)| ≥ 1

(4|x|)n
∑
j≥6|x|

λj.

and, integrating over the set |x| ≥
√
n,

‖Mϕg‖1 &
∑
|j|>6

√
n

λj ln(|j|/6).

We conclude at once. �

End of the proof of Theorem 2. The sufficiency of the condition∫
|f(x)| (1 + ln+ |f(x)|+ ln+(|x|)) dx <∞

is a consequence of Propositions 1 and 2. Indeed, we already mentioned
that condition (2.4) holds. Hence, what we called h in Proposition 1
belongs to H1(Rn). To prove that g = f − h is in H1(Rn), one has to

prove estimate (2.20) with λj =

∫
fj. Since |x| ' |j| on Qj, it follows

easily from the discretization of the integral∫
|f(x)| (1 + ln+(|x|)) .dx

We now prove the necessity for a nonnegative function f with Tθf ∈
H1(Rn). As H1(Rn) is contained in h1(Rn), Tθf belongs to h1(Rn).
Since θ is also in h1(Rn), the function f itself is in h1(Rn). So the
condition (2.4) is satisfied. By Proposition 1, h is in H1(Rn). So g =
f − h is in H1(Rn). By Proposition 2, this implies∑

|k|>1

µk(1 + ln+ |k|) <∞
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with µk =

∫
fk. As before, this last condition reads∫

|f(x)|(1 + ln+(|x|)) dx <∞.

Eventually, combined with the estimate (2.5), one gets∫
|f(x)|(1 + ln+ |x|+ ln+(|f(x)|) dx <∞.

�

Remark. The precise statement of Bouchut in [3] is the following.
Let T be a singular operator given by the convolution by K. Then

the operator RK , defined by

RK(f)(x) = T (f)(x)−
(∫

f dy

)
K(x)χ|x|>1

maps the space of functions that satisfy (1.1) into L1(Rn).
This may be obtained as a consequence of Theorem 2. Indeed, let f

satisfy (1.1). We know that Tθf is in H1(Rn). Since singular operators
map H1(Rn) into itself and since the integral of Tθf is zero, RK(Tθf)
is integrable. So it is sufficient to see that RK(θ) is also in L1(Rn). Be-
cause of Lp estimates for singular operators, T (θ) is locally integrable.
The integrability on {|x| > 2} follows from the estimate∫

|x|>2

∫
|y|<1

|K(x− y)−K(x)|θ(y)dydx <∞

since the kernel K, which is the kernel of a singular integral, satisfies∫
|x|>2

|K(x− y)−K(x)|dx <∞

for |y| < 1.
Conversely, by using the characterization of H1(Rn) through Riesz

transforms, it is easy to see that the statement of Bouchut implies the
sufficient condition in Theorem 2.

3. The local Hardy space hlog

We first consider the local Hardy space hlog(Rn). The following result
gives the analogue of Theorem 1.

Theorem 3. Let f be an integrable function. Then M locf is in Llog(Rn)
if and only if

(3.1)

∫
|f(x)|

(
1 + ln+

ln(e+ |f(x)|)
ln(e+ |x|)

)
dx <∞.
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As a consequence, if f satisfies this condition then f is in hlog(Rn).
Conversely, if f is nonnegative and f is in hlog(Rn), then condition
(3.1) holds.

Proof. It will be convenient to take an equivalent function for Ψ, which
leads to the same spaces. Namely, let

Ψ(x, t) :=
t

ln(e+ t) + ln(e+ |x|)
.

We omit the bar from now on. The function Ψ is nondecreasing in t.
An explicit computation gives

(3.2)
1

2

Ψ(x, t)

t
≤ d

dt
Ψ(x, t) ≤ Ψ(x, t)

t
.

It is also doubling:

Ψ(x, 2t) . Ψ(x, t).

We first establish the following lemma, which may be seen as a pre-
cised version of the corresponding result in [1].

Lemma 3. Let fk be supported in k + Q with µk := ‖fk‖1 ≤ 1. One
has

∫
k+2Q

Ψ(x,M(fk)) dx .
µk

ln(e+ |k|)
+

µk
ln(e+ |k|)

ln+

(
1

µk

)(3.3)

+

∫
k+Q

|fk(x)|
(

1 + ln+
ln(e+ |fk(x)|)

ln(e+ |k|)

)
dx.

Proof. We have

(3.4) Ψ(x, t) ' Ψ(|k|, t) for x ∈ k + 2Q.

We write, as it is classical (see for instance [8], Chapter 1)∫
k+2Q

Ψ(k,M(fk)(x)) dx '
∞∫

0

Ψ′(k, t)|{x ∈ k + 2Q ; Mfk(x) > t}|dt

. Ψ(k, ‖fk‖1)+

∞∫
‖fk‖1

Ψ(k, t)

t
|{x ∈ k + 2Q ; Mfk(x) > t}| dt.

