Gautier Berthou

A Formal Model of Interrupt-based Checkpointing with Peripherals

Transiently-powered systems featuring non-volatile memory as well as external peripherals enable the development of new low-power sensor applications. However, as programmers, we are ill-equipped to reason about systems where power failures are the norm rather than the exception. A first challenge consists in being able to capture all the volatile state of the application -external peripherals included-to ensure progress. A second, more fundamental, challenge consists in specifying how power failures may interact with peripheral operations. In this paper, we propose a formal specification of intermittent computing with peripherals, an axiomatic model of interrupt-based checkpointing as well as its proof of correctness, machine-checked in the Coq proof assistant. We state the correctness of the checkpointing mechanism as a trace refinement property between the model and the specification, which accounts for peripheral device operations replays due to power failures. Our proof methodology relies on intermediate oracle semantics to tame the non-determinism of power failures scenarios.

INTRODUCTION

Transiently-powered systems are tiny, battery-less devices that harvest energy from their environment. The energy thus retrieved flows into short-term storage facilities, such as capacitors, leading to computation times on the order of thousands of cycles per run. A run denotes a continuous period of time without power failure. To ensure progress of computation across runs, system integrators often pair such devices with non-volatile memory (NVM), such as non-volatile RAM technology (FRAM, MRAM, etc.). This combination of features gave birth to intermittent computing.

However, the interaction of volatile (registers, caches) and non-volatile states together with unpredictable power failures is itself a poisonous mix known as the "broken time machine" [START_REF] Ransford | Nonvolatile Memory is a Broken Time Machine[END_REF]. This led to the development of programming models guaranteeing that, at any point in time, the application can be restored to a state where its volatile and non-volatile components are consistent with each other [START_REF] Boehm | Persistence Programming Models for Non-Volatile Memory[END_REF][START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF][START_REF] Shull | Defining a high-level programming model for emerging NVRAM technologies[END_REF].

An alternative solution to circumvent this issue consists in adding a sensor monitoring the remaining energy level [START_REF] Colin | A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices[END_REF]. Before the power runs out, a hardware interrupt is triggered, which is then handled in software, leading the system to checkpoint its volatile state to NVM. Checkpoints are necessarily consistent as they result from a snapshot of the application taken at a single point in time. This offers the simplicity of static checkpointing [START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF] -where explicit checkpointing instructions are spread throughout the code-without suffering from the overhead -snapshots are acquired only when necessary, i.e., when the power runs low. Note that, from a conceptual standpoint, interrupt-based checkpointing subsumes static checkpointing: in our framework, a static checkpoint is merely a (deterministicallytriggered) power-loss interrupt followed by an immediate reboot to the checkpointed state. This solution leaves a critical blind spot: external peripheral devices also contain volatile state. However, this state may not be fully accessible from the CPU -efficiently or at all. Besides, interacting with an external device changes our expectations about the system. Consider for instance a radio transceiver peripheral. The radio device contains a frequency synthesizer that must be calibrated before packet emission or reception. Calibration takes about 100𝜇s on the device, during which the driver is busy-waiting. If a power-loss were to occur after, say, 75𝜇s, it would be functionally incorrect to resume the transceiver in calibration mode and only wait for the remaining 25𝜇s. To be correct, the calibration code sequence must execute within a single run.

Following earlier work on supporting peripherals in intermittent computation [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF][START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF][START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF][START_REF] Hester | Timely Execution on Intermittently Powered Batteryless Sensors[END_REF][START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF], we identify two key challenges:

Challenge (C1): Peripherals add volatile and opaque state to the overall system; Challenge (C2): Peripherals may have a concrete, observable impact on the environment of the system.

The present work aims at providing a conceptual framework for [START_REF] Ahmed | Efficient Intermittent Computing with Differential Checkpointing[END_REF] formally expressing these two requirements; and [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF] proving that a general interrupt-based checkpointing scheme meets its specification. To this end, we make the following assumptions throughout the paper: Assumption (A1): NVM is solely used to store snapshots of the application. Conversely, application code cannot access the NVM; Assumption (A2): Checkpointing volatile state (registers, RAM, etc.) from the micro-controller (MCU) is a solved problem (e.g., Ahmed et al. [START_REF] Ahmed | Efficient Intermittent Computing with Differential Checkpointing[END_REF]) whereas the peripheral internal state is completely opaque to the application; Assumption (A3): Peripherals act upon an environment that is idempotent. A transiently-powered system may, for example, send a network packet multiple times: we expect the network protocol to gracefully handle such situations. This touches upon a fundamental assumption of transiently-powered systems in general [START_REF] Surbatovich | I/O dependent idempotence bugs in intermittent systems[END_REF]; Assumption (A4): Liveness of the application is secured by a suitably calibrated power sensor. We do not assume, however, that checkpointing always succeeds: we merely expect it to eventually succeed.

While Assumptions (A2) to (A4) are fairly standard assumptions, Assumption (A1) excludes some existing systems [START_REF] Hicks | Clank: Architectural Support for Intermittent Computation[END_REF][START_REF] Jayakumar | QuickRecall: A HW/SW Approach for Computing across Power Cycles in Transiently Powered Computers[END_REF][START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF][START_REF] Maeng | Alpaca: intermittent execution without checkpoints[END_REF][START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF][START_REF] Van Der Woude | Intermittent Computation without Hardware Support or Programmer Intervention[END_REF] from the scope of this work. Since Challenges (C1) and (C2) are orthogonal to an application's ability to access NVM, we left out this extension to future work.

Based on these assumptions, we thus propose a general model of interrupt-based checkpointing. This mechanism has to cope with various failure modes. For example, the device may shut off in the middle of a checkpointing operation, leaving us with a partial record of the current state of the application. Double-buffering [START_REF] Ransford | Mementos: system support for long-running computation on RFID-scale devices[END_REF] solves this issue: the previous successful checkpoint is kept at all times. Only when checkpointing completes do we atomically swap the address of the default checkpoint.

Dealing with an external communication bus (e.g., I 2 C or SPI), we may for example suffer from a power failure right after having configured the bus to address a specific component but before actually interacting with the component.

In the next run, the bus will be resumed in its default state: if we resume the application where it lost power, it will fail to proceed as desired. Instead, one resolves to log the interaction with the peripherals and replay the log upon reboot [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF][START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF][START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF] so as to drive it to restore its internal state. Some operations must execute under continuous power to produce a meaningful outcome, as witnessed by our earlier radio device example. Applications must be able to specify power-continuous sections1 asserting that a given sequence of instructions must be executed within a single run.

A "correct" system is thus a system that correctly implements each of these techniques as well as their subtle interactions. Figure 1 gives an overview of our proposal. Our work stems from a specification of the system (SPEC, on the left-hand side). Power-continuous sections are defined over this model of the application. Peripheral devices (DEV) are accessed through a specific API that can only be used in a power-continuous section. We then model a general interrupt-based checkpointing scheme (PLF, on the right-hand side), interacting with peripherals through the same API and enforcing that power-continuous sections are preserved in the event of a power-loss. To persist state across reboot, the system uses non-volatile memory (CKP), implementing double-buffering to ensure progress. In particular, a logging mechanism (LOG) is key to restore peripherals in a consistent state. Now, this raises the question: formally, what does it mean for our scheme to be correct? The key idea consists in specifying the application (SPEC in Fig. 1) as if it was run in a continuously-powered environment. Our correctness result then states that the application supported by a checkpointing scheme behaves as prescribed by SPEC: modulo the re-execution of some peripherals' operations, the trace of operations emitted by peripherals is also observable in the continuous-power specification, and power-continuous sections are executed within a single run.

Our contributions are the following:

• We specify intermittent computing with peripherals (Section 2) with a labeled transition system. We strive for generality, making no assumption about the actual behavior of peripherals and allowing non-determinism, including preemptive and concurrent systems. • We give an axiomatic model of interrupt-based checkpointing (Section 3). To this end, we give an equational specification of a logging mechanism and a persistent storage interface, thus simplifying the task of checking the validity of one's implementation to a handful of conditions. The overall model consists of a state machine with five states that captures the essence of checkpointing.

• We illustrate our model with existing systems (Section 4). Aside from the pedagogical value of the exercise, this is also a first step -albeit informal-toward a systematic comparison of checkpointing schemes.

• Finally, we state and prove the correctness of our model with respect to its specification (Section 5). In particular, we establish that peripheral operations are preserved despite power failures and that power-continuous sections are indeed complied with.

Overall, the present work aims at consolidating our formal understanding of transiently-powered systems and their interaction with external peripherals. This is first and foremost a conceptual work. In particular, this paper does not provide a verification tool nor does it prove the correctness of a particular implementation: our objective is to provide system designers with a solid, actionable mental model.

All the formal definitions and results presented in this paper have been machine-checked [START_REF] Berthou | Intermittent Computing with Peripherals, Formally Verified -Companion Coq Development[END_REF] in the Coq proof assistant [53]. For readability, and for better accessibility from outside of the Coq user community, we have typeset our Coq definitions using set-theoretic notations. We nonetheless keep a distinct namespace per conceptual object, which follows the naming scheme NAMESPACE.object. We write NAMESPACE.t to denote abstract components whose implementation is left unspecified. Throughout the paper, we use the symbol to relate the following pen-and-paper constructions with their corresponding mechanized incarnations in our Coq development [START_REF] Berthou | Intermittent Computing with Peripherals, Formally Verified -Companion Coq Development[END_REF].

Relation to prior publication. This article extends an article that appeared in the proceedings of LCTES 2020 [START_REF] Berthou | Intermittent Computing with Peripherals, Formally Verified[END_REF].

