
HAL Id: hal-03558479
https://hal.science/hal-03558479v1

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Incremental Build of Software Configurations
Georges Aaron Randrianaina, Djamel Eddine Khelladi, Olivier Zendra,

Mathieu Acher

To cite this version:
Georges Aaron Randrianaina, Djamel Eddine Khelladi, Olivier Zendra, Mathieu Acher. Towards
Incremental Build of Software Configurations. ICSE-NIER 2022 - 44th International Conference on
Software Engineering – New Ideas and Emerging Results, May 2022, Pittsburgh, PA, United States.
pp.1-5, �10.1145/3510455.3512792�. �hal-03558479�

https://hal.science/hal-03558479v1
https://hal.archives-ouvertes.fr


Towards Incremental Build of Software Configurations
Georges Aaron Randrianaina, Djamel Eddine

Khelladi, Olivier Zendra
Univ Rennes, CNRS, Inria, IRISA - UMR 6074

F-35000 Rennes, France
{firstname[-name2].lastname}@irisa.fr

Mathieu Acher
Univ Rennes, CNRS, Inria, IRISA - UMR 6074

Institut Universitaire de France (IUF)
F-35000 Rennes, France
mathieu.acher@irisa.fr

ABSTRACT
Building software is a crucial task to compile, test, and deploy soft-
ware systems while continuously ensuring quality. As software
is more and more configurable, building multiple configurations
is a pressing need, yet, costly and challenging to instrument. The
common practice is to independently build (a.k.a., clean build) a
software for a subset of configurations. While incremental build has
been considered for software evolution and relatively small modifi-
cations of the source code, it has surprisingly not been considered
for software configurations. In this vision paper, we formulate the
hypothesis that incremental build can reduce the cost of exploring
the configuration space of software systems. We detail how we
apply incremental build for two real-world application scenarios
and conduct a preliminary evaluation on two case studies, namely
x264 and Linux Kernel. For x264, we found that one can incremen-
tally build configurations in an order such that overall build time is
reduced. Nevertheless, we could not find any optimal order with
the Linux Kernel, due to a high distance between random configu-
rations. Therefore, we show it is possible to control the process of
generating configurations: we could reuse commonality and gain
up to 66% of build time compared to only clean builds.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems.

KEYWORDS
Highly configurable system, Build system, Incremental build

1 INTRODUCTION
Building software is a crucial activity in every non-trivial software
project. Different artifacts are assembled, compiled, tested, and
eventually deployed, hopefully with success. The rise of continu-
ous integration (CI) has amplified this trend with build services
integrated into major code platforms (e.g., Github, GitLab). Their
interest is to continuously ensure the quality of a project, both in
terms of functional and non-functional properties (e.g., security,
execution time). Techniques such as distributed builds and paral-
lelization of build tasks have been developed to speed-up builds.
Althoughwidely adopted, building software is increasingly complex
and expensive in terms of time and other resources [5, 9, 17, 27].

Software configurations add further complexity. Different vari-
ants of the artefacts can be assembled due to e.g., conditional com-
pilation directives #ifdef in the source code. Different external li-
braries can be compiled and integrated as well. How the build is
realized can also change e.g., with different compiler flags. Devel-
opers and maintainers want to ensure that, throughout evolution,

all or at least a subset of software configurations build well. It is no
surprise that many organizations build several software configura-
tions of their projects as part of their CI. For instance, initiatives
like KernelCI or 0-day build thousands of default or random Linux
configurations each day [2]. Another example is JHipster, a popular
Web generator that builds dozens of configurations at each commit,
involving different technologies (Docker, Maven, grunt, etc) [15].