Since Ψ(x, t) ≤ t

ln(e+ |x|)
, the first term is bounded by

µk
ln(e+ |k|)

.

Using the maximal theorem, one has the inequality

|{x ∈ k + 2Q ; Mfk(x) > t}| . 1

t

∫
|fk|≥t/2

|fk(x)| dx.
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So, using this last inequality and exchanging the integrals, we get∫
k+2Q

Ψ(k,M(fk)(x)) dx .
µk

ln(e+ |k|)
+

∫
2|fk(x)|>µk

|fk(x)|
2|fk(x)|∫
µk

Ψ(k, t)

t2
dt dx.

We cut the last integral into the integral below 1 and above 1. Since
Ψ is doubling, it is straightforward to see that such integrals are also
doubling, namely

(3.5)

2s∫
1

Ψ(x, s)

s2
ds .

s∫
1

Ψ(x, s)

s2
ds

for s > 2. We will use the following properties satisfied by Ψ.

(1) for 0 < t < 1,

1∫
t

Ψ(x, s)

s2
ds ' ln+(1/t)

ln(e+ |x|)
,

(2) for t > 1,

ln+
ln(e+ t)

ln(e+ |x|)
.

t∫
1

Ψ(x, s)

s2
ds . 1 + ln+

ln(e+ t)

ln(e+ |x|)
.

Indeed, we write, on one hand for 0 < t < 1,

1∫
t

Ψ(x, s)

s2
ds =

1∫
t

1

s(ln(e+ s) + ln(e+ |x|))
ds '

1∫
t

1

s ln(e+ |x|)
ds

on the other hand, for t > 1,

t∫
1

Ψ(x, s)

s2
ds =

t∫
1

1

s(ln(e+ s) + ln(e+ |x|))
ds

'
t∫

1

1

(s+ e)(ln(e+ s) + ln(e+ |x|))
ds ≤ ln

(
1 +

ln(e+ t)

ln(e+ |x|)

)
.

Using these properties, we get the inequalities

1∫
µk

Ψ(k, t)

t2
dt .

1

ln(e+ |k|)
ln+

(
1

µk

)
,

and
2|fk(x)|∫

1

Ψ(k, t)

t2
dt . 1 + ln+

(
ln(e+ |fk(x)|)

ln(e+ |k|)

)
.
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It follows that∫
k+2Q

|fk(x)|
2fk(x)∫
µk

Ψ(k, t)

t2
dt dx .

µk
ln(e+ |k|)

+
µk

ln(e+ |k|)
ln+

(
1

µk

)
+

∫
k+Q

|fk(x)|
(

ln+

(
ln(e+ |fk(x)|)

ln(e+ |k|)

))
dx.

This ends the proof of the Lemma. �

Let us prove the local theorem 3. Let f be an integrable function.
Without loss of generality, we can assume ‖f‖1 = 1. We first prove the
sufficiency of condition (3.1) to have M loc(f) ∈ Llog(Rn). We have to
estimate ∫

Rn

Ψ(x,M loc(f)(x)) dx.

We write f as
∑
fk with fk supported in k + Q, k ∈ Z, µk := ‖fk‖1.

At this point, we recall that Llog is only a quasi Banach space, so that
we need to be careful. We will use the following property, valid for
nonnegative functions gj, that

(3.6)

∫
Rn

Ψ(x,
∑

gj(x)) dx .
∑∫

Rn

Ψ(x, gj(x)) dx.

This is an easy consequence of the fact that the function t 7→ Ψ(x, t)

t
is nonincreasing. We apply Lemma 3 to fk to get,∫

Ψ(x,M loc(fk)) dx ≤
∫

k+2Q

Ψ(x,M(fk)) dx

.
µk

ln(e+ |k|)

(
1 + ln+

(
1

µk

))
+

∫
k+Q

|fk(x)| ln+
ln(e+ |fk(x)|)

ln(e+ |k|)
dx

It remains to sum over k. The sums corresponding to the two first
terms are bounded by the norm of f in L1 (we cut the second sum
into two parts as in the preceding proof by comparing µk to |k|−(n+1)).
Eventually, using that |x| ' |k| on k +Q,∫

Rn

Ψ(x,M loc(f)(x)) dx . ‖f‖1 +

∫
|f(x)| ln+

ln(e+ |f(x)|)
ln(e+ |x|)

dx.