We extensively illustrate our formal model through examples extracted from the literature (Section 2). We also give a thorough treatment of the proof techniques involved in our correctness result (Section 5). Our final correctness theorem is made more precise in the following sense: we establish that our subtrace relation enjoys a unicity property, guaranteeing that any trace of the PLF machine can be matched with a uniquely determined trace in the SPEC machine.

Finally, we provide an alternative correctness theorem (Section 5.10), where the matching subtrace in the SPEC machine is explicitly built through an executable version of our (functional) subtrace relation.

INTERMITTENT COMPUTING & PERIPHERALS

In the following, we aim to distill the essence of intermittent computing with peripherals. We focus our attention solely on the challenges raised by the combination of power failure and peripheral devices. To this end, we introduce an axiomatic programming model. To the practitioner, it may seem far removed from the assembly code that actually drives intermittent computations. This is in fact a virtue of this work: we aim at providing a conceptual framework with which to reason about intermittent computations and their interaction with peripherals. By freeing ourselves from a particular implementation, we remain non-prescriptive about orthogonal design choices, such as the treatment of concurrency, interrupts, etc. We thus offer a very liberal specification that can be readily and effectively used to reason about the design of a concrete implementation.

In this section, we layout our specification of intermittent computations, which ought to be met by our checkpointing model. We encourage readers to check that the behaviors they care about in their applications can be captured by our specification.

Modeling the MCU

We specify the MCU [] as an overarching abstraction of the CPU registers and relevant fragments of volatile memory (RAM). It encompasses all the volatile states that can efficiently be checkpointed to NVM through standard techniques [START_REF] Balsamo | Hibernus: Sustaining Computation During Intermittent Supply for Energy-Harvesting Systems[END_REF].

It does not include peripheral devices -whose treatment comes next-and non-volatile memory -which is outside the scope of our specifications, as per Assumption (A1). In the following, we let MCU.t be the set of possible MCU states.

We use the variable mcu ∈ MCU.t to denote an arbitrary MCU state. We call MCU.init ∈ MCU.t the initial MCU state, just before executing the first instruction of a given application.

Example 1 (MSP430FR series microcontroller). Sytare [START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF] and Karma [START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF] have been successfully deployed on a Texas Instruments MSP430FR5739 MCU. Similar controllers have been used in the literature (either MSP430FR5994 [START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF], or MSP430FR5739 [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF]).

The state of the 16-bit MSP430 processor (16 registers, including program counter, stack pointer, status register and constant generator) as well as its 4 KB of RAM and its code memory (including the read-only bootloader) define an instance of MCU.t. Its initial state MCU.init is specified in the user manual (e.g., [21, §1.2.1]). ■

Modeling peripheral devices

We present now, under the DEV [] namespace, our model of peripheral device. Handling Challenge (C1) calls for a careful distinction between the physical peripherals -whose internal state cannot be accessed by the program-and the interface it exposes to the program. We therefore introduce both an abstract description of the peripheral, representing the state of the physical device, and an interface driving the evolution of the abstract device state.

We let DEV.t be the set of possible physical peripheral states, and use the variable dev ∈ DEV.t to denote an arbitrary peripheral state. We call DEV.init ∈ DEV.t the initial peripheral state, on power-up.

Example 2 (MSP430FR series microcontroller). Sytare has shown that the following on-board devices can be supported through a checkpointing mechanism: Karma [START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF] has pushed further the study of external devices connected to this MCU, supporting the following devices:

• clock system (CS) [
• Knowles SPW2430HR5H [START_REF] Knowles | SPW2430HR5H-B: Top Port SiSonic Microphone[END_REF] analog microphone connected via the TLV voltage comparator of the MCU

• Sensirion Temperature/Humidity Sensor SHT11 [START_REF] Sensirion | SHT1x: Humidity and Temperature Sensor IC[END_REF] connected via I 2 C

• Microchip RN42 Bluetooth radio [START_REF] Sensirion | SHT1x: Humidity and Temperature Sensor IC[END_REF] connected via UART

• Intersil ISL29004 [START_REF]ISL29004: Light-to-Digital Output Sensor[END_REF] light sensors connected via I 2 C

• Texas Instruments CC1101 sub-GHz RF transceiver [START_REF]CC1101: low-Power sub-1 GHz RF transceiver[END_REF] connected via SPI

• ST LIS3MDL 3-axis magnetometer [START_REF] St | LIS3MDL: digital output magnetic sensor[END_REF] connected via SPI

• ST LSM6DSL 3-axis accelerometer/gyroscope [START_REF] St | LSM6DSL: iNEMO inertial module[END_REF] connected via I 2 C

■

The idea that peripherals are manipulated through a well-defined interface is a natural one [START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF]. A pair of a request and its corresponding response form an operation. Formally we define DEV.ops ≜ DEV.request × DEV.response. Conventionally, we write op ∈ DEV.ops to denote an arbitrary pair of request and response q ? ↦ → r ! .

Our simple modeling of peripheral devices accounts for systems featuring multiple physically-decoupled peripherals.

We can simply consider the set of all available devices as a single one whose interface is the disjoint sum of their respective interfaces.

In the following, we flesh out this abstract notion with concrete interfaces from the literature (Example 3 to 7). The corresponding Coq model can be found by following the suitable link but we shall not dwell on the specifics of each implementation, which is overall unsurprising.

Example 3 (Sytare API: temperature sensor []). In Sytare, applications access devices through a designated "system call" interface. For example, the temperature sensor (part of the ADC component) is presented as a single function that encapsulates both sensor calibration as well as the actual measurement: To model an application using the temperature sensor, the sub-main clock and the radio link, we take DEV.request to be the disjoint union of the requests admissible by each device:

DEV.request ≜ temp_sample() ⊎ clk_set_smclk_src(𝑠𝑜𝑢𝑟𝑐𝑒) (𝑠𝑜𝑢𝑟𝑐𝑒 ∈ N) ⊎ . . . ⊎ cc2500_get_rssi()
while the set of responses DEV.response corresponds to the (non discriminated) union of the responses of each device. We can for example record the fact that a request q ? ≜ clk_set_smclk_src(1) occured and lead to a returned value of, say, r ! ≜ 255, which we shall write clk_set_smclk_src(1) ↦ → 255. More generally, we write f(𝑖 0 , . . . , 𝑖 𝑚) ↦ → (𝑜 1 , . . . , 𝑜 𝑛)

to refer to a request q ? to an interface function f applied to arguments 𝑖 0 to 𝑖 𝑚 that was met with a response r ! built from a tuple 𝑜 0 to 𝑜 𝑛 .

The semantics of an operation op ∈ DEV.ops, -op DEV -, is obtained by (painstakingly) interpreting the datasheets [START_REF]MSP430FR2433 Mixed-Signal Microcontroller[END_REF][START_REF]MSP430FR4xx and MSP430FR2xx family User's Guide[END_REF][START_REF]CC2500 Low-Cost Low-Power 2.4 GHz RF Transceiver[END_REF] to determine the effect of the corresponding Sytare code on the device. Formalizing operations and their semantics in the context of Restop (Example 6) or Karma would follow the same general principles. ■

Specification

We now introduce, under the SPEC namespace [], our axiomatic specification of an intermittent computation. We ask for just enough structure to address Challenge (C2). In doing so, we expose only the properties we care about, namely the expected observable behavior of programs under continuous-power execution. The remaining implementation details, which are orthogonal to the correctness statement, are abstracted away.

To account for power-continuous code sections, we distinguish two execution modes in an intermittent computation:

a program can either run in "user mode" (U ∈ SPEC.mode) or in "driver mode" (D ∈ SPEC.mode). A computation may be resumed at any point in user mode while it can only be resumed to the very first instruction of a sequence of instructions in driver mode. This means that a sequence of instructions in driver mode should either be executed entirely without being interrupted by a power failure, or the entire code block will be re-executed in the next run.

Example 8. The calibration code of the radio frequency synthesizer (discussed in the introduction) should therefore be specified as a driver mode code sequence. This ensures that the busy-wait is always executed as a whole before calibration is deemed completed. Other examples include non-immediate transactions, frequent with SPI or I 2 C buses. ■

Modes are thus a key ingredient to specify power-continuous sections. We write m ∈ SPEC.mode to denote an arbitrary execution mode.

Our specification should be able to describe a set of desired behaviors. Since peripherals are meant to interact with their environment, a natural notion of "behavior" is the sequence of operations performed by the device. We write SPEC.trace ≜ DEV.ops * for the set of sequences of operations. We write t ∈ SPEC.trace to denote an arbitrary trace, 𝜖 to denote the empty sequence and t ; t ′ to denote a concatenation of traces. We define that takes an input state to produce a (possibly empty) trace of observable events and a resulting state. This relation is subject to the following invariants.

dev t DEV * dev ′ ≜ dev op 0 DEV dev 0 . . . op 𝑛 DEV dev ′ ,
(Axiom-Usr): In user mode, computations do not interact with peripherals, i.e., if

(U, mcu, dev) t SPEC (U, mcu ′ , dev ′),
then dev = dev ′ and t = 𝜖;

(Axiom-Drv): In driver mode, the emitted trace faithfully describes the physical evolution of the device, i.e., if

(D, mcu, dev) t SPEC (D, mcu ′ , dev ′), then dev t DEV * dev ′ ;
(Axiom-Enter): Transitions from user to driver mode are computationally transparent, i.e., if

(U, mcu, dev) t SPEC (D, mcu ′ , dev ′), then mcu = mcu ′ , dev = dev ′ and t = 𝜖;
(Axiom-Leave): Transitions from driver to user mode are computationally transparent, i.e., if

(D, mcu, dev) t SPEC (U, mcu ′ , dev ′), then mcu = mcu ′ , dev = dev ′ and t = 𝜖.
This axiomatization amounts to a state machine (Fig. 2) with two states -user and driver modes-together with four possible kinds of transitions. Specifically, Enter and Leave delineate the power-continuous sections operating on external peripherals. These two transitions are purely formal, leaving the concrete state of the application unchanged (same MCU, same device and producing an empty trace). Upon reasoning about a concrete application, we are therefore free to switch mode at any point we see fit from a logical standpoint, irrespective of its operational behavior. The semantics of an intermittent computation follows simply by iterating the single-step transition relation above, starting from the initial state. Formally, we define the semantics SPEC.sem as the following set of traces:

𝑡 ∈ SPEC.sem ⇔ ∃s, (U, MCU.init, DEV.init) t SPEC * s
The set SPEC.sem consists of all the admissible behaviors of the system under study. Indeed, any trace in this set corresponds to a sequence of peripheral operations performed during a continuously-powered execution.

