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Abstract: In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital
Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and
differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has
provided the required data for creating automatic tissue phenotyping systems. In this paper, we
study different hand-crafted feature-based and deep learning methods using two popular multi-
classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features,
we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers
are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep
learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-
101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN
approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the
proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and
the state-of-the-art methods in both databases.

Keywords: digital pathology; colorectal cancer; tissue phenotyping; convolutional neural network;
ensemble CNN

1. Introduction

Traditionally, pathologists have used the microscope to analyze the micro-anatomy
of cells and tissues. In recent years, the advancement in Digital Pathology (DP) imaging
has provided an alternative way to enable the pathologists to do the same analysis over
the computer screen [1]. The new DP imaging modality is able to digitize the Whole Slide
Imaging (WSI), where the glass slides are converted into digital slides that can be viewed,
managed, shared and analyzed on a computer monitor [2].

In Colorectal Cancer (CRC), tumor architecture changes during tumor progression [3]
and is related to patient prognosis [4]. Therefore, quantifying the tissue composition in CRC
is a relevant task in histopathology. Tumor heterogeneity occurs both between tumors (inter-
tumor heterogeneity) and within tumors (intra-tumor heterogeneity). In fact, Tumor Micro-
Environment (TME) plays a crucial role in the development of Intra-Tumor Heterogeneity
(ITH) by the various signals that cells receive from their micro-environment [5].

Colorectal Cancer (CRC) is considered as the fourth most occurring cancer and it is the
third leading cancer type to cause death [6]. Indeed, early stage CRC diagnosis is decisive
for therapy of patients and saving their lives [7]. The evaluation of tumor heterogeneity
is very important for cancer grading and prognostication [8]. In more detail, intre-tumor
heterogeneity can aid the understanding of TME’s effect on patient prognosis, as well as
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identify novel aggressive phenotypes that can be further investigated as potential targets
for new treatment [9].

In recent years, automatic tissue phenotyping, in Whole Slide Images (WSIs), has
become a fast-growing research area in computer vision and machine learning communi-
ties. In fact, state-of-the-art approaches have investigated the classification of two tissue
types [10,11] or multi-class tissue types analysis [8,12,13]. The two tissue types are tumor
and stroma tissue categories. Actually, the classification of just two tissue categories is not
suitable for more heterogeneous parts of the tumor [12]. To overcome this limitation, the
authors of [12] proposed the first multi-class tissue type database, where they considered
eight tissue types.

In this work, we deal with the classification of multi-class tissue types. In order to
classify different CRC tissue types, we proposed two ensemble approaches which are:
Mean-Ensemble-CNNs and NN-Ensemble-CNNs. Our proposed approaches are based on
combining four trained CNN architectures, which are ResNet-101, ResNeXt-50, Inception-
v3 and DenseNet-161. Our Mean-Ensemble-CNN approach uses the predicted probabilities
of different trained CNN models. On the other hand, the NN-Ensemble-CNN approach
used combined deep features that were extracted from different trained CNN models, then
classified them using NN architecture. Since automatic multi-class CRC tissue classification
is a relatively new task, we evaluated two hand-crafted descriptors which are: LPQ and
BSIF. In addition, two classifiers were used which are SVM and NN. As summary, the main
contributions of this paper are:

• We proposed two ensemble CNN-based approaches: Mean-Ensemble-CNNs and
NN-Ensemble-CNNs. Both of our approaches combine four trained CNN architec-
tures which are ResNet-101, ResNeXt-50, Inception-v3 and DenseNet-161. The first
approach (Mean-Ensemble-CNNs) uses the predicted probabilities of the four trained
CNN models to classify the CRC tissue types. The second approach (NN-Ensemble-
CNNs) combines the deep features that were extracted using the trained CNN models,
then it uses NN architecture to recognize the CRC phenotype.

• We conducted extensive experiments to study the effectiveness of our proposed ap-
proaches. To this end, we evaluated two texture descriptors (BSIF and LPQ) and their
combination using two classifiers (SVM and NN) in two CRC tissue types databases.

• Implicitly, our work contains comparison between CNN architectures and hand-
crafted feature-based methods for the classification of CRC tissue types using two
publicly databases.

This paper is organized as follows: In Section 2, we describe the state-of-the-art
methods. Section 3 includes description of the used databases, methods and evaluation
metrics. In addition, Section 3 contains an illustration of our proposed approach and
experimental setup. Section 4 represents the experimental results. In Section 5, we compare
our results with the state-of-the-art methods. Finally, we conclude our work in Section 6.