The common practice is to independently build a subset of con-
figurations i.e., in a fresh environment. In this paper we propose
and explore an approach, called incremental build of configurations:
instead of starting from scratch and cleaning the build artefacts,
a configuration can be (incrementally) built from an existing and
already completed configuration build. While incremental build has
been considered for software evolution with small code edits, it has
surprisingly not been considered for software configurations. The
idea is to reuse artefacts of previous configurations builds and thus
save some computations, hence resources, including time. Behind
this idea, the real question is to quantify how much and where it
can gain or lose compared to a more conventional build, in addition
of already existing techniques such as distributed build. Moreover,
this approach has risks: an incremental build might not work or
might be incorrect compared to a conventional build, for example
the build system might forget to recompile some necessary arte-
facts. Another unknown remains about the strategy to schedule
the incremental build of configurations. Given a set of configura-
tions, numerous possible orderings exist, possibly with different
effects on correctness and overall build cost (e.g., CPU time). Does
incremental build pay off whatever the ordering and the "distance"
among configurations? Is it worth finding an optimal ordering? Our
goal in this vision paper is to bridge the worlds of software build
and configurable software. In particular, to push for an in-depth
exploration of the above hypothesis and address, to the best of our
knowledge, new open unaddressed questions: (RQ1, efficiency)
Does incremental build outperform clean build? (RQ2, correct-
ness) Is the result of incremental build the same as a clean build?
(RQ3, optimality) Is there an order of configurations that brings
an optimal (overall) incremental build time?

To investigate these questions, we detail how we apply incre-
mental build for two real-world application scenarios (1) ordering
over a fixed set of configurations; (2) generation of configurations
in such a way the incremental build is efficient. We conduct a pre-
liminary evaluation on two case studies, namely x264 and Linux
Kernel. For x264, we found that an optimal ordering of random
software configurations exists and reduces overall build time. A
caveat is that the correctness of the incremental build is sometimes
not ensured for certain pairs of x264 configurations and thus poses
some challenges. In contrast to x264, we could not find any opti-
mal order with the Linux Kernel due to a high distance between



Randrianaina, et al.

configurations. Nonetheless, we show it is possible to control the
process of generating configurations: we could reuse commonality
and gain up to 66% of build time compared to only clean builds.
In addition, we ensure that the generated configurations of Linux
change as much as possible.

2 WHY INCREMENTAL BUILD?
This section introduces our vision, before presenting two real-world
scenarios of incremental build of configurations

2.1 Incremental build of configurations
When testing a configurable system, developers often build a set
of configurations. The common workflow is to build each of them
from scratch. A build typically has a cost, such as CPU time, energy
consumption, billed when done in a paid cloud service, etc. In the
rest of the paper, we take as an example the cost function of CPU
time. Figure 1a illustrates three configurations 𝑐1, 𝑐2 and 𝑐3 of the
same configurable software system, and their build from scratch
times (respectively 10, 15 and 20 minutes).

The black node can be seen as an initial state, or a clean directory
to launch the build task from. The edge from the initial state to
the configuration represents the build task and the time it takes.
Building these three configurations, to check if they compile or for
testing, takes 45 minutes as shown on Figure 1a1.

However, configurations of the same software system can share
similarities: build rules, source files and even object files. Our hy-
pothesis is that these similarities could lead to sharing: the files
produced during the build of a configuration can be reused by other
configurations built after. This is the main point of incremental
build: avoiding redundant builds and processing only the required
build rules to be efficient. Figure 1b shows a possible order to build
the three configurations presented above: first build 𝑐1 which takes
10minutes; then compile 𝑐2 and 𝑐3 without going back to the initial
state (e.g. without cleaning the directory) but reusing the compiled
files from 𝑐1’s build. This reuse reduces build times for 𝑐2 and 𝑐3
from 15 and 20min to 10min. In the end, three configurations were
built in 30 minutes instead of 45.

Therefore, an incremental build is intended to be efficient com-
pared to a classic clean build. This efficiency could be measured by
CPU load or energy consumed during the build.