Being a specification, the above definition of SPEC.sem deserves scrutiny. In particular, it must be expressive enough to account for the properties expected by a specific, real-world application. To fit within our framework, these properties need to be expressible in terms of traces specifying expected observations, and/or user-driver transitions specifying power-continuous sections. The following examples illustrate how our specification addresses Challenge (C2).

Example 9. Suppose we want to (1) sense a temperature through temp_sample() (Example 3), then (2) convert that value to a human-readable format to (3) be sent over the wireless link through cc2500_send_packet (Example 5). This program can be modeled either as a single sequence encompassing all three operations executing in mode D, or as three sequences executing in, successively, D → U → D modes, value conversion being performed in mode U. In both cases, the formal trace consists in a sensing operation followed by a send operation. However, the latter case describes an application that -subject to power failures-allows for the temperature sent over the air to be arbitrarily outdated, whereas the former case captures the timeliness requirement of the whole sequence of operations. ■

Example 10 (Interrupt support). Consider an application that regularly sends an external sensor's data in radio packets.

The application sets a timer to periodically sense and send data, then waits for commands from the radio between packet emissions. If both the sensor and the radio devices are accessed through the same SPI bus, this SPI bus requires two different configurations (e.g., bus clock frequency), both being distinct operations in DEV.ops, to communicate with both devices.

An hypothetical model (inspired by Example 7) of such a system would be:

DEV.ops = spi_init() ↦ → () (initialize SPI bus) ⊎ spi_config(0) ↦ → () (switch to bus 0) ⊎ spi_config(1) ↦ → () (switch to bus 1) ⊎ sensor_init() ↦ → () (calibrate the sensor) ⊎ sensor_sample() ↦ → 𝑛 (sample a value 𝑛 ∈ N) ⊎ radio_init() ↦ → () (initialize the radio link) ⊎ radio_send(𝑛) ↦ → () (send a value 𝑛 ∈ N over the air) ⊎ radio_rx() ↦ → () (set the device in reception mode) ⊎ timer_set(𝑛) ↦ → () (set a timer to fire up in 𝑛 ∈ N cycles)
The datasheet specifies the state of all the peripherals (SPI bus, sensor, radio device, timer) upon power-up: this defines DEV.init. The radio module, when set in reception mode, may fire interrupts. Retrieving the packet should be performed in a power-continuous section (D mode) so that either the handler runs to completion in a single run (effectively receiving the radio packet), or the packet is lost in the event of a power-loss.

Note that the interaction between, say, timer and radio interrupts requires a resource locking mechanism to properly share access to the SPI bus, independently of whether the application may reboot or not. Such a mechanism targets the usual challenges of sharing resources in an interrupt-driven concurrent system: it is orthogonal to power-continuous sections. ■

Remark. Let us reiterate on the subtlety of establishing a correct specification in the presence of interrupts. Consider, for example, a timer interrupt whose signal handler does not perform any peripheral operation (thus living purely in user mode). If the specification allows the timer to interrupt the execution of driver mode operations, then any timing guarantee provided by the run-time system would be moot (yet still formally correct). This should not come as a surprise: embedded systems programmers are used to selectively control or altogether disable interrupts during time-critical operations. A similar care must be given to the specification, so as to ensure that the transitions that may occur during a power-continuous sections are compatible with practical and physical constraints of the device.

INTERRUPT-BASED CHECKPOINTING

We now give a formal description of interrupt-based checkpointing with peripherals [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF][START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF][START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF][START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF]. The present model plays two roles. First, we lay out the minimal requirements to implement an interrupt-based checkpointing system.

Namely, one must be able to log peripheral actions and store an image of the MCU and of the action log to NVM. Second, we provide a conceptual framework for reasoning about the correctness of such a checkpointing system. Namely, we introduce the notion of instrumented trace.

Operation logging

To restore a physical device into a previously encountered state, we must resort to the only information accessible to the program: peripheral operations, i.e., the requests sent to the device and their respective responses. In this section, we consider an abstract specification of an operation logging mechanism, under the namespace LOG []. Below, and in Section 4, we show that this interface admits several efficient implementations.

We let LOG.t to be the summary of all previous peripheral operations. An Remark. This specification makes no assumption concerning the determinism (or lack thereof) of the underlying device hardware. The relational nature of our model of devices (Section 2.2) accommodates the fact that a given peripheral request may non-deterministically yield a specific peripheral response and internal state. However, logging an operation through LOG.log amounts to recording both the request and its response. As a consequence, the statement of Axiom (Axiom-Restore-Log) is careful to consider only those device states dev ′ that are induced by the same operation, that is the same pair of request and response. Formally, we are thus carefully side-stepping the non-determinism of responses.

Indeed, the role of the logging mechanism is to re-create a specific state, which was the result of a specific sequence of requests and responses: we need not account for all possible responses, only those that occurred during the execution whose final state we intend to recreate.

Non-example 11. The statement of (Axiom-Restore-Log) hints at the fact that some devices may nonetheless exhibit too much non-determinism to support a logging mechanism. Let us consider a device state dev, a specific request q ? and its corresponding response r ! such that there exists two internal device states dev 𝑎 ≠ dev 𝑏 satisfying both dev q ? ↦ →r ! DEV dev 𝑎 and dev q ? ↦ →r ! DEV dev 𝑏 meaning that the physical device is allowed to (silently) pick an internal state over which the software interface has no visibility. It should come as no surprise that such kind of device cannot be reliably used in the setting of intermittent computing: if we had to reboot after the execution of the operation q ? ↦ → r ! , we would be unable to decide whether to restore the device to dev 𝑎 or dev 𝑏 . ■

Read contrapositively, this non-example yields a necessary condition for a peripheral to be compatible with intermittent computing: for any device state dev ∈ DEV.t, any pair of a request q ? ∈ DEV.request and a response r ! ∈ DEV.response, there exists at most one device state dev ′ satisfying dev q ? ↦ →r ! DEV dev ′ . That is, the device response r ! must reflect all the non-determinism of the peripheral.

LOG.init)))))))))
which reads from the inside out as starting from the initial state -represented by LOG.initwe record a spi_init operation, followed by a call to spi_config, followed by a call to sensor_init, etc. Starting back from the initial device state (as is the case after a reboot), the log ℓ contains all the necessary information to restore the devices in a coherent state, as per our assumption (Axiom-Restore-Log). In particular, we are guaranteed that the sensor and the radio modules are accessed through a correctly configured SPI bus, independently of the fact that a reboot has occurred and that the SPI bus has been reinitialized.

Remark that LOG.log need not actually store the full record of interactions. For instance, the effect of the last call to spi_config supersedes the effect of any earlier call to spi_config: we may therefore only log the trace of this last call, overwriting previous occurrences. This is the key idea behind the log implementation of Restop (Example 13).

Similarly, the operation sensor_sample() need not be stored in the log: reading a sensor has no impact on the sensor's state. There is no point in re-executing this operation upon reboot. Exploiting detailed knowledge of the semantics of operations enables Sytare and Karma to tailor their log representation to a static, fixed-size datastructure indeed, an operation that does not modify the state of the peripheral (e.g.,, sampling a stateless sensor) need not be logged and, therefore, there is no need to allocate space for it in the device context or driver state machine. ■

Non-volatile checkpoint storage

Checkpointing storage is the only component in our system that is persistent across reboots. We formalize it under Elements of CKP.t constitute the only piece of state that we intend to persist across reboots.

Interrupt-based checkpointing

We now define our model of interrupt-based checkpointing under the PLF [] namespace, which stands for "Power-Loss & checkpoint Failure". Our model extends the specification given in Section 2 by introducing failure scenarios and restarts. It is defined as a state machine that emits instrumented traces upon reaching specific transitions.

States. Our model operates over 5 kinds of states, conventionally written ŝ ∈ PLF.state:

• INIT represents the initial state of the machine;

• (USR, mcu, dev, ckp) represents a computation running in user mode;

• (DRV, mcu, dev, ckp, ℓ) represents a computation running in driver mode, maintaining a volatile log ℓ of operations executed up to this point; • (PWR, ckp) represents a computation interrupted by a power failure in which all volatile state is lost;

• (OFF, ckp) represents the system when it has been turned off.

The corresponding state machine is represented in Fig. 3. We explain below each of its transitions.

Instrumented traces. In this system, peripheral operations could be repeated either by the program -during a run-or by the run-time system -due to a power failure. In order to relate precisely the trace produced by the transiently-powered system with a trace produced by a continuously-powered execution of the system, it is crucial to distinguish (repeated) progress from failed attempts.