2. Related Works

In recent years, CRC tissue phenotyping has been subject to increasing interest in both
computer vision and machine learning fields due to the availability of CRC-tissue-type
databases such as [8,12,14,15]. Supervised methods are widely used to classify the tissue
types in histological images [12]. The supervized state-of-the-art methods for phenotyping
the CRC tissues can be categorized as texture [10–12,16], or learned methods [8,15,17,18].
In addition, there are some works that combined deep and shallow features such as [19].
The texture methods are hand-crafted algorithms that were designed based on mathemat-
ical model to extract specific structures within the image regions [20]. However, deep
learning methods have the ability to learn more relevant and complex features directly
from the images across their layers. In particular, when there is no prior knowledge about
the relationship between input data and the outcomes to be predicted. Since the pathology
imaging tasks are very complex and little is known about which quantitative image features
predict the outcomes, deep learning methods are suitable for these tasks [21,22]. In this
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section, we will describe the state-of-the-art works that have addressed multi-class CRC
tissue types and used supervized methods.

In [12], J. N. Kather et al. were the first who addressed CRC multi-class tissue types,
where they created their database from 5000 histological images of human colorectal
cancer including eight CRC tissue types. J. N. Kather et al. tested several state-of-the-art
texture descriptors and classifiers. Their proposed approach is based on the combination
GLCM and LBP local descriptors beside with global lower-order texture measures which
achieved promising performance. In [19], Nanni et al. proposed the General Purpose
(GenP) approach which is based on ensemble of multiple hand-crafted, dense sampling
and learned features. In their combined approach, they trained each feature using SVM
then combined all of them using the sum rule. Cascianelli et al. [23] compared deep and
shallow features to recognize the CRC tissue types. In their work, they studied the impact
of using dimensionality reduction strategies in both accuracy and computational cost.
Their results showed that the best trade-off between accuracy and dimensionality using
CNN-based features is possible.

In [15], J. N. Kather et al. used 86 H&E slides of CRC tissues from the NCT biobank
and the UMM pathology to create a training image set of 100,000 images that were labeled
into eight tissue types. They tested five pretrained CNN models: VGG19 [24], AlexNet [25],
SqueezeNet version 1.1 [26], GoogLeNet [27], and ResNet-50 [28]. They concluded that
VGG19 was the best model among the five CNN models. Javed et al. [8] proposed a new
CRC-TP database which consists of 280K patches extracted from 20 WSIs of CRC; these
patches are classified into seven distinct tissue phenotypes. To classify these tissue types,
they used 27 state-of-the-art methods including texture, CNN and Graph CNN-based
(GCN) methods. From their experimental results, the GCN outperformed the texture and
CNN methods. Despite hand-crafted feature-based and deep learning methods having
been used for multi-class CRC tissue type classification, the performance of these methods
still needs more improvement. To this end, we proposed two ensemble-CNN approaches
that achieved considerable improvement on two popular databases.

3. Methodology
3.1. Databases
3.1.1. Kather-CRC-2016 Database

Kather-CRC-2016 database [12] consists of 5000 CRC tissue type images, where each
tissue type has 625 samples. J. N. Kather et al. [12] used 10 anonymized H&E stained
CRC tissue slides from the pathology archive at the University Medical Center Mannheim,
Germany. Firstly, they digitized the slides. Then, contiguous tissue areas were manually
annotated and tessellated. From each slide, they created 625 non-overlapping tissue tiles
of dimension 150 × 150 pixels. The following eight types of tissues were selected in
their database:

(a) Tumor epithelium.
(b) Simple stroma (homogeneous composition, includes tumor stroma, extra-tumoral

stroma and smooth muscle).
(c) Complex stroma (containing single tumor cells and/or few immune cells).
(d) Immune cells (including immune-cell conglomerates and sub-mucosal lymphoid follicles).
(e) Debris (including necrosis, hemorrhage and mucus).
(f) Normal mucosal glands.
(g) Adipose tissue.
(h) Background (no tissue).

Figure 1 contains five samples for each CRC tissue type from the Kather-CRC-2016
database. J. N. Kather et al. [12] used 10-fold cross validation to evaluate texture methods.
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Figure 1. Five samples for each class from the Kather-CRC-2016 database [12].

3.1.2. CRC-TP Database

The CRC-TP database [8] consists of 280K CRC tissue type images. These CRC tissue
type images are patches that were extracted from 20 WSIs of CRC stained with H&E taken
from University Hospitals Coventry and Warwickshire (UHCW). Each slide was taken
from a different patient. With the aid of expert pathologists, the WSI slides were manually
divided into non-overlapping patches and these patches were annotated into seven distinct
tissue phenotypes, where each patch was assigned to a unique label based on the majority
of its content. Table 1 contains the CRC tissue types and their corresponding number
of samples.