However, incremental build may not always be recommended,
due to correctness issues for some systems. Indeed, reusing files
built for other configurations could introduce improper files into
the configuration being built. Hence, the result of the incremental
build could be different compared to a clean build for the same
configuration. Hence, the correctness of incremental build of config-
urations must be ensured. To do so, the produced output of a clean
build and an incremental build of the same configuration should
verify an equivalence, according to a correctness criterion. Such a
criterion can be two binaries having the same size or same number
of symbols and the same name for each one of these symbols. It
also can be a bit by bit comparison or a binary diff program which
compares the binaries control flow graph.

1These 3 builds can be built in parallel (e.g., using distributed resources).

2.2 [Scenario 1 (S1)] Improving overall build of
a fixed set of configurations

When testing highly configurable systems, one usually has a set of
configurations to build. This set contains either default standard
configurations that represent the frequent configurations or a mix
of random configurations. Instead of being built from scratch they
could be built incrementally as in Figure 1b, benefiting from their
similarities. Nevertheless, not all configurations share similarities.
Some can be different up to the point that the build system cannot
reuse any artefact from a previous build.

To detect beforehand if two configurations have some files in
common that their builds could reuse, knowledge on the system is
necessary. This knowledge is used to order the (incremental) build
of the configurations in a way such that each incremental build
performed uses as much materials from previous builds as possible.
The previous build artefacts could be either the build directory or a
dedicated cache. However, the goal remains the same: maximising
the reuse of materials produced by previous builds and improving
overall build time compared to only clean builds. With our set of
configurations {𝑐1, 𝑐2, 𝑐3}, we can consider the minimum possible
build time is 30minutes (Figure 1b). This best build time is obtained
because 𝑐1 is built first, then 𝑐2 and 𝑐3 both benefiting from some
𝑐1 artefacts. Knowledge of the system helps computing a heuristic
to automatically find this order of builds, maximise artefacts reuse,
and improve total build time. Starting with configuration 𝑐2 then
𝑐1 and 𝑐3, the impact on total build time might be different.

One of the main challenges in this scenario is how to construct
this knowledge (e.g., a heuristic) so as to find an optimal ordering
of incremental builds for a given set of configurations.

2.3 [Scenario 2 (S2)] Beyond building fixed
configurations: exploring a larger space

In addition to building and improving total build time for a fixed set
of configurations, we propose to generate configurations to explore
and test a larger configuration space. Indeed, one of the best way
to test a configurable software is to build variants of it2.

The more configurable a software system is, the larger its config-
uration space, hence the more configurations have to be tested. We
want to have high diversity of configurations in order to cover a con-
figuration space as large as possible. In this scenario, for all picked
configurations, we try to generate variant configurations "around
them" in order to improve also what we call the local diversity in the
configuration space. This way, given a starting configuration, close
configurations can be generated such that the incremental build
of the variants always outperform clean builds. We present this
scenario in Figure 1c. We first build configurations such as 𝑐1, 𝑐2, 𝑐3.
Then, from e.g., 𝑐2 we derive other configurations 𝑐21, 𝑐22,. . . Then,
we incrementally build these configurations from 𝑐2. To accelerate
even more this configuration space exploration, we can execute the
incremental build of each generated configurations in parallel.

This technique is thus not only about mutating a configuration
or generating new ones from a seed. We must ensure that the
incremental build of the generated configurations from the original

2“The Linux Kernel does not have a test suite.[. . . ] The best thing you can ever do for us is:
you just build the Kernel and tell us if you have a problem. That is our QA cycle.“. Greg
Kroah-Hartman, at FOSDEM 2010.



Towards Incremental Build of Software Configurations

𝑐1

𝑐2

𝑐3

10 min

15 min

20 min

45 min

(a) Clean, traditional build

𝑐1

𝑐2

𝑐3

10 min
10 min

10 min

30min

(b) Incremental build

𝑐1

𝑐2

𝑐3

10 min
10 min

10 min

𝑐21
𝑐22

𝑐23

2’
2’

2’

𝑐31

𝑐32𝑐33

2’

2’2’

42min

(c) Local diversity with incremental build

Figure 1: Incremental build scenarios

outperform clean builds and remains correct. For instance, we can
control that the build of each generated configuration in Figure 1c
takes 2 minutes. Instead of 3 clean builds in 45 minutes (Figure 1a),
we can build 9 configurations in 42 minutes. Our main goal is to
have a proper strategy to mutate the configurations in order to get
correct incremental builds that outperform clean builds and can
diversify enough to explore the configuration space.