In the transiently-powered system, we must keep track of two kinds of information: (1) whether a power-continuous section has successfully completed or has been aborted due to a power failure; (2) whether the next snapshot could be set over the last one, or power ran out beforehand. We thus extend the notion of trace with four extra observable events: Information 1: A power-continuous section

• completed before a power-failure interrupt: Log ⊤

• or was interrupted due to a power failure: Log ⊥ Information 2: The checkpointing • completed before power ran out: Ckp ⊤

• or could not complete before power ran out: Ckp ⊥

In this model, an instrumented trace is thus a sequence of either of these events or peripheral actions:

t ∈ PLF.trace ≜ ({Ckp ⊤ , Ckp ⊥ , Log ⊤ , Log ⊥ } ⊎ DEV.ops) *
In Section 5, we show that, from the traces produced by our checkpointing model, we can extract a meaningful subtrace of DEV.ops events that could have been produced by the specification, i.e., within a single run.

State machine transitions. We model interrupt-based checkpointing with peripherals through a relational specification of the transitions of the state machine in Fig. 3. The transition relation defined in Fig. 4, and written Transitions to PWR are responsible for producing a consistent checkpoint across the whole application (MCU and peripherals). Upon transition UsrPwr, the whole MCU is checkpointed so as to resume at the current program point.

Upon transition DrvPwr, the volatile execution context is thrown away, relying on the fact that transition Enter has produced a valid checkpoint right before leaving user mode to enter the power-continuous section.

Transitions from state PWR to state OFF capture, non-deterministically, whether checkpointing succeeds or fails (transitions Ckp-Succ and Ckp-Fail). We also allow cases where power could run out before the power-failure interrupt is even raised. system restarts (transition Reboot), it reinstates the last MCU image and restores the peripheral's state thanks to the last stable log.

Example 15 (Checkpoint success in user mode). The following sequence of transitions illustrates a successful checkpoint taken while operating in user mode:

. . . (USR, mcu 0 , dev, ckp) (USR, mcu 1 , dev, ckp)

(PWR, ckp ′) (OFF, ckp ′′) (USR, mcu 1 , dev, ckp ′) . . . Usr UsrPwr Ckp-Succ Reboot
In particular, we have ckp ′ = CKP.saveNextMcu ckp mcu and ckp ′′ = CKP.set ckp ′ , which allow us to resume execution at the exact same state we were in before the power-loss. ■

Example 16 (Checkpoint failures in user mode). Checkpointing may fail for two reasons. First, there may not be enough power to complete the transfer of volatile state to stable storage while handling the power-loss interrupt. In this case, we reboot from the previous (successful) snapshot. This amounts to the following sequence of transitions:

(OFF, ckp) (USR, mcu 0 , dev 0 , ckp 0) . . . (USR, mcu 𝑛 , dev 𝑛 , ckp 𝑛) (PWR, ckp ′ 𝑛) (OFF, ckp ′ 𝑛) (USR, mcu 0 , dev 0 , ckp 0) . . . Reboot UsrPwr Ckp-Fail Reboot
In particular, we have ckp ′ = CKP.saveNextMcu ckp mcu but the on-going snapshot did not overwrite the last snapshot (transition Ckp-Fail). As a result, transition Reboot will restore the last snapshot, thus reproducing the previous checkpoint state ckp 0 . Note that, because of non-determinism as well as potential interactions with the environment, the machine may not reach the state (USR, mcu 𝑛 , dev 𝑛 , ckp 𝑛) again after the reboot.

The second failure scenario corresponds to a brutal power-loss, which would not have been signaled by the interrupt mechanism. This amounts to the following sequence of transitions:

(OFF, ckp) (USR, mcu 0 , dev 0 , ckp 0) . . . (USR, mcu 𝑛 , dev 𝑛 , ckp 𝑛)
(OFF, ckp 𝑛) (USR, mcu 0 , dev 0 , ckp 0) . . .

Reboot UsrOff

Reboot

Once again, the transition Reboot will restore the previous last checkpoint, ignoring the partially constructed, on-going snapshot. ■

Example 17 (Checkpoint success in driver mode). In the event of a power-loss in driver mode, execution may resume -at best-from the instruction that lead to the driver mode. This is critical to ensure that sequences of operations in driver mode are executed in a single power-continuous section. Formally, this corresponds to the following sequence of transitions:

. . . (USR, mcu 0 , dev 0 , ckp 0) (DRV, mcu 0 , dev 0 , ckp 0 , ℓ) . . .

(DRV, mcu 𝑛 , dev 𝑛 , ckp 𝑛 , ℓ ′) (PWR, ckp ′ 𝑛) (OFF, ckp ′′ 𝑛)
(USR, mcu 0 , dev 0 , ckp 0) . . .

Enter Drv Drv

DrvPwr Ckp-Succ Reboot where the log ℓ ′ (recording the state of the device) is rightfully thrown away during the transition DrvPwr. As a consequence, both the checkpointing process (transition Ckp-Succ) and the reboot (transition Reboot) remain ignorant of the state the peripheral has been into during this specific interaction: it will restore it the same state it was before entering the power-continuous section. ■

Example 18 (Successful completion of a power-continuous section). Conversely, successfully executing a powercontinuous section ought to commit the state of its peripheral to the on-going snapshot. This behavior is illustrated by the following sequence of transitions:

. . . Ckp-Fail keeps the checkpointing storage intact. Our model supports power-failure interruptions in both user and driver mode. It also models the eventuality that the power-failure interruption itself cannot complete before power goes out, through UsrOff and DrvOff. Finally, traces produced by the transition system merely record the execution, i.e., they play no role in the execution.

(
Let us revisit our initial set of assumptions (p.2) in light of our formal definition above. Assumption (A1) ("the application has no access to the NVM") is reflected by the fact that the only state preserved across Reboot is ckp, which is strictly under the control of the checkpointing system. We rely extensively on Assumption (A2) ("checkpointing volatile state is a solved problem") in transitions Enter and UsrPwr, where we store the volatile state, and in transition Reboot, where we restore the volatile state. Assumption (A3) ("the environment is idempotent") is absolutely critical as it allows the system to replay any sequence of instruction. For example, when we are interrupted in a power-continuous section, we can safely dispose of the current execution context (during transition DrvPwr), which will lead us to restart -at best-from the latest Enter transition and re-execute the whole power-continuous section. Finally, Assumption (A4) ("checkpointing need not always succeed") is reflected by the transition Ckp-Fail, which fails to consolidate the incrementally-constructed checkpoint into a usable checkpoint.

From a formal standpoint, static checkpointing can be understood as a (systematic) sequence of transitions Usr-Pwrfollowed by Ckp-Succ and Reboot. In this sense, static checkpointing is a restricted instance of our model and, consequently, our (stronger) result implies the correctness of such a static checkpointing scheme.

INSTANCES OF THE MODEL

We now relate our model to propositions from the literature, illustrating how they fit within our conceptual framework.

Restop [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF]. Restop is a middleware library supporting peripherals in a transiently-powered context. It specifically targets devices connected through SPI and I 2 C buses. The authors define the notion of a "peripheral instruction" ([2, §3]), akin to our set of operations (DEV.ops), as the "information required by the system to issue the operation on the peripheral".

At run-time, peripheral instructions are stored in an "instruction history table", which effectively implements our LOG.t interface as a sequence of instructions to be replayed on reboot. To keep the size of this log to a minimum, instructions are equipped with a choice of 4 semantics ([2, §3.1]): "not-save", "save", "save-but-replace", "preserve". The choice of a particular semantics reflects the effect of the instruction on the peripheral (e.g., save-but-replace expects the operation to overwrite the effect of a previous instance).

The Restop designers do not commit to a specific checkpointing scheme ("the history table can either be: (1) placed in main memory; or (2) directly located in NVM" [2, §3]). Similarly, our model supports both: our LOG.t interface leaves unspecified whether the log is physically maintained in volatile or non-volatile memory.

Sytare [START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF]. Sytare is a library operating system targeting a wide range of peripherals in a transiently-powered context.

Interactions with the peripherals are mediated by a system call interface ("syscall") delineating sequences of instructions allowed to interact with peripherals ("drivers", running in "kernel mode") from application code (running in "user mode"), which may only access volatile memory. The syscall interface enables the OS implementers to maintain a distinct "kernel stack" when interacting with peripherals. As a result, the system can always backtrack to the entry point of a syscall by throwing away this stack. This allows them to easily replay a syscall as a single unit of code, thus providing a power-continuous section mechanism.

Sytare supports any peripheral as long as it registers an API through the syscall mechanism and exposes a "device context". A device context is a C data-structure (a struct) that records device-specific data necessary to reconfigure it upon reboot. Each operation exposed to the syscall interface updates the device context accordingly. The collection of peripherals thus defines an array of device contexts, which all together amount to our LOG.t interface.

Checkpointing is implemented by double-buffering, whose evolution is triggered by power-failure interrupts. As witnessed by Fig. 4 of Berthou et al. [START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF], the architecture of Sytare naturally fits our model. Karma [START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF]. Karma provides a run-time system to ensure consistency of peripheral state across reboots. Karma provides a mechanism to implement power-continuous sections, dubbed "atomicity" there, stating that "two options exist to integrate Karma with such a system support: i) changing the conditions that make checkpoints take place in a way to prevent executions lacking the required atomicity, or ii) rolling back executions to recover the non-atomic cases" [10, §C.2]. No assumption is made on how checkpoints are triggered (statically or dynamically). Karma proposes, in addition, an integrated task scheduler for user tasks and peripheral state updates. A peripheral state is represented by a state machine and a queue of operations that corresponds to our DEV.ops operations. After a power failure, peripheral state is restored by replaying the operations stored in the queue. To ensure atomicity of peripheral updates, Karma proposes, as Sytare does, a wrapper for peripheral driver functions. But instead of storing a device context, a procedure rolls back the code, which effectively implements power-continuous sections.