The CRC tissue image size is fixed to 150 × 150 pixels. Javed et al. [8] divided the
280K CRC tissue images into training and testing splits to evaluate the performance of their



J. Imaging 2021, 7, 51 5 of 21

methods, where 70% of each tissue phenotype patches are randomly selected as the training
split and the remaining 30% are used as testing split. In our experiments, we used the
provided patch-level separation data splits (70–30%) that were provided by [8]. Figure 2
contains five samples of each CRC tissue type from the CRC-TP database.

Table 1. CRC-TP database composition.

Class Number of Images

Tumor 50,000
Complex Stroma 50,000

Stroma 50,000
Smooth Muscle 50,000

Benign 30,000
Inflammatory 30,000

Debris 20,000

Figure 2. Five samples for each class from the CRC-TP database [8].
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3.2. Hand-Crafted Methods
3.2.1. Local Phase Quantization (LPQ)

In the last three decades, texture descriptors have proved their efficiency in many
computer vision tasks. In our experiments, we used two of the most powerful descriptors:
Local Phase Quantization (LPQ) [29] and Binarized Statistical Image Features (BSIF) [30].
In addition, we tested the combination of these two descriptors by concatenating their
features alongside each other.

LPQ [29] is a local texture descriptor based on quantized phase of the Discrete Fourier
Transform (DFT) in local neighborhood pixels. For local neighborhood pixels M × M, short-
term Fourier transform is used to quantize the phase of Fourier transform by considering
four frequencies. In our experiments, we choose LPQ parameters as follows: the local
neighborhood size of the block is 13 × 13 pixels, the frequency estimation method is the
Gaussian derivative quadrature filter pair and 3 × 3 multi-block representation. Each block
produces a histogram which contains the repetition of the quantized phases for all pixels
within this block. Consequently, each block produces a 256-dimensional feature vector and
the final feature vector is the concatenation of all block feature vectors. Figure 3 contains
an example of extracting the LPQ features from a CRC tissue image.

histogram

histogram

Figure 3. Multi-block LPQ feature extraction example of 3 × 3 multi-block representation.

3.2.2. Binarized Statistical Image Features (BSIF)

BSIF [31] is a local texture descriptor that uses a set of 2-D filters to have a binarized
response for each pixel. These filters were learned from natural images using independent
component analysis. In our experiments, we used the 17 × 17 × 8 bank of filters. Similar to
LPQ feature extraction, we used the 3 × 3 multi-block representation. Each block produces
a 256-dimensional feature vector and the final feature vector is the concatenation of all
block feature vectors. Figure 4 contains an example of extracting the BSIF features from a
CRC tissue image.

histogram

histogram

Figure 4. Multi-block BSIF feature extraction example of 3 × 3 multi-block representation.
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3.2.3. Support Vector Machine (SVM)

In machine learning, SVM [32] is one of the most powerful supervized learning
methods. For D features, the SVM algorithm seeks to define a hyperplane in D-dimensional
space that distinctly classifies the data points. To separate two classes of data points, there
are many possible hyperplanes that could be chosen. SVM objective is to find the plane
that has the maximum margin, i.e., the maximum distance between data points of all
classes. Maximizing the margin distance provides some reinforcement so that future data
points can be classified with more confidence. Figure 5 shows an example of possible
hyperplanes between two classes and the linear-SVM hyperplane, which separates the two
classes of data points with maximum margin. In our experiments, we used linear-SVM as
a benchmark classifier for the hand-crafted features.

Figure 5. Example of two classes of linear SVM. H1 does not separate the classes. H2 separates the
classes, but only with a small margin. H3 separates the classes with the maximal margin.

3.2.4. Neural Network (NN) Classifier

In addition to the SVM classifier, we built a seven-layer NN classifier to classify the
shallow features that were obtained from LPQ and BSIF descriptors and their combination.
Figure 6 illustrates the used architecture. We chose these seven layers to make the classifier
simple since the extracted features are already middle-level features. To this end, we tested
a different number of layers (3, 5, 7 and 9) on the first fold of the Kather-CRC-2016 database,
then we picked out the number of layers corresponding to the best performance which was
seven layers. Consequently, the seven-layer NN architecture was used in the other folder
of the Kather-CRC-2016 database and CRC-TP database experiments. The seven-layer NN
classifier was trained for 20 epochs, initial lr = 10−6 with decay of 0.1 every 10 epochs and
batch size equals 128.
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7 NN

8192
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16384
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1024
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Figure 6. The used seven-layer NN classifier.