3 PRELIMINARY RESULTS
We present in this section our preliminary results on experimenting
incremental build of configurations over x264 (scenario S1) and
Linux (scenarios S1 and S2).

3.1 [S1] Ordering configurations of x264
x264 is a software system for video encoding written in C. It has
about 115.243 lines of code and 50 possible compile-time options
(or features). We built two batches with 20 random generated con-
figurations each. In this way, we perform 2 ∗ 20 clean builds and
2∗(20∗19) = 760 incremental builds, i.e., 760 pairs of configurations
(𝑐1, 𝑐2) where c1 is built with a clean build, and c2 incrementally
build after c1. Thus, a total of 800 builds. To generate the random
configurations, we use the random product generator in the Fea-
tureIDE framework [33].

For the first batch, 7 out of 20 cases of incremental build were
slower than clean build. For these cases, we recommend a simple
clean build. We also had one case only where the binary produced
by incremental build was not consistent with the binary supposed
to be produced by a clean build: it did not have the same binary size.
Nevertheless, with a combination of correct and most efficient pairs
of incremental builds, we could still deduce an optimal order. Total
CPU time using only clean builds was 747,99 seconds, whereas total
CPU time relying on incremental builds in the optimal order plus
clean build (for incorrect incremental builds) was 747,26 seconds,
representing a non-significant gain of 0.10% of build time.

For the second batch, for each of these 20 configurations, we
found an incremental build that outperforms its clean build. We fur-
ther checked their correctness w.r.t. the criteria on the binaries and
found that incremental build was always correct. After that, based
on the most efficient pairs of incremental builds, i.e., the fastest
observed incremental build, we could deduce an optimal order. The
total CPU time using only clean builds was 754.92 seconds, whereas
the total time of the incremental build in the optimal order was
666.12 seconds, representing a gain of 11.6% of build time.

It is thus possible to order a set of configurations such that
incremental build combined with clean builds gives a better
performance than only clean builds.

3.2 [S1] Ordering configurations of Linux
In order to extend our results to a bigger software system, we repli-
cated it on Linux. Linux is a kernel of operating system written in C.
Linux is considered as the most complex configurable software sys-
tem with over 15.000 features and about 28 millions of lines of code.
We generated two batches of 20 configurations each and conducted
the same experiment as x264. The configurations were generated
using the Linux Kernel command line utility randconfig, which
generates random configurations. Though the correctness holds,
we could not find any pair of configurations in which incremental
build was faster than clean build. After investigation, we found
out that there was too much difference between two randomly
generated configurations, with up to a thousand options added or
removed. In addition, the strategies of the build system (Make) can
also fail to reuse files and do redundant builds (see, e.g., [43]).

It is thus not straightforward to find an optimal incremental
build ordering for a given set of random configurations due
to high difference between them.

3.3 [S2] Local diversity of Linux configurations
As ordering a fixed set of configurations seems to be difficult to find
with Linux, we decided for another approach. Instead of picking
all the configurations randomly, we extract knowledge from the
source code to generate new configurations.

The Linux Kernel build system is composed of multiple makefiles
at each directory level. Obviously, these makefiles contain build
rules which compile and link files together. By enabling or disabling
an option, the modification impacts the addition or not of build
rules, hence, the compilation of some files and their dependency.

To determine before compilation which files will be compiled
if an option is enabled (or disabled), we built a dependency graph
(DG) between options according to their implementation at the file
level. If two options are implemented in the same file, we link them
with an edge in the DG. With this representation, we could over
approximate the amount of files to recompile when an option is
modified from the configuration. Then, we sort options according
to the amount of files they would recompile if they were enabled or
disabled. With this information, we can deduce which options can



Randrianaina, et al.

be progressively added to increase diversity by small increments,
instead of building from scratch every configuration.