It allows to conclude for the sufficient condition. For the necessary
condition, we use Stein Inequality (2.12) as for the characterization of
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h1(Rn). It gives

∫
Ψ(x,M loc(fk)) dx &

∫
(k+Q)∩|fk(x)|>1

|fk(x)|
c−1|fk(x)|∫

1

Ψ(|k|, s)
s2

ds dx

&
∫

k+Q

|fk(x)| ln+
ln+(|fk(x)|)
ln(e+ |k|)

dx

Summing on k gives the result as before. Hence, we proved that M locf
belongs to Llog(Rn) if and only if condition (3.1) holds. The result
on hlog(Rn) is an easy consequence of the remark we did before that
Mloc

ϕ (f) ≤ CM locf while, when ϕ and f are nonnegative, a reverse
inequality is also valid.

�

Before leaving the local estimates, let us answer a natural question.
What can we say for functions that are only locally integrable? Thanks
to the differenciation Lebesgue Theorem |f | ≤M locf , hence it is clear
that f ∈ Llog(Rn) is a necessary condition for a nonnegative function
f to belong to hlog(Rn). The following lemma goes into this direction.

Lemma 4. Assume that f is nonnegative and locally integrable. If∫
Ψ(x,M locf) dx <∞,

then the function f belongs to the weighted space L1(ln(e+ |x|))−1dx).

In particular, if

∫
Ψ(x,M locf)dx = 1, then

∫
Rn

|f(x)|
ln(e+ |x|)

dx . 1.

Proof. If we note as before µk :=

∫
fk dx, it is sufficient to prove that

(3.7)
∑
k

µk
ln(e+ |k|)

<∞.

Let N be the smallest integer such that 2−N
√
n ≤ 1. Using the com-

parison between M loc and Md given in in (2.11), if we consider any

sub-cube R of k +Q such that `(R) = 2−N , then M locfk(x) &
∫
R

fk dy

for x ∈ R. We call Qk,N the family of these 2Nn subcubes. It follows
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that

Ψ(k, µk) ≤
∑

R∈Qk,N

Ψ(k,

∫
R

fk(y) dy)

.
∑

R∈Qk,N

∫
R

Ψ(k,M locfk) dx =

∫
k+Q

Ψ(k,M locfk) dx.

So ∑
k

Ψ(k, µk) .
∑
k

∫
k+Q

Ψ(x,M locfk) dx ≤
∫

Ψ(x,M locf) dx.

Next, one verifies that
µk

ln(e+ |k|)
≤ 2Ψ(k, µk) unless µk is larger than

|k|, which implies, by monotonicity, that Ψ(k, |k|) ≤ 2Ψ(k, µk). Since
the sequence (Ψ(k, µk))k tends to 0, this happens only for a finite num-
ber of terms, which proves the convergence of the series (3.7).

Assume now that

∫
Ψ(x,M locf) dx = 1, which implies that∑

k

Ψ(k, µk) . 1.

The sum
µk

ln(e+ |k|)
, when restricted to those k for which µk ≤ |k| is

bounded by some uniform constant. The number of the other terms is

bounded by a uniform constant. Moreover, for any of them
µk

ln(e+ µk)
≤

2Ψ(|k|, µk) . 1. It follows that each of these µk is bounded by some
uniform constant. The estimate of the integral follows at once. �

The function

f(x) := (1 + |x|)−n (ln(e+ |x|))−1 ,

which varies very slowly, gives an example of non integrable function
in hlog(Rn). The following proposition revisits Theorem 3 without as-
suming a priori that f is integrable. It is much more technical. The
notations for fk and µk are the same.

Proposition 3. Let f be locally integrable. Then we have following
inequality.∫

Ψ(x,M locf) dx .
∑
k

µk
ln(e+ |k|)

+

∫
Rn

|f(x)| ln+

(
1 +

ln(e+ |f(x)|)
ln(e+ |x|)

)
dx

+
∑
k

∫
Rn

|fk(x)|
ln+

(
min(|fk(x)|,|k|)

µk

)
ln(e+ |k|)

dx.(3.8)

Moreover, the finiteness of the right hand side is a necessary condition
for M locf to be in Llog(Rn).
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Remark 2. If f is such that |fk| . µk and |f(x)| . |x| then this
condition reads ∫

|f(x)|
ln(e+ |x|)

dx <∞.

This is the case of the example given above

f(x) := (1 + |x|)−n (ln(e+ |x|))−1 .

Proof. We will only sketch the proof since it follows the same lines as
the proof of Theorem 3. When revisiting this proof, we cut now the
integral

2|fk(x)|∫
µk

Ψ(k, s)

s2
ds =

min(|k|,2|fk(x)|)∫
µk

Ψ(k, s)

s2
ds+χ{2|fk(x)|>|k|}

2|fk(x)|∫
|k|

Ψ(k, s)

s2
ds.

The second integral is treated as previously. For the first one, we use

Ψ(k, s)

s2
' 1

s ln(e+ |k|)
,

which leads to the last term. �

4. The Hardy space Hlog

We finally give conditions for Hlog and prove the following theorem.