3.3. CNN Architectures

In our experiments, we evaluated four of the most powerful CNN architectures,
which are: ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161. Here, we used the
pre-trained models that were trained on ImageNet challenge database [25].

3.3.1. ResNet-101

The traditional CNN architectures suffer from gradient vanishing/exploding when
going deeper. In [28], K. He et al. proposed a solution to the gradient vanishing/exploding
problem by using residual connections straight to earlier layers as shown in Figure 7.
The residual networks are easier to optimize, and can gain accuracy from considerably
increased depth with lower complexity than the traditional CNNs. In our experiments, we
used the ResNet-101 pretrained model.

Figure 7. Example of 34 residual layers.

3.3.2. ResNeXt-50

ResNeXt block [33] uses the residual connections straight to earlier layers similar
to ResNet block as shown in Figure 8. In addition, ResNeXt block adopts the split–
transform–merge strategy (branched paths within a single module). In the ResNeXt block,
as shown in Figure 8, the input is split into many lower-dimensional embeddings (by 1 × 1
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convolutions)—32 paths each of 4 channels; then all paths are transformed by the same
topology filters of size 3 × 3. Finally, the paths are merged by summation.

Figure 8. ResNet and ResNeXt blocks [33].

3.3.3. Inception-v3

Inception-v3 [34] is the third version of the Inception networks family that were in-
troduced first hand in [27]. Inception block provides efficient computation and deeper
networks through a dimensionality reduction with stacked 1 × 1 convolutions. The main
idea of Inception architectures is to make multiple kernel filter sizes operate on the same
level instead of stacking them sequentially as was the case in the traditional CNNs. This
is known as making the networks wider instead of deeper. Figure 9 illustrates the ar-
chitecture of Inception-v3, which makes several improvements compared to the initial
Inception versions. These improvements include using label smoothing, factorized 7 × 7
convolutions, and the use of an auxiliary classifier to propagate label information lower
down in the network.

Figure 9. Inception architecture.

3.3.4. DenseNet-161

DenseNet networks [35] seek to solve the problem of CNNs when going deeper. This
is because the path for information from the input layer until the output layer (and for the
gradient in the opposite direction) becomes so big, that it can vanish before reaching the
other side. G. Huang et al. [35] proposed connecting each layer to every other layer in a feed-
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forward fashion (as shown in Figure 10) to ensure maximum information flow between
layers in the network. In our experiments, we used the DenseNet-161 pre-trained model.

Figure 10. A 5-layer dense block with a growth rate of k = 4. Each layer takes all preceding feature maps as input [35].

3.4. Focal Loss

Originally, Focal Loss function was proposed for one-stage object detectors [36], where
it proved its efficiency in the imbalanced classes case. The Focal Loss function is defined by:

FL(pt) = −(1 − pt)
γlog(pt) (1)

where: pt is the predicted probability corresponding to the ground truth class, γ is the
focusing parameter. Figure 11 shows a comparison between the Cross-Entropy loss function
and Focal Loss function with different values of focusing parameter γ. As shown in
Figure 11, γ controls the shape of the curve. The higher the value of γ, the lower loss will
be assigned to the well-classified examples. At γ = 0, Focal Loss becomes equivalent to
Cross Entropy Loss. In addition to one-stage object detection task, Focal loss function has
proved its efficiency in many classification tasks [37,38].

Figure 11. Comparison between Focal Loss with different focusing parameter γ values and the
Cross-Entropy Loss function [36].
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3.5. Evaluation Metrics

To evaluate the performance of the tested methods, we used three metrics which are:
accuracy, F1-score and F̂1-score. Accuracy is the measurement of all correctly classified
samples over the total number of samples. The accuracy is mainly used to evaluate the
methods on the Kather-CRC-2016 database because it is a balanced database. Since the
CRC-TP database is not a balanced database, we used F1-score and F̂1-score. F1-score is
defined by the formula:

F1-score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2)

where: Precision and Sensitivity (also called Recall) are defined by the following formulas:

Precision =
TP

TP + FP
(3)

Sensitivity =
TP

TP + FN
(4)

where TP is the number of True Positive instances, FP is the number of False Positive
instances and FN is the number of the False Negative instances.

F̂1-score is defined by the formula:

F̂1-score =
∑C

i niF1-scorei

N
(5)

where C is the number of classes, ni is the number of test samples of i-th class, and N is the
total number of test samples.