Unlike Sytare, Karma allows several tasks to access a peripheral. This is achieved through a dedicated task management system, which amounts to a specific "user mode" program, running in U mode in our model. From our formal standpoint, the difference between Sytare and Karma thus lies solely in how they instantiate (i.e., implement) the transition relation of the specification abstract machine: the former only allows the execution of a single main task whereas the latter supports several concurrent tasks. This difference is orthogonal to their treatment of power failures.

CORRECTNESS

Traditionally, checkpointing mechanisms are only specified informally, even in the simple setting of intermittent peripheral operations [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF][START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF][START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF][START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF]. Surbatovich et al. [START_REF] Surbatovich | Towards a Formal Foundation of Intermittent Computing[END_REF] is a notable, recent exception that tackles specifically the interaction between persistent variables (stored in NVM) and repeated device inputs (which is likely to yield different values across runs) in a formal setting, leaving aside the questions of timeliness and concurrency. In this section, we relate our specification of intermittent computing with peripherals (Section 2) with our model of interrupt-based checkpointing (Section 3), giving a formal account of timeliness -through power-continuous sections-in the process.

A benefit of this conceptual work is to lay out the key invariants relied upon by existing systems. Indeed, our work is unencumbered by the particulars of producing an MCU image (abstracted once and for all by MCU.t), or of logging peripheral operations (axiomatized once and for all by LOG.t), or even in the minutiae of transferring data to and from volatile and non-volatile state (axiomatized once and for all by CKP.t). By bringing conceptual clarity, we hope to provide a blueprint for future system designers.

Stuttering. Our correctness result consists in a semantic refinement [START_REF] Leroy | A Formally Verified Compiler Back-End[END_REF][START_REF] Lynch | Forward and Backward Simulations[END_REF] between the model and the specification.

We must prove that computation steps ŝ t PLF ŝ′ in the model correspond to computation steps in the specification s t SPEC s ′ -which executes in a continuously-powered environment. Because of power failures, the model may re-execute some computation steps. In this case, the specification can simply be put on hold, waiting for the model to make actual progress. In technical terms, SPEC stutters [START_REF] Lamport | Computation and state machines[END_REF], i.e., it silently takes no step while the model performs wasted work. Fig. 5 illustrates how we match, in our refinement proof, a given execution in PLF (top) with one in SPEC (bottom).

As long as PLF is going to fail to complete the next checkpoint, the specification has to stutter. As soon as the next checkpoint is guaranteed to succeed, the execution in SPEC should be able to follow, in lockstep, the execution in PLF.

In our proof, we handle non-determinism in PLF by making the simulation relation depend on the future of the current PLF execution state.

Stuttering in SPEC must be handled with care. Indeed, we must make sure that it is not constantly stuttering: that would make our correctness theorem vacuously true. We therefore design a subtrace relation that precludes unwanted Intuitively, given a trace t ∈ PLF.trace, we first filter all subtraces where the checkpointing succeeds, leading a trace containing events in {Log ⊤ , Log ⊥ } ⊎ DEV.ops, conventionally written as ť. We write ě for any such observable event.

Then, within each of these subtraces, we select the events of power-continuous sections that completed without a power failure, thereby obtaining a trace 𝑡 ∈ SPEC.trace. We hence define the subtrace relation -≽as a composition of two subtrace relations (defined in Fig. 6): Relation -≽ Ckpdeals with re-execution of code upon a checkpointing failure (transition Ckp-Fail), filtering out sub-sequences of events that end with Ckp ⊥ , while retaining any other event leading to a Ckp ⊤ . Similarly, relation -≽ Logdeals with re-execution of code upon a power-failure interrupt in driver mode (transition DrvPwr), filtering out sub-sequences of operations ending with a Log ⊥ , while retaining the remaining operations.

Example 19. In Fig. 5, the trace emitted by SPEC.sem is t = op 1 ; op 2 ; op 3 and the trace emitted by PLF.sem is t = op 1 ; op 2 ; Log ⊥ ; Ckp ⊤ ; op 1 ; op 2 ; op 3 ; Log ⊤ ; Ckp ⊥ ; op 1 ; op 2 ; op 3 ; Log ⊤ ; Ckp ⊤ We have t ≽ t thanks to the intermediate subtrace ť = op 1 ; op 2 ; Log ⊥ ; op 1 ; op 2 ; op 3 ; Log ⊤ Indeed, we can show that t ≽ Ckp ť by filtering out from t the checkpointing failure subtrace op 1 ; op 2 ; op 3 ; Log ⊤ ; Ckp ⊥ . And ť ≽ Log t by filtering out from ť the first aborted power-continuous section op 1 ; op 2 ; Log ⊥ . ■ Example 20. We now illustrate the precision of the -≽relation, emphasizing that the relation doesn't contain too many pairs of traces. In particular, the empty SPEC trace is only related to PLF traces containing operations that are either not successfully loggued, or not successfully checkpointed.

For the trace t = op 1 ; op 2 ; op 3 ; Log ⊤ ; Ckp ⊤ , only one trace t ∈ SPEC.trace satisfies t ≽ t, and it is t = op 1 ; op 2 ; op 3 .

Only strict prefixes of t would have 𝜖 as a ≽-subtrace. ■

We can in fact prove that the subtrace relation -≽satisfies a unicity property, formalized by Lemma 5.2 below, meaning that the relation is functional:

Lemma 5.2 (Relation -≽ -is functional [])
. For all traces t ∈ PLF.trace, and traces t 1 , t 2 ∈ SPEC.trace, if t ≽ t 1 and t ≽ t 2 , then we have t 1 = t 2 .

Lemma 5.2 is a direct consequence of the fact that the two relations -≽ Ckpand -≽ Logare functional too, which can be easily proved by induction on the definition of each relation.

Essentially, the functional nature of the -≽relation establishes the precision of our correctness result: for any given trace emitted by the PLF machine, the matching observable trace in the SPEC machine is uniquely determined.

Correctness theorem. Our correctness theorem takes the form of a trace-refinement between the checkpointing model and the continuous-power specification:

We introduce an intermediate state machine, named PL.sem (see Section 5.4), that consists of the state machine PLF.sem, in which checkpointing always succeeds. Consequently, we no longer need information regarding checkpointing (Ckp ⊤ and Ckp ⊥) in traces of PL.sem, which are defined as ť ∈ PL.trace ≜ {Log ⊤ , Log ⊥ } ⊎ DEV.ops * As can be seen in Fig. 7, we prove the correctness theorem, mapping traces over PLF.sem to traces over SPEC.sem, by going through PL.sem: on the one hand, we prove that any execution in PLF.sem (in which both Failure 1 and Failure 2 may occur) is related through -≽ Ckpto an execution in PL.sem (in which only Failure 1 may occur); on the other hand, we prove that any execution in PL.sem is related through -≽ Logto an execution in the power-continuous specification SPEC.sem (in which, by definition, no failure can occur).

These two proof steps follow the same overall strategy. First, we introduce the notion of oracle to side-step the need to predict the failure-related future when building the simulation proof. An oracle is a sequence of boolean predictions Oracle ≜ {tt, ff} * that allows the future to always be explicitly laid out before us, giving a straightforward criterion to choose between stuttering and progress. This introduces two intermediate oracle-semantics:

• PLFO.sem (Section 5.2) is the oracle-semantics derived from PLF.sem. The oracle dictates whether the next checkpoint will complete (tt) or fail (ff). Power-loss interrupts still occur non-deterministically in powercontinuous sections.

• PLO.sem (Section 5.6) is the oracle-semantics derived from PL.sem. Checkpointing always succeeds, and the oracle dictates whether the next power-continuous section will complete without a power-loss interrupt (tt), or will abort (ff).

Oracle semantics fix the scenario regarding Failure 1 and Failure 2. Consequently, compared to the non-oracle semantics PLF.sem and PL.sem, oracle semantics PLFO.sem and PLO.sem filter out sequences of replayed operations from event traces (see Sections 5.3 and 5.7 respectively). Once traces have been filtered out, we can then focus on stating the invariants propagated during wasted sequences of work.

As described in Fig. 7, we prove two simulation relations about the oracle semantics: the first simulation (Section 5.5) proves the refinement between PLFO.sem and PL.sem, the second simulation (Section 5.8) proves the refinement between PLO.sem and SPEC.sem. For each of these two refinements, we prove a simple and clean trace inclusion property: thanks to their respective oracles, PLFO.sem and PLO.sem emit the same kind of traces that PLF.sem and PL.sem respectively. These refinement proofs essentially establish that the entire sequences of replayed operations are wasted work, which can be completely discarded.

Our Coq development [START_REF] Berthou | Intermittent Computing with Peripherals, Formally Verified -Companion Coq Development[END_REF] relies on well-established correctness proof methods: formalizing a system using a labeled transition system, and then exhibiting a simulation relation between two labeled transition systems to derive either a subtrace property, or a trace inclusion property. Despite the apparent simplicity of the underlying proof techniques, we argue that conducting our formalization in a proof assistant was essential to gain confidence in the final result: indeed, reasoning about all the possible failure scenarios is particularly error-prone. Introducing the oracle semantics proved to be particularly helpful for simplifying the definition of simulation relations.