We picked a random configuration and built it from scratch.
Then we generated 9 configurations from it with the technique
described before using the DG. The number of different options
between each generated configuration and the original varies from 7
to 183. Total CPU time using only clean builds was 4.864,26 seconds,
whereas total CPU time relying on one clean build of the initial
configuration then incremental builds of the others was 1.648,87
seconds, representing a gain of approximately 66% of build time.

Thus, the generation of configurations to be built incremen-
tally can be guided with knowledge from the system in order
to outperform clean build.

4 RELATEDWORK
Build systems. Many works exist on (incremental) build sys-

tems [1, 6, 10, 11, 16, 25, 31, 34, 37, 41] but they focus on code
changes through the evolution of software (e.g. commits) rather
than configurations. Cserep et al. [8] introduce how to detect only
the necessary files to build with incremental parsing of the codebase.
Maudoux et al. [30] show that incremental build could help speed
up builds of continuous integration (CI), and Gallaba et al. [13] that
caching can accelerate CI. An open issue is to adapt these tech-
niques over distant software configurations that may have very
different impacts on the files to build. Several empirical studies on
build systems have been performed (e.g., [17, 18, 26, 27, 31, 32, 44]).
Beller et al. [5] performed an analysis of builds with Travis CI on
top of GitHub. About 10% of builds show different behaviour when
different environments are used. In our case, we are considering
different software configurations rather than environments.

Software product line (SPL) and variability. The SPL com-
munity develops numerous methods and techniques to manage a
family of variants (or products). Configurations are used to build
or execute variants and are subject to intensive research. For in-
stance, building variants is a necessary step before deriving per-
formance prediction models [4, 14, 19, 20, 28]. Formal methods
and program analysis can identify some classes of configuration
defects [7, 40], leading to variability-aware testing approaches
(e.g., [12, 21–24, 29, 35, 36, 38, 42]). Static analysis and notably
type-checking has been used to look for bugs in configurable soft-
ware and can scale to very large code bases such as the Linux
Kernel [21, 22, 42]. Though variability-aware analysis is relevant
in many engineering contexts, our interest differs and consists in
studying the practice of concretely building a sample of (possibly
distant and diverse) configurations with an unexplored approach –
incremental build. Sampling configurations is subject to intensive
research [3, 20, 39, 40]: incremental build brings new challenges
(see also next section). There are several empirical studies about
the build of SPLs and configurable systems. For instance, Halin et
al. [15] report on the endeavour to build all possible configurations
of the JHipster configurable software system. We are unaware of
studies that consider or apply incremental build of configurations.

5 FUTUREWORK PLANS
A priori knowledge for ordering and generating configurations. As
shown in Section 3, the brute force strategy of picking random
configurations may not work in all cases. It is effective for x264.
However, it does not bring benefits for Linux because of high dif-
ferences among its random configurations. We plan to develop
techniques to infer information about the system either from the
source code analysis or directly from the build system, so as to
deduce similarities among possible configurations and determine
an a priori order to incrementally build them. In addition to configu-
ration ordering, we plan to use inferred knowledge from the system
to generate valid configurations while providing high diversity.

Correctness of build systems. The challenge is to obtain a binary
produced from incremental build that is consistent with a binary
obtained from a clean build. Section 3.1 reports on issues with
some pairs of configurations. We aim to test existing build systems
(e.g., Make, Maven, Bazel, Pluto, etc.) correctness while performing
incremental build over configurations instead of code additions
such as commits. The correction of build systems is a notoriously
difficult problem and configurations add further complexity.