3.6. Proposed Approaches

To classify different CRC tissue types, we propose two Ensemble-CNN approaches:
Mean-Ensemble-CNNs and NN-Ensemble-CNNs. The proposed approaches used the
already trained CNN models (ResNet-101, ResNeXt-50, Inception-v3 and DenseNet-161)
for CRC tissue type classification using the training data.

In the Mean-Ensemble-CNN approach, the predicted class of each image is assigned
using the average of the predicted probabilities of four trained models. In more detail,
the probabilities of the four models corresponding to all classes give the mean probability
for each class, then the max of the mean probabilities assigns the ensemble predicted class.
Figure 12 illustrates our Mean-Ensemble-CNN approach.

ResNet-101
Class 1: value

Class 2: value

Class 3: value

…

Class N: value

Softmax

Softmax

Softmax

Class 1: probability

Class 2: probability

Class 3: probability

…

Class N: probability

…

Prediction

Softmax

Class 1: value

Class 2: value

Class 3: value

…

Class N: value

Class 1: value

Class 2: value

Class 3: value

…

Class N: value

Class 1: value

Class 2: value

Class 3: value

…

Class N: value

Class 1: probability

Class 2: probability

Class 3: probability

…

Class N:probability

Class 1: probability

Class 2: probability

Class 3: probability

…

Class N:probability

Class 1: probability

Class 2: probability

Class 3: probability

…

Class N:probability

ResNeXt-50

Inception-v3

DenseNet-161

A

R

G

M

A

X

Mean of all 

probabilities of class 2

Mean of all 

probabilities of class 1

Mean of all 

probabilities of class 3

Mean of all 

probabilities of class N

Figure 12. The proposed Mean-Ensemble-CNN approach.

In the NN-Ensemble-CNN approach, the deep features corresponding to the last FC
layer are extracted from the four trained models. Then, these deep feature vectors are
concatenated alongside each other to obtain an ensemble deep feature vector. The extracted
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training features (from the training data) are used to train new NN architecture, which
consists of four layers. On the other hand, the extracted testing features (from the testing
data) are used to test the four-layer NNs. Figure 13 illustrates our NN-Ensemble-CNN
approach. The selection of four layers for our NN-Ensemble-CNNs approach was after
testing different small numbers of layers (3, 4 and 5) on the first fold of the Kather-CRC-2016
database. This was similar to what we did for the NN classifier of the hand-crafted features
in Section 3.2.4.

2208

8352

Trained

ResNet-101

Trained

ResNeXt-50

Trained 

DenseNet-161

Trained

Inception-v3

Concatenation

4 NN

Prediction

Features Extraction

2048

Features Fusion

1024

256

64
7

FC1

FC2
FC3 FC42048

2048

Figure 13. The proposed NN-Ensemble-CNN approach.

3.7. Experimental Setup

For hand-crafted feature extraction and SVM classification, we used MATLAB 2019.
For deep learning and NN training, we used the Pytorch [39] library with NVIDIA GPU
Device Geforce TITAN RTX 24 GB. For training the deep learning architectures, we used
data pre-processing including normalizing and resizing the input images to have the
correct input size for each network. Inception-v3 input size is 299 × 299 pixels, while
DenseNet-161, ResNeXt-50 and ResNet-101 need an input size of 224 × 224. Moreover, we
used the following active data augmentation techniques:

• Random Cropping;
• Random Horizontal flip with applying probability = 0.2;
• Random Vertical flip with applying probability = 0.2;
• Random Rotation from −30 to 30 degree.

4. Experiments and Results

In this section, we will describe our experimental setup and the experimental results.

4.1. Hand-Crafted Feature Experiments

In this section, we used two hand-crafted descriptors (LPQ and BSIF) to extract
the features from CRC tissue images. After the features were extracted, we used two
classification methods (SVM and NN) to distinguish between different CRC phenotyping.

4.1.1. Kather-CRC-2016 Database

In Kather-CRC-2016 database experiments, we used 5-fold cross-validation evaluation
scheme. Table 2 summarizes the obtained accuracy for each fold and the mean of the five
folds accuracies. From this table, we notice that the combination of LPQ and BSIF gave
better performance for both classifiers (SVM and NN). On the other hand, we observe that
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combined features achieved similar results with the two classifiers, with slightly better
accuracy with the seven-layer NN classifier.

Table 2. The accuracy results of LBQ and BSIF descriptors and their combination using SVM and NN classifiers on Kather-CRC-
2016 database.