Beyond the technical aspect of the proof, we believe that these ideas can also help practitioners structure their thoughts when (informally) reasoning about transiently-powered systems: this demonstrates that reasoning about

⊆ ≽ Log (§5.7)
⊇ (§ 5 .5)

⊆ ≽ Ckp (§5.3)
⊆ ≽ (§5.9) transition system, it is worth noting that, while event traces are filtered, transitions continue to affect the state of the system. We handle the discarding of entire sequences of silenced transitions in the second step of the proof, when proving the refinement between PLFO.sem and PL.sem (Section 5.5).

In this part of the proof, we only focus on identifying the relevant portion of the execution trace of PLF.sem that is emitted by PLFO.sem. And yet, introducing an oracle to tame non-determinism puts us at risk of excluding some behaviors that were admitted by the interrupt-based checkpointing model.

We therefore show that the checkpointing oracle semantics PLFO.sem is conservative over the initial one: any behavior exhibited by PLF.sem is also exhibited in PLFO.sem through a careful choice of the checkpointing oracle: As previously explained, checkpointing events (both Ckp ⊤ and Ckp ⊥) cannot occur, since checkpointing always succeeds.

First The oracle of PLO.sem is an operation logging oracle: it determines whether the next power-continuous section will eventually complete without any power-loss interrupt (tt), hence saving the volatile operation log to NVM, or will be aborted (ff), and in turn will have to be later replayed, because the volatile operation log was entirely discarded.

For the sake of completeness, we give the transition rules in Here, we use the oracle semantics to filter out from observable traces the sequences of device operations that must be replayed at reboot because they were interrupted by a power-loss interrupt. In Figure 9, the first power-continuous section is silenced while the second power-continuous section is preserved in the event trace of PLO.sem. Here again, we use the oracle semantics PLO.sem to layout the future failure or success of power-continuous sections, and to select the right sequences of device operations to be mirrored in the SPEC.sem machine. Note that aborted power-continuous sections will be performed in PLO.sem: we prove in the next section that they can actually be discarded too.

From PLO to SPEC: correctness of the operation logging

Similarly to Lemma 5.5, we can show a trace inclusion result between PLO.sem and SPEC.sem, proving the correctness of the operation logging mechanism for power-continuous sections. We rely on the power-continuous section oracle to decide whether the SPEC.sem should stutter or follow the PLO.sem in lock-step. We explain the intuition behind the relation by explaining how execution traces from PLO.sem and SPEC.sem are matched in Figure 9. SPEC.sem will proceed in lock-step with the PLO.sem machine, unless the PLO.sem is starting a power-continuous section which the oracle is predicting to be aborted in the future. In this case, SPEC.sem will stutter, waiting for PLO.sem to (1) abort the current power-continuation, (2) perform a (successful) checkpointing, and (3) reboot in a USR state just before resuming the aborted power-continuous section. pairs of matching states some invariants relating their respective MCU, device states, and the non-volatile checkpointing storage of the PLO.sem machine. When both machines are stepping in lock-step, the correspondence is a simple equality (rules Init, Usr, DrvSucc). When the SPEC.sem machine is stuttering (rules DrvFail, Pwr, and Off), the correspondence is made through the next snapshot of non-volatile checkpointing storage of the PLO.sem machine. In OFF states, we rely on the fact that the checkpointing did succeed to justify that we can use indifferently the next or last snapshot, which are both up-to-date.

Defining the simulation relation -

The proof of Lemma 5.9 is where correct operation logging (as identified in Section 3.1) plays a crucial role. Indeed, when the PLO.sem machines interact with the devices in a power-continuous section, (Axiom-Restore-Init) and

(Axiom-Restore-Log) are key to maintain the validity of the next snapshot stored in the volatile log with respect to the device state of the PLO.sem machine.

Inside an aborted power-continuous section, however, the device states of both machines are no longer guaranteed to be in sync (see rule DrvFail). This lack of coherence can be shown to be only temporary. Indeed, an aborted power-continuous section will not commit the volatile log to non-volatile memory, and will keep its next non-volatile snapshot untouched. This is key to restore the coherence between device states in both machines after a reboot.

Currently, our specification SPEC does not account for NVM state, hence we cannot model applications that assume that part of the program memory, e.g., a stack, is in NVM.

Static and Interrupt-based checkpointing. Following the development of NVM and harvesting technologies [START_REF] Colin | A Reconfigurable Energy Storage Architecture for Energy-harvesting Devices[END_REF][START_REF] Hester | Timely Execution on Intermittently Powered Batteryless Sensors[END_REF][START_REF] Lee | A Modular 1 mm 3 Die-Stacked Sensing Platform With Low Power I 2 C Inter-Die Communication and Multi-Modal Energy Harvesting[END_REF][START_REF] Alanson | Design of an RFID-Based Battery-Free Programmable Sensing Platform[END_REF], numerous systems have been proposed to allow low-power sensors to be deployed in transiently-powered environments. Among the most well-known are chronologically: Mementos [START_REF] Ransford | Mementos: system support for long-running computation on RFID-scale devices[END_REF], QuickRecall [START_REF] Jayakumar | QuickRecall: A HW/SW Approach for Computing across Power Cycles in Transiently Powered Computers[END_REF], Hibernus [START_REF] Balsamo | Hibernus: Sustaining Computation During Intermittent Supply for Energy-Harvesting Systems[END_REF],

Dino [START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF], Ratchet [START_REF] Van Der Woude | Intermittent Computation without Hardware Support or Programmer Intervention[END_REF], HarvOS [START_REF] Anwar | HarvOS: Efficient Code Instrumentation for Transiently-Powered Embedded Sensing[END_REF], Clank [START_REF] Hicks | Clank: Architectural Support for Intermittent Computation[END_REF], Alpaca [START_REF] Maeng | Alpaca: intermittent execution without checkpoints[END_REF] and Coati [START_REF] Ruppel | Transactional concurrency control for intermittent, energy-harvesting computing systems[END_REF]. Most of these systems used checkpointing.

The insertion of checkpoints can be static [START_REF] Anwar | HarvOS: Efficient Code Instrumentation for Transiently-Powered Embedded Sensing[END_REF][START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF], dynamic [START_REF] Maeng | Adaptive Dynamic Checkpointing for Safe Efficient Intermittent Computing[END_REF][START_REF] Van Der Woude | Intermittent Computation without Hardware Support or Programmer Intervention[END_REF] or, when power failures can be detected by voltage drop, interrupt-based [START_REF] Balsamo | Hibernus: Sustaining Computation During Intermittent Supply for Energy-Harvesting Systems[END_REF][START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF][START_REF] Jayakumar | QuickRecall: A HW/SW Approach for Computing across Power Cycles in Transiently Powered Computers[END_REF]. The IBIS tool suite [START_REF] Surbatovich | I/O dependent idempotence bugs in intermittent systems[END_REF] is able to detect, statically or dynamically, memory inconsistencies that may occur in these applications without relying on Assumption (A1) (i.e., the MCU may directly manipulate NVM).

Handling peripherals. Peripherals are not handled by classical checkpointing techniques. Peripherals are very important in embedded computing and there is also, as for memory, a state consistency problem when power is lost [START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF][START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF]. Few systems have proposed a complete mechanism to ensure peripheral device restoration.

Sytare [START_REF] Berthou | Peripheral state persistence for transiently-powered systems[END_REF][START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF] proposed a solution to recover the state of both the processor and the peripherals. Restop [START_REF] Arreola | RESTOP: Retaining External Peripheral State in Intermittently-Powered Sensor Systems[END_REF] solves a similar problem with a middleware library for off-chip peripherals accessed by SPI or I 2 C. Karma [START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF] proposes another implementation. These three approaches are captured by our checkpointing model and can benefit from the modeling proposed here to verify their correctness.

Samoyed [START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF] proposes, under some restrictions (no interrupts allowed, stateless peripherals) to ensure peripheral state consistency by introducing user-controlled atomicity. Being stateless, the peripherals considered by Samoyed do not need a log to be restored. However, since Samoyed makes use of NVM in application code, it is not captured by our current model.

Formal models, correctness proofs. Chen et al. [START_REF] Chen | Specifying Crash Safety for Storage Systems[END_REF] discuss some approaches for specifying and certifying crash-safety for a persistent file system. The FSCQ system they later verified [START_REF] Chen | Using Crash Hoare Logic for Certifying the FSCQ File System[END_REF] uses a Hoare-logic style for specifying the system: crash conditions specify the disk state right before a crash, and a recovery procedure ensures the absence of data loss.

A first difference between this line of work and ours is that we consider crash-safety in systems handling peripherals. A second difference is in the general specification methodology. We adopt the so-called DSL approach [START_REF] Chen | Specifying Crash Safety for Storage Systems[END_REF]: we phrase the specification and the model in terms of state machines and prove a refinement between the two. Chajed et al. [START_REF] Chajed | Verifying Concurrent, Crash-Safe Systems with Perennial[END_REF] also derive a refinement result from the Hoare-logic style specification. As they do not handle peripherals, their refinement is a simple trace inclusion. In contrast, to derive a useful and precise correctness result, we must resort to a subtrace relation.

Koskinen and Yang [START_REF] Koskinen | Reducing Crash Recoverability to Reachability[END_REF] also employ a DSL approach. Interestingly, their notion of recoverability is expressed in terms of an un-crashed program: after a crash, the program will eventually reach a state that simulates another state that an un-crashed program already reached (i.e., in the trace prefix). In our model, instrumented traces and the subtrace relation help us state simply to which prefix it corresponds.