Multi-objective problem and tradeoffs. There are several criteria:
(1) the cost of building; (2) the correctness of the build; (3) the di-
versity of the targeted configurations. We fall into a multi-objective
optimisation problem. A conservative approach that would slightly
modify one option at a time when incrementally building has good
chances of reducing the cost while being correct. Yet the diversity
of configurations and their distances would be weak, which has
limited interest for testing diverse configurations or learning over
the configuration space [4]. Otherwise, a more aggressive approach
is to pick random configurations with high diversity. Yet, as shown
in Section 3.2, incremental build can be as costly as a traditional
build. A research direction is to apply multi-objective algorithms or
find a tradeoff suited for the specific needs of the software project.

6 CONCLUSION
We presented a novel problem and a vision that consists in bridging
incremental build with software configurations. Results of prelim-
inary experiments over x264 and Linux Kernel show that incre-
mental build can reduce the cost of building (e.g., a gain of 66%
over Linux when controlling the generation of configurations). Yet
there are several challenges ahead related to the correctness of
build systems, the diversity of configurations, and the ordering of
the incremental builds. Many software projects are concerned with
the problem of building multiple configurations into their CI; we
encourage the software engineering community to more widely
explore the potential of incremental build.



Towards Incremental Build of Software Configurations

REFERENCES
[1] [n.d.]. A fast, scalable, multi-language and extensible build system. https:

//bazel.build/
[2] 2021. KernelCI. https://kernelci.org/
[3] Juliana Alves Pereira, Mathieu Acher, Hugo Martin, and Jean-Marc Jézéquel.

2020. Sampling effect on performance prediction of configurable systems: A case
study. In Proceedings of the ACM/SPEC International Conference on Performance
Engineering. 277–288. https://doi.org/10.1145/3358960.3379137

[4] Juliana Alves Pereira, Hugo Martin, Mathieu Acher, Jean-Marc Jézéquel, Goetz
Botterweck, and Anthony Ventresque. 2021. Learning Software Configuration
Spaces: A Systematic Literature Review. Journal of Systems and Software (Aug.
2021). https://doi.org/10.1016/j.jss.2021.111044

[5] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, My Tests Broke
the Build: An Explorative Analysis of Travis CI with GitHub. In Proceedings of
the 14th International Conference on Mining Software Repositories (Buenos Aires,
Argentina) (MSR ’17). IEEE Press, Piscataway, NJ, USA, 356–367.

[6] Qi Cao, Ruiyin Wen, and Shane McIntosh. 2017. Forecasting the duration of incre-
mental build jobs. In 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 524–528. https://doi.org/10.1109/ICSME.2017.34

[7] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-François Raskin. 2013. Featured Transition Systems: Foundations
for Verifying Variability-Intensive Systems and Their Application to LTL Model
Checking. IEEE Transactions on Software Engineering 39, 8 (aug 2013), 1069–1089.

[8] Máté Cserép and Anett Fekete. 2020. Integration of Incremental Build Systems
Into Software Comprehension Tools.. In ICAI. 85–93. http://ceur-ws.org/Vol-
2650/paper10.pdf

[9] Jack Edge. 2020. The costs of continuous integration. https://lwn.net/Articles/
813767/

[10] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound and optimal
incremental build system with dynamic dependencies. ACM Sigplan Notices 50,
10 (2015), 89–106.

[11] Stuart I. Feldman. 1979. Make — a program for maintaining computer programs.
Software: Practice and Experience 9, 4 (1979), 255–265.

[12] Stefan Fischer, Rudolf Ramler, Claus Klammer, and Rick Rabiser. 2021. Testing of
Highly Configurable Cyber-Physical Systems – A Multiple Case Study. In 15th
International Working Conference on Variability Modelling of Software-Intensive
Systems (Krems, Austria) (VaMoS’21). Association for ComputingMachinery, New
York, NY, USA, Article 19, 10 pages. https://doi.org/10.1145/3442391.3442411

[13] Keheliya Gallaba, Yves Junqueira, John Ewart, and Shane Mcintosh. 2020. Accel-
erating Continuous Integration by Caching Environments and Inferring Depen-
dencies. IEEE Transactions on Software Engineering (2020), 1–1.