Model Fold 1 (%) Fold 2 (%) Fold 3 (%) Fold 4 (%) Fold 5 (%) Mean (%)

LPQ, SVM 69.60 67.60 67.70 68.30 67.40 68.12
BSIF, SVM 68.10 66.20 70.80 67.70 67.70 68.10

LPQ+BSIF, SVM 72.80 73.00 76.30 74.10 74.30 74.10

LPQ, NN 67.30 68.90 68.50 70.70 69.70 69.02
BSIF, NN 71.80 69.50 72.50 70.70 70.70 71.04

LPQ+BSIF, NN 75.50 73.90 74.20 73.10 74.40 74.22

4.1.2. CRC-TP Database

In the CRC-TP database, we used the train and validation splits that were provided
with the database [8]. Table 3 summarizes the obtained results of LPQ and BSIF descriptors
and their combination using SVM and NN classifiers. Similar to Kather-CRC-2016 experi-
ments, we noticed that the combination of LPQ and BSIF gave better performance for both
classifiers (SVM and NN). In addition, we observed that NN classifier with the combined
features achieved the best performance.

Table 3. The results of LBQ and BSIF descriptors and their combination using SVM and NN classifiers
on CRC-TP database.

Model Accuracy (%) F̂1-Score (%)

LPQ, SVM 58.14 58.16
BSIF, SVM 56.45 56.40

LPQ+BSIF, SVM 63.40 63.25

LPQ, NN 61.40 61.34
BSIF, NN 61.16 61.17

LPQ + BSIF, NN 65.56 65.43

4.2. Deep Learning Experiments

In this section, we evaluated four CNN architectures which are ResNet-101, ResNeXt-
50, Inception-v3, and DenseNet-161, and two proposed ensemble schemes which are
Mean-Ensemble-CNNs and NN-Ensemble-CNNs. All Networks are trained for 20 epochs
with an Adam optimizer [40] and Focal Loss function [36] with γ = 2. The initial learning
rate is 10−5 for 10 epochs, then the learning rate decreases to 10−6 for next 10 epochs. We
also add a dropout layer in DenseNet-161, ResNeXt-50 and ResNet-101 before the fully
connected layer with a probability of 0.3. Meanwhile, Inception-v3 already has a dropout
layer with a probability of 0.5. For NN-Ensemble-CNNs, we used the four trained models
to extract the deep features, then we trained the four-layer NN network as described in
Figure 13. The four-layer NN network is trained for 30 epochs with an initial learning rate
of 10−6 and it decays after 15 epochs. Similar to the CNN architectures, the four-layer NN
network is trained using an Adam optimizer [40] and Focal Loss function [36] with γ = 2.

4.2.1. Kather-CRC-2016 Database

Similar to the hand-crafted feature experiments on the Kather-CRC-2016 database, we
used a 5-fold cross-validation evaluation scheme. For training the CNN architectures, we
used a batch size of 64. To train the NN network for our NN-Ensemble-CNN approach,
we used a batch size of 32. Table 4 summarizes the obtained results using the CNN
architectures and the proposed ensemble approaches. By comparing these results with the
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ones from Table 2, we notice that the CNN architectures exceed the hand-crafted feature-
based methods in the classification of CRC tissue types. We noticed that the performance
of the two proposed ensemble approaches outperformed the performance of the four
CNN architectures.

Figures 14 and 15 show the confusion matrices of our proposed Mean-Ensemble-CNN
and NN-Ensemble-CNN approach, respectively. From these confusion matrices, we notice
that both Ensemble approaches achieved close results in the recognition of each CRC tissue
type on the Kather-CRC-2016 database.

Table 4. Experimental results using ResNet-101, ResNeXt-50, Inception-v3, DenseNet-161, Mean-Ensemble-CNNs and NN-Ensemble-
CNN on Kather-CRC-2016 database using the accuracy measurement.

Architecture Fold 1 (%) Fold 2 (%) Fold 3 (%) Fold 4 (%) Fold 5 (%) Mean (%)

ResNet-101 95.80 94.30 96.10 97.50 95.90 95.92
ResNeXt-50 96.20 94.00 95.80 97.10 95.60 95.74
Inception-v3 94.80 92.00 93.80 95.80 93.50 93.98

DenseNet-161 95.90 94.10 95.90 96.90 95.20 95.60

Mean-Ensemble-CNNs 96.20 95.00 96.30 97.50 95.80 96.16
NN-Ensemble-CNNs 96.40 95.60 96.00 97.10 95.60 96.14

Figure 14. Confusion Matrix of our proposed approach: Mean-Ensemble-CNNs on Kather-CRC-2016
database. The vertical axis is for the true classes and the horizontal axis is for the predicted classes.
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Figure 15. Confusion Matrix of our proposed approach: NN-Ensemble-CNNs on Kather-CRC-2016
database. The vertical axis is for the true classes and the horizontal axis is for the predicted classes.