Theorem 4. Let Tθ be defined as in (2.13). Let f be an integrable
function. Then Tθf is a function of Hlog(Rn) if

(4.1)

∫
|f(x)| (1 + ln+ ln(e+ |f(x)|) + ln+ ln(e+ |x|)) dx <∞.

Moreover, if f is nonnegative and Tθf is in Hlog(Rn), then (4.1) holds.

As for H1(Rn), a function f of integral 0 and satisfying the condition
(4.1) belongs to Hlog(Rn).

Proof. We write as before Tθf = g + h. To prove that the function h
belongs to Hlog(Rn), we do as in the proof of Theorem 2 and look first
at the Llog norm of each Mhk on k + 2Q. On this set, we consider the
two terms in hk separately. We conclude directly for the characteristic
function whose sum gives a L1 term, while, for fk we use the estimate
(3.3). It remains to look at the integral of Mhk outside k+2Q. We use
the fact that Ψ(x, t) ≤ t, and may consider L1 norms as in Proposition
1. The proof is identical.

We finally want to estimate g. In this case, Proposition 2 is replaced
by the following one, which may be seen as its generalization.
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Proposition 4. Let ω be a radial nonincreasing function on Rn, which
satisfies

(4.2)

∫
Rn

ω(x)

(1 + |x|)n+1
dx <∞.

Let λj be a sequence of real numbers indexed by Zn, and let g :=
∑
gj,

with gj := λj(χQj
− θ). Then g is in H1

ω(Rn) if

(4.3)
∑
j

λjΩ(|j|) <∞

where Ω is the function

Ω(R) := ω(Q0) +

∫
1<|y|<R

ω(y)

|y|n
dy.

Moreover, if the λ′js are nonnegative, it is a necessary condition for

having g in H1
ω(Rn).

Proof. We first remark that the function Ω is doubling, that is, there
exists C such that Ω(2R) ≤ CΩ(R). Next we adapt Lemma 2. Inequal-
ity (2.19) for aj = χQj

− θ is replaced by∫
|Mϕaj|ω(x)dx ≤ ω(Q0) + ω(Qj) +

∫
|x|>2|j|

C|j|ω(x)

|x|n+1
dx

+

∫
1<|x|<2|j|

Cω(x)

|x|n
dx+

∫
1<|x−j|<3|j|

Cω(x)

|x− j|n
dx.(4.4)

From the facts that ω is radial and nonincreasing, it follows that
ω(Q0) ≥ ω(Qj) and∫

1<|x−j|<3|j|

ω(x)

|x− j|n
dx ≤

∫
1<|x|<3|j|

ω(x)

|x|n
dx . Ω(|j|).

It remains to consider the term∫
|x|>2|j|

|j|ω(x)

|x|n+1
dx =

∫
|x|>2

ω(|j|x)

|x|n+1
dx . 1.

This gives the sufficient condition.
The necessary condition is obtained easily, using only the fact that∫

(Mϕaj)ω(x)dx & ω(Q0) +

∫
1<|x|<|j|/6

ω(x)

|x|n
dx.

�
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In particular, when ω(x) = ln(e+|x|)−1, we have Ω(x) ' 1+ln(ln(e+
|x|), which allows to conclude for the sufficient condition in Theorem
4.

It remains to prove the necessary condition in Theorem 4. Let us
assume that f is a nonnegative function such that Tθf belongs to
Hlog(Rn). Then Tθf ∈ hlog(Rn), and as θ ∈ h1(Rn) ⊂ hlog(Rn), we
conclude that f itself belongs to hlog(Rn). Hence by Theorem 3, f sat-
isfies (3.1). If we cut f into g + h as before, Lemma 3 implies that the
function h is in Hlog(Rn) (apply estimate (3.3) to each hk). Hence, g is
also in Hlog(Rn). To conclude, we claim that we can work on weighted
inequalities since, as |g| ≤ 2‖f‖1 = 2, we have∫

Rn

Ψ(x,Mϕg) dx '
∫
Rn

Mϕg(x)
dx

ln(e+ |x|)
.

Hence, g belongs toH1
ω(Rn) where ω(x) = ln(e+|x|)−1. Then, it suffices

to apply by Proposition 4, with λk =

∫
fk dx to get∑

k

λk(1 + ln(ln(e+ |k|)) <∞

which is equivalent to∫
f(x)(1 + ln ln(e+ |x|))dx <∞.

It allows to conclude. �

5. Concluding remarks

For the estimates in hlog(Rn) we have allowed f not to be inte-
grable. This could also be done for the space Hlog(Rn), even if only(∫

fk dx

)
θ makes sense for f locally integrable. Other generaliza-

tions concern the weighted spaces.
Part of this study will be generalized to other Hardy spaces of Musielak

type in a forthcoming paper.
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