Another line of work focuses on proving the linearizability of fine-grained concurrent data-structures subject to whole-system crash [START_REF] Derrick | Verifying Correctness of Persistent Concurrent Data Structures[END_REF][START_REF] Izraelevitz | Linearizability of Persistent Memory Objects Under a Full-System-Crash Failure Model[END_REF]. Durable linearizability requires that upon a crash, only completed operations are guaranteed to remain visible. Buffered durable linearizability expresses that the state after the crash must be consistent, but not necessarily up-to-date. Our subtrace refinement result is similar in spirit to a buffered durable linearization property.

Independently to our own effort, Surbatovich et al. [START_REF] Surbatovich | Towards a Formal Foundation of Intermittent Computing[END_REF] has proposed a formal model of intermittent computing that accounts for peripherals. The model aims at reasoning about the error-prone interaction between persistent application variables (which we side-stepped through our Assumption (A1)) and performing repeated device or sensor inputs (dubbed "RIO" in the paper). The resulting model is orthogonal to ours as it explicitly does not try to take into account timeliness nor interrupts [46, §2.1]. It would be quite appealing to integrate both results in a single, conceptual framework.

CONCLUSION

We proposed a specification of intermittent computing with peripherals, together with a model of interrupt-based checkpointing that ensures the consistency of the whole system, i.e., including peripherals, after reboot. Our model contains the minimal conditions that an implementation of checkpointing should satisfy to handle peripherals correctly. We formally proved the correctness of our model: behaviors of intermittent executions are as prescribed by a continuously-powered specification, modulo the necessary replays of certain peripheral operations, due to reboots.

Finally, we showed that our model captures three proposals satisfying our working assumptions (A1-4): Restop [2],

Sytare [START_REF] Berthou | Sytare: A Lightweight Kernel for NVRAM-Based Transiently-Powered Systems[END_REF] and Karma [START_REF] Branco | Intermittent Asynchronous Peripheral Operations[END_REF].

Throughout this work, we have assumed that the application code does not interact with non-volatile memory (A1).

We are currently working on extending our specification and our checkpointing model to account for NVM application state. This would allow us to model more systems from the literature [START_REF] Hicks | Clank: Architectural Support for Intermittent Computation[END_REF][START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF][START_REF] Maeng | Alpaca: intermittent execution without checkpoints[END_REF][START_REF] Maeng | Supporting peripherals in intermittent systems with just-in-time checkpoints[END_REF][START_REF] Van Der Woude | Intermittent Computation without Hardware Support or Programmer Intervention[END_REF].

Fig. 1 .

 1 Fig. 1. Schematic illustration of our model for interrupt-based checkpointing (right) and of its continuous-power specification (left)

Figure 5]

 5 Figure 5] of the device through a stateful interface:

Fig. 2 .

 2 Fig. 2. Specification state machine

Example 12 .

 12 Let us consider the application depicted in Example 10. Assume that the sensor module and the radio module respectively require the SPI bus configurations 0 (spi_config(0)) and 1 (spi_config(1)), we would, for example, record the interaction ℓ = LOG.log (radio_send(42) ↦ → ()) (LOG.log (spi_config(1) ↦ → ()) (LOG.log (sensor_sample() ↦ → 42) (LOG.log (spi_config(0) ↦ → ()) (LOG.log (radio_init() ↦ → ()) (LOG.log (spi_config(1) ↦ → ()) (LOG.log (sensor_init() ↦ → ()) (LOG.log (spi_config(0) ↦ → ()) (LOG.log (spi_init() ↦ → ())

Fig. 3 .

 3 Fig. 3. Checkpointing state machine

 .state × PLF.trace × PLF.state indicates by ŝ t PLF ŝ′ a computation taking input state ŝ to output state ŝ′ emitting an instrumented trace t. The trace semantics of the overall application is defined as the set of traces reachable from the initial state: t ∈ PLF.sem ⇔ ∃ŝ, INIT t PLF * ŝ Transitions Usr, Drv, Enter and Leave are key to embedding the behavior of the continuous-power specification. They mirror their SPEC counterparts, in addition to retrieving (transition Enter) or storing (transition Leave) information to checkpointing storage, or to the volatile log (Drv). Crucially, transitions Enter, Drv and Leave keep the volatile log of operations in sync with the state of the physical device.

Fig. 4 .

 4 Fig. 4. Interrupt-based checkpointing model --PLF -(see)

Fig. 5 -

 5 Fig. 5. Matching --SPEC with --PLF executions. Grey areas mark the correspondence between execution states.

 stuttering. Subtrace relation. The cornerstone of our correctness result is a relation -≽ -⊆ PLF.trace × SPEC.trace between instrumented traces and specification traces []. Due to the potential re-execution of operations, only a subset of the DEV.ops events emitted by PLF might be emitted by SPEC, as it is exemplified on Fig. 5. Relation -≽thus needs to enforce a subtrace relation. Besides, we want to ensure that power-continuous sections -sequences of operations delineated by Enter/Leave-are eventually executed within a single run.

Definition 5 . 1 (

 51 Subtrace relation ≽ []). Let t ∈ PLF.trace and t ∈ SPEC.trace. By definition, we have t ≽ t if and only if there exists ť ∈ ({Log ⊤ , Log ⊥ } ⊎ DEV.ops) * , such that t ≽ Ckp ť ∧ ť ≽ Log t.

Fig. 7 .

 7 Fig. 7. Overall proof architecture, showing the intermediate semantics and the successive refinements

Fig. 8 .

 8 Fig. 8. Checkpointing oracle model --PLFO -(see)

Fig. 9 .

 9 Fig. 9. Matching executions across the whole refinement chain

Fig. 10 .

 10 Fig. 10. Checkpointing model without checkpointing failure --PL -(see)

Figure 12 .

 12 The rule Drv consults the oracle to either be silenced or verbose. Transitions Leave and DrvPwr are forced transitions, who follow the oracle's prediction. Other rules are unchanged compared to the PL.sem machine. Traces emitted by PLO.sem are traces made of device operations only: PLO.trace ≜ SPEC.trace.

5. 7 From

 7 PL to PLO: validity of the logging oracle The validity of the logging oracle mirrors Lemma 5.4: Lemma 5.7 (Validity of the logging oracle []). For any trace ť ∈ PL.trace such that ť ∈ PL.sem, there exists an oracle 𝑜 and a trace t such that (t, 𝑜) ∈ PLO.sem, satisfying ť ≽ Log t.

Figure 9

 9 Figure9illustrates which trace of PLO.sem we can exhibit and prove to be related through -≽ Logwith the initial PL.sem execution trace. This follows the same principle as for the validity of the checkpointing oracle.

Fig. 12 .Lemma 5 . 8 (

 1258 Fig. 12. Logging oracle model --PLO -(see)

-SPEC-

 Fig. 13. The -PLO ∼ SPEC simulation relation (see)

int cc2500_send_packet (const void * buffer , const uint8_t length);

 By accessing external devices through this interface, the Restop middleware automatically provides a restoration procedure that replays the log of read/write/strobe operations. A careful choice of parameters (in particular, the Prv flag [2,Table 2]) allows programmers to keep the size of the resulting log as small as possible. This is further discussed in Example 13.

			■
	Remark. As discussed in Branco et al. [10, §3.1, "Peripheral APIs"], Karma has adopted a similar, coarse-grained
	interface definition. The exact API is not specified in the publication and the implementation is not publicly available.
	Example 6 (Restop API: generic bus interface). The Restop middleware is concerned solely with peripherals integrated
	through an I 2 C or SPI bus. As a result, the API is described generically in terms of reads and writes/strobes to hardware
	registers [2, §4.1] subject to various parameters:
	uint8_t RESTOP_read	(Prv , ID , Register , Burst , Protocol);
	void	RESTOP_write (Prv , ID , Register , Value , Burst , Protocol);
	void	RESTOP_strobe (Prv , ID , Register , Protocol);
		void cc2500_calibrate	();
		int cc2500_idle	();
		int cc2500_sleep	();
		int cc2500_wakeup	();
		int cc2500_rx_enter	();
		Each system call is responsible for driving the peripheral into the desired state (calibration, idle, sleep/wakeup, packet
		reception and transmission).
		Configuring the device is achieved through a write-only interface
		void cc2500_set_channel	(uint8_t chan);
		while some of its internal state can be observed through a read-only interface
		int	cc2500_get_drv_mode ();
		uint8_t cc2500_get_cca	();
		uint8_t cc2500_get_rssi	();

■ Example 7 (Sytare API: MSP430 device model []).

 the sequential execution of the trace t = op 0 ; . . . ; op 𝑛 starting from device state dev, resulting in device state dev ′ . Intermittent computations are described axiomatically. The state of the computation SPEC.state ≜ SPEC.mode × MCU.t × DEV.t consists of a mode, an MCU state and a device state. We write s ∈ SPEC.state to denote an arbitrary state. The execution of a program is specified through a single-step transition relation -

-SPEC -⊆ SPEC.state × SPEC.trace × SPEC.state

 Prv flag that indicates whether they need to be saved in the log or not, and whether they overwrite any preceding occurrence or not. While, formally, the resulting log can be seen as an unbounded list of read, write and strobe operations, this extra semantics information allow -in practice-to compress the log as it is populated. ■ Example 14 (Sytare device context & Karma state machine). Berthou et al. [7, §3.2.1] introduce the notion of "device context" to record the state of a device in memory. The device context is manually crafted by the driver developer and is assumed to faithfully account for the physical state of the device: each operation modifying the peripheral state is responsible for updating the device context accordingly. Branco et al. [10, §4] follows the same approach through the notion of driver "state machine". Device contexts can be understood as an aggressively compact implementation of LOG.log, exploiting semantic knowledge of the device behavior to provide a fixed-sized representation of the peripheral state (the device context datastructure). While Restop offers the Prv flag for the driver developer to hint at some of the semantics of operations (which is then used to dynamically compact the log of operations), a driver developer for Sytare or Karma is given full

	(Example 14).	■
	Example 13 (Restop: compressed log). Arreola et al. [2, §4.3] describes a mechanism to systematically minimize the
	size of logs. Restop operations (Example 6) carry a	

power to optimize the representation of the peripheral state. For instance, Karma driver developers are advised that "synchronous calls need not create new states unless they change the peripheral configuration" (Branco et al.