4.2.2. CRC-TP Database

To train the CNN architectures using the training data of CRC-TP database, we used
batch size of 128. Similarly, we used batch size of 128 to train the four NN layers of our
NN-Ensemble-CNN approach. In CRC-TP database experiments, we selected bigger batch
sizes than the experiments of the Kather-CRC-2016 database because the CRC-TP database
contains a larger number of samples for each class. Table 5 summarizes the obtained results
using the CNN architectures and the proposed ensemble approaches. By comparing these
results with the ones from Table 3, we notice that the CNN architectures exceed the hand-
crafted feature-based methods in the classification of CRC tissue types. On the other hand,
the performance of the two proposed ensemble approaches outperformed the performance
of the four CNN architectures.

Figures 16 and 17 show the confusion matrices of our proposed Mean-Ensemble-
CNN and NN-Ensemble-CNN approaches. The comparison between the performance
of the two proposed ensemble approaches (from Table 5 and Figures 16 and 17) show
that the NN-Ensemble-CNN approach performs slightly better on the recognition of CRC
tissue types.
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Table 5. Experimental results using ResNet-101, ResNeXt-50, Inception-v3, DenseNet-161, Mean-
Ensemble-CNNs and NN-Ensemble-CNN on CRC-TP database.

Architecture Accuracy (%) F̂1-Score (%)

ResNet-101 85.98 85.99
ResNeXt-50 85.53 85.55
Inception-v3 85.50 85.46

DenseNet-161 86.28 86.30

Mean-Ensemble-CNNs 86.97 86.99
NN-Ensemble-CNNs 87.26 87.27

Figure 16. Confusion Matrix of Mean-Ensemble-CNNs on CRC-TP database. The vertical axis is for
the true classes and the horizontal axis is for the predicted classes.



J. Imaging 2021, 7, 51 17 of 21

Figure 17. Confusion Matrix of NN-Ensemble-CNNs on CRC-TP database. The vertical axis is for
the true classes, and the horizontal axis is for the predicted classes.

Since our approaches are an ensemble of trained CNN architectures, it is interesting
to compare the computational cost of our proposed approaches with these CNN archi-
tectures. Table 6 contains the required time to test single CRC tissue type image using
the trained CNN architectures and our approaches on Kather-CRC-2016 and CRC-TP
databases. From Table 6, we notice that our approaches’ testing time is equal to the sum of
single models’ testing times. Moreover, we notice that the required time is very trivial for
all the evaluated methods in both databases. Therefore, our approaches are suitable for
real-world digital pathology application.

Table 6. Testing time for the evaluated CNN architectures (ResNet-101, ResNeXt-50, Inception-v3
and DenseNet-16) and our proposed approaches (Mean-Ensemble-CNNs and NN-Ensemble-CNNs)
for each database.

Model Databases
Kather-CRC-2016 Database (s) CRC-TP Database (s)

ResNet-101 0.008598 0.037415
ResNeXt-50 0.009178 0.030339
Inception-v3 0.008513 0.020904

DenseNet-161 0.015966 0.038318

Mean-Ensemble-CNNs 0.042255 0.126976
NN-Ensemble-CNNs 0.042520 0.127373
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5. Discussion

In this section, we will compare our results with state-of-the-art methods. Table 7 con-
tains the comparison between our proposed approaches and the state-of-the-art methods.
In [12], J. Kather et al. tested different texture descriptors with an SVM classifier. In [41],
Ł. Rączkowski et al. proposed the Bayesian Convolutional Neural Network approach.
In [19], L. Nanni et al. proposed an ensemble (FUS_ND+DeepOutput) approach based on
combining deep and texture features. The comparison in Table 7 shows that our proposed
ensemble approaches outperform the state-of-the-art methods.

Table 7. Comparison between our approaches and the state-of-the-art methods on Kather-CRC-
2016 database.