[14] Jianmei Guo, Krzysztof Czarnecki, Sven Apel, Norbert Siegmund, and Andrzej
Wasowski. 2013. Variability-aware performance prediction: A statistical learning
approach. In 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 301–311.

[15] Axel Halin, Alexandre Nuttinck, Mathieu Acher, Xavier Devroey, Gilles Perrouin,
and Benoit Baudry. 2019. Test them all, is it worth it? Assessing configuration
sampling on the JHipster Web development stack. Empir. Softw. Eng. 24, 2 (2019),
674–717. https://doi.org/10.1007/s10664-018-9635-4

[16] Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S.
Foster, Michael Hicks, and David Van Horn. 2015. Incremental computation
with names. Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (Oct 2015).

[17] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in continuous integration: assurance, security, and flexi-
bility. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. 197–207.

[18] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig.
2016. Usage, costs, and benefits of continuous integration in open-source projects.
In 2016 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 426–437.

[19] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: an exploratory analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017, Grigore Rosu, Massimiliano Di
Penta, and Tien N. Nguyen (Eds.). IEEE Computer Society, 497–508.

[20] Pooyan Jamshidi, Miguel Velez, Christian Kästner, and Norbert Siegmund. 2018.
Learning to sample: exploiting similarities across environments to learn perfor-
mance models for configurable systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 71–82.

[21] Christian Kastner and Sven Apel. 2008. Type-checking software product lines-a
formal approach. In 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering - ASE ’08. IEEE, 258–267.

[22] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich. 2010. Type-
Chef: Toward Type Checking #Ifdef Variability in C. In Proceedings of the 2Nd

International Workshop on Feature-Oriented Software Development (Eindhoven,
The Netherlands) (FOSD ’10). ACM, New York, NY, USA, 25–32.

[23] Chang Hwan Peter Kim, Don S Batory, and Sarfraz Khurshid. 2011. Reducing
combinatorics in testing product lines. In Proceedings of the tenth international
conference on Aspect-oriented software development (AOSD ’11). ACM, 57–68.

[24] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina
Souto, Paulo Barros, and Marcelo d’Amorim. 2013. SPLat: lightweight dynamic
analysis for reducing combinatorics in testing configurable systems - ESEC/FSE
’13. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-
neering. ACM, 257–267.

[25] Gabriël Konat, Sebastian Erdweg, and Eelco Visser. 2018. Scalable incremental
building with dynamic task dependencies. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 76–86. https://doi.
org/10.1145/3238147.3238196

[26] Julia Lawall and Gilles Muller. 2017. JMake: Dependable Compilation for Kernel
Janitors. In 2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 357–366.

[27] Carlene Lebeuf, Elena Voyloshnikova, Kim Herzig, and Margaret-Anne Storey.
2018. Understanding, debugging, and optimizing distributed software builds: A
design study. In 2018 IEEE International conference on software maintenance and
evolution (ICSME). IEEE, 496–507.

[28] Luc Lesoil, Mathieu Acher, Xhevahire Tërnava, Arnaud Blouin, and Jean-Marc
Jézéquel. 2021. The interplay of compile-time and run-time options for perfor-
mance prediction. In SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Leicester, United Kingdom, September 6-11, 2021, Volume
A, Mohammad Mousavi and Pierre-Yves Schobbens (Eds.). ACM, 100–111.

[29] Jackson A. Prado Lima, Willian Douglas Ferrari Mendonça, Silvia R. Vergilio,
and Wesley K. G. Assunção. 2020. Learning-based prioritization of test cases
in continuous integration of highly-configurable software. In SPLC ’20: 24th
ACM International Systems and Software Product Line Conference, Roberto Erick
Lopez-Herrejon (Ed.). ACM, 31:1–31:11.

[30] Guillaume Maudoux and Kim Mens. 2017. Bringing incremental builds to contin-
uous integration. In Proc. 10th Seminar Series Advanced Techniques & Tools for
Software Evolution. 1–6.