Methods N of Folds Accuracy (%)

Gabor+rbf-SVM [12] 10 62.60
Perceptual+rbf-SVM [12] 10 63.00

GLCM+rbf-SVM [12] 10 71.90
Histogram higher+rbf-SVM [12] 10 72.40

LBP+rbf-SVM [12] 10 76.20
Histogram Lower+rbf-SVM [12] 10 80.80

ARA-CNN [41] 5 92.24
FUS_ND+DeepOutput [19] 5 93.24

Mean-Ensemble-CNNs (Our) 5 96.16
NN-Ensemble-CNNs (Our) 5 96.14

Table 8 contains the comparison between our proposed approaches and the state-of-
the-art methods on the CRT-TP database. In [8], S. Javed et al. used supervized and semi-
supervized learning methods. In this comparison, we consider the results of the supervized
approaches which are similar to our approaches. In Table 8, we compare our approaches
with texture and deep learning methods that were tested on [8]. The comparison shows
that our approaches (Mean-Ensemble-CNNs and NN-Ensemble-CNNs) outperform the
state-of-the-art methods. The comparison with the hand-crafted feature-based methods,
deep learning architectures and the state-of-the-art methods proves the efficiency of our
proposed ensemble approaches (Mean-Ensemble-CNNs and NN-Ensemble-CNNs).

Table 8. Comparison between our approaches and the state-of-the-art methods on CRC-TP database. Where: Tu: Tumor, St: Stroma,
CS: Complex Stroma, Be: Benign, De: Debris, In: Inflammatory and SM: Smooth Muscle. ∗ are the comparison methods from [8].

Methods Tu (%) St (%) CS (%) Be (%) De (%) In (%) SM (%) F̂1-Score (%)

Subspace Clustering ∗ 48 62 45 46 64 65 63 55
SCD ∗ 60 61 55 69 81 79 69 65

DL-KLdiv ∗ 62 65 60 79 73 76 70 68
SRC ∗ 73 75 65 60 85 66 64 69

SHIRC ∗ 78 75 61 65 68 78 69 71
KM-CD ∗ 72 79 62 73 80 78 79 73
DFOD ∗ 84 81 73 71 78 74 74 77
SDLs ∗ 86 83 70 72 81 80 70 77
SPM ∗ 82 80 70 85 83 84 74 79

B5F-SVM ∗ 86 77 73 75 91 92 78 80

MobileNet ∗ 79 79 68 81 76 82 76 77
SVM-CNN ∗ 80 78 80 73 84 86 79 80
ResNet-50 ∗ 81 81 78 81 88 87 85 82

Mean-Ensemble-CNNs (Our) 89.75 84.20 82.35 83.68 94.22 88.36 89.87 86.99
NN-Ensemble-CNNs (Our) 90.53 84.37 82.65 83.87 93.82 87.96 90.49 87.27
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From the results on the Kather-CRC-2016 database, we notice that our proposed
approaches (Mean-Ensemble-CNNs and NN-Ensemble-CNNs approach) achieved similar
results (Table 7). Meanwhile, in the CRC-TP database, we notice that the NN-Ensemble-
CNNs performance is better than Mean-Ensemble-CNNs (Table 8). On the other hand,
we noticed that the performance of different methods on Kather-CRC-2016 is better than
the performance on the CRC-TP database. This is probably because the CRC-TP database
contains more challenging classes than Kather-CRC-2016. In addition, CRC-TP is not a
balanced database that can influence the overall performance. Another possible reason can
be the splitting and labeling of the tissue types, which were performed by different expert
pathologists for each database. Despite our approach outperforming the state-of-the-art
methods in both databases, the results in the CRC-TP database need more improvements
for real-world applications. One possible solution is to use more data augmentation
techniques to increase the training data.

6. Conclusions

In this paper, we proposed two Ensemble deep learning approaches to recognize
the CRC tissue types. Our proposed approaches are denoted by Mean-Ensemble-CNNs
and NN-Ensemble-CNNs, which are based on combining four trained CNN architectures.
The trained CNN architectures are ResNet-101, ResNeXt-50, Inception-v3 and DenseNet-
161. In our Mean-Ensemble-CNN approach, we combined the CNN architectures by
averaging their predicted probabilities. In our NN-Ensemble-CNN approach, we combined
the deep features from the last fully connected layer of each trained CNN architecture,
then feed them into four layers NN. In addition to evaluating the four CNN architectures
and our proposed approaches, we evaluated two texture descriptors and two classifiers.
In more detail, we evaluated LPQ features, BSIF features and their combination by using
two classifiers which are: SVM and NN.

The experimental results showed that deep learning methods (single architecture) sur-
pass the hand-crafted feature-based methods. On the other hand, our proposed approaches
outperform both the hand-crafted feature-based methods and the CNN architectures. In ad-
dition, our ensemble approaches outperform the state-of-the-art methods in both databases.
As for future work, we are planning to use more data augmentation techniques to augment
the training data. Moreover, including other powerful CNN architectures to our ensemble
approaches will help to improve the performance.
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