[31] Guillaume Maudoux and Kim Mens. 2018. Correct, efficient, and tailored: The
future of build systems. IEEE Software 35, 2 (2018), 32–37.

[32] Guillaume Maudoux and KimMens. 2019. Lessons and Pitfalls in Building Firefox
with Tup.. In SATToSE.

[33] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,
and Gunter Saake. 2017. Mastering software variability with FeatureIDE. Springer.

[34] Neil Mitchell. 2012. Shake before building. ACM SIGPLAN Notices 47 (10 2012),
55. https://doi.org/10.1145/2398856.2364538

[35] Hung Viet Nguyen, Christian Kästner, and Tien N Nguyen. 2014. Exploring
variability-aware execution for testing plugin-based web applications. In Pro-
ceedings of the 36th International Conference on Software Engineering - ICSE ’14.
ACM, 907–918.

[36] Elnatan Reisner, Charles Song, Kin-Keung Ma, Jeffrey S Foster, and Adam Porter.
2010. Using symbolic evaluation to understand behavior in configurable software
systems. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering (ICSE ’10, Vol. 1). ACM Press, 445.

[37] Robert W. Schwanke and Gail E. Kaiser. 1988. Smarter Recompilation. ACM
Trans. Program. Lang. Syst. 10, 4 (Oct. 1988), 627–632.

[38] Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer. 2012. Integration Testing
of Software Product Lines Using Compositional Symbolic Execution. In Proceed-
ings of the 15th International Conference on Fundamental Approaches to Software
Engineering (LNCS, Vol. 7212). Springer, 270–284.

[39] Sabrina Souto, Marcelo d’Amorim, and Rohit Gheyi. 2017. Balancing soundness
and efficiency for practical testing of configurable systems. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). IEEE, 632–642.

[40] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake.
2014. A Classification and Survey of Analysis Strategies for Software Product
Lines. Comput. Surveys 47, 1 (2014), 6:1–6:45.

[41] Walter F. Tichy. 1986. Smart Recompilation. ACM Trans. Program. Lang. Syst. 8,
3 (June 1986), 273–291. https://doi.org/10.1145/5956.5959

[42] Alexander von Rhein, Jörg Liebig, Andreas Janker, Christian Kästner, and Sven
Apel. 2018. Variability-Aware Static Analysis at Scale: An Empirical Study. ACM
Trans. Softw. Eng. Methodol. 27, 4 (2018), 18:1–18:33.

[43] Y. Zhang, Y. Jiang, Chang Xu, X. Ma, and Ping Yu. 2015. ABC: Accelerated
Building of C/C++ Projects. 2015 Asia-Pacific Software Engineering Conference
(APSEC) (2015), 182–189.

[44] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: a large-scale empirical study. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 60–71.

https://bazel.build/
https://bazel.build/
https://kernelci.org/
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1016/j.jss.2021.111044
https://doi.org/10.1109/ICSME.2017.34
http://ceur-ws.org/Vol-2650/paper10.pdf
http://ceur-ws.org/Vol-2650/paper10.pdf
https://lwn.net/Articles/813767/
https://lwn.net/Articles/813767/
https://doi.org/10.1145/3442391.3442411
https://doi.org/10.1007/s10664-018-9635-4
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1145/3238147.3238196
https://doi.org/10.1145/2398856.2364538
https://doi.org/10.1145/5956.5959

	Abstract
	1 Introduction
	2 Why incremental build?
	2.1 Incremental build of configurations
	2.2 [Scenario 1 (S1)] Improving overall build of a fixed set of configurations
	2.3 [Scenario 2 (S2)] Beyond building fixed configurations: exploring a larger space

	3 Preliminary results
	3.1 [S1] Ordering configurations of x264
	3.2 [S1] Ordering configurations of Linux
	3.3 [S2] Local diversity of Linux configurations

	4 Related work
	5 Future work plans
	6 Conclusion
	References