[10, p.4]

):

 Therefore, in user mode, the state machine non-deterministically steps from state USR to either state PWR (transition UsrPwr) or state OFF (transition UsrOff). Similarly, in driver mode, the state machine non-deterministically steps from DRV to either state PWR (transition DrvPwr) or state OFF (transitions DrvOff). Either way, when the

					First-Boot
					INIT	𝜖 PLF	(USR, MCU.init, DEV.init, CKP.init)
							Drv
	Usr						(D, mcu, dev)	t	(D, mcu ′ , dev ′)
	(U, mcu, dev)		t SPEC	(U, mcu ′ , dev ′)	SPEC ℓ ′ = LOG.log t ℓ
	(USR, mcu, dev, ckp)	t	(USR, mcu ′ , dev ′ , ckp)	(DRV, mcu, dev, ckp, ℓ)	t	(DRV, mcu ′ , dev ′ , ckp, ℓ ′)
			PLF			PLF
	Enter					
	(U, mcu, dev)	t		(D, mcu ′ , dev ′)	Leave
	SPEC ckp ′ = CKP.saveNextMcu ckp mcu ℓ = nextLog ckp	(D, mcu, dev) ckp ′ = CKP.saveNextLog ckp ℓ t (U, mcu ′ , dev ′) SPEC
	(USR, mcu, dev, ckp)	t PLF	(DRV, mcu ′ , dev ′ , ckp ′ , ℓ)	(DRV, mcu, dev, ckp, ℓ)	t;Log ⊤

PLF

(USR, mcu ′ , dev ′ , ckp ′)

UsrPwr ckp ′ = CKP.

saveNextMcu ckp mcu (USR, mcu, dev, ckp) 𝜖 PLF (PWR, ckp ′) DrvPwr (DRV, mcu, dev, ckp, ℓ)

 DRV, mcu 𝑛 , dev 𝑛 , ckp 𝑛 , ℓ ′) (USR, mcu 𝑛 , dev 𝑛 , ckp ′ 𝑛) (USR, mcu 𝑛+1 , dev 𝑛 , ckp ′

	Drv	Leave	Usr	𝑛)
			UsrPwr	
			(PWR, ckp ′′ 𝑛)	
			. . .	
	Crucially here, the log ℓ			

′ (representing the state of the peripheral at the end of the power-continuous section) is stored in the on-going snaptshot (transition Leave). If, for example, a power-loss occurs in the subsequent transition in user mode, we are back to the scenarios developed in

Example

15 and Example 16. ■ As a sanity check, we must validate our model against the physical objects it is supposed to represent. In particular, no volatile state is silently preserved across runs: ckp is the only piece of data that goes through OFF. Further, the physical device state, DEV.t, cannot magically be captured in non-volatile memory: only MCU.t and LOG.t can be used to produce CKP.t and none of these can contain a DEV.t. Our model faithfully accounts for checkpointing failure:

 mcu ′ , dev ′ , ckp, 𝑜) mcu ′ , dev ′ , ckp, ℓ ′ , 𝑏 ; 𝑜) mcu ′ , dev ′ , ckp ′ , 𝑏 ; 𝑜)

			Usr	
	First-Boot			(U, mcu, dev)	t	(U, mcu ′ , dev ′)
					SPEC
	(INIT, 𝑜) (USR, Drv 𝜖 PLFO (USR, MCU.init, DEV.init, CKP.init, 𝑜) (USR, mcu, dev, ckp, 𝑜) t PLFO (D, mcu, dev) t SPEC (D, mcu ′ , dev ′) ℓ ′ = LOG.log t ℓ ť = if 𝑏 then t else 𝜖 (DRV, mcu, dev, ckp, ℓ, 𝑏 ; 𝑜) ť PLFO (U, mcu, dev) t SPEC (D, mcu ′ , dev ′) ckp ′ = CKP.saveNextMcu ckp mcu ℓ = nextLog ckp PLFO (DRV, Enter (USR, mcu, dev, ckp, 𝑜) t (DRV, mcu ′ , dev ′ , ckp ′ , ℓ, 𝑜)
	Leave			
	(D, mcu, dev) ckp ′ = CKP.saveNextLog ckp ℓ t SPEC (DRV, mcu, dev, ckp, ℓ, 𝑏 ; 𝑜) ť PLFO (U, mcu ′ , dev ′) ť = if 𝑏 then t; Log ⊤ else 𝜖 (USR, UsrPrw ckp ′ = CKP.saveNextMcu ckp mcu PLFO (USR, mcu, dev, ckp, 𝑜) 𝜖 (PWR, ckp ′ , 𝑜)
				Reboot
				mcu ′ = lastMcu ckp
	DrvPwr			dev ′ = LOG.restore(lastLog ckp)
	ť = if 𝑏 then Log ⊥ else 𝜖	ckp ′ = CKP.reset ckp
	(DRV, mcu, dev, ckp, ℓ, 𝑏 ; 𝑜)	ť	(PWR, ckp, 𝑏 ; 𝑜)	(OFF, ckp, 𝑜)
		PLFO		

𝜖 PLFO (USR, mcu ′ , dev ′ , ckp ′ , 𝑜) Ckp-Succ ckp ′ = CKP.set ckp (PWR, ckp, tt ; 𝑜)

 MCU.init, DEV.init, CKP.init, 𝑜) LOG.log t ℓ t ′ = if 𝑏 then t else 𝜖 (DRV, mcu, dev, ckp, ℓ, 𝑏 ; 𝑜) mcu ′ , dev ′ , ckp, ℓ ′ , 𝑏 ; 𝑜) mcu ′ , dev ′ , ckp ′ , ℓ, 𝑜)

		First-Boot (INIT, 𝑜) 𝜖 PLO	(U, mcu, dev) (USR, mcu, dev, ckp, 𝑜) (USR, Usr	t SPEC	(U, mcu ′ , dev ′)
	Drv	(D, mcu, dev) ℓ ′ = t ′ t SPEC PLO (DRV, Enter (D, mcu ′ , dev ′) (USR, mcu, dev, ckp, 𝑜) (U, mcu, dev) ckp ′ = CKP.saveNextMcu ckp mcu t SPEC (D, mcu ′ , dev ′) ℓ = nextLog ckp t PLO (DRV, Leave
		(D, mcu, dev) ckp UsrPrw t SPEC (U, mcu ′ , dev ′) ckp ′ = CKP.saveNextMcu ckp mcu
			(USR, mcu, dev, ckp, 𝑜)

t PLO (USR, mcu ′ , dev ′ , ckp, 𝑜) ′ = CKP.saveNextLog ckp ℓ (DRV, mcu, dev, ckp, ℓ, tt ; 𝑜) t PLO (USR, mcu ′ , dev ′ , ckp ′ , 𝑜) 𝜖 PLFO (PWR, ckp ′ , 𝑜) DrvPwr (DRV, mcu, dev, ckp, ℓ, ff ; 𝑜)

Our notion of "power-continuous section" corresponds to "atomicity" by Maeng and Lucia [36, p.2] and Branco et al.[10, p.6]. We did not follow this terminology as the term has a (different) meaning in concurrent systems.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their thoughtful comments. This work was supported by Inria (IPL ZEP) and the Émergence(s) program of the City of Paris.

For any trace t ∈ PLF.sem, there exists a trace t, such that t ∈ SPEC.sem and t ≽ t.

Informally, this statement reads as: "any behavior exhibited by the model (i.e., t ∈ PLF.sem) could have been observed

with the specification (i.e., t ∈ SPEC.sem), ignoring the operations that had to be re-executed (i.e., t ≽ t)". The fact that power-continuous sections are indeed preserved by our model follows directly from the definition of -≽ -.

Note that Theorem 5.3 holds for any possible trace in the non-deterministic semantics of PLF. As long as the model does not progress, due to either an aborted power-continuous section or a checkpointing failure, the specification will stutter, emitting the empty trace 𝜖. However, our precise subtrace relation ensures, by its very definition, that any observable progress in PLF.sem is indeed reflected in SPEC.sem.

Note that Theorem 5.3 is relying on a relational definition of -≽ -, which, by Lemma 5.2, is functional. Alternatively, we could phrase our correctness result directly by means of a function, explicitly extracting the relevant portions of the PLF trace. We argue that both the relational and functional statement of the correctness result are useful, and complementary. In Section 5.10, we present such an alternative correctness result, using a correct and complete functional implementation of the subtrace relation -≽ -.

Overall proof architecture

We now describe the overall structure of the proof. We develop each step of the proof in the next sections. One difficulty in the proof of Theorem 5.3 is to decide whether SPEC needs to stutter or to make progress. It requires to know whether the next power failure will lead PLF to re-executing that portion of the execution. There are two cases that prevent the checkpointing state machine from making progress:

Failure 1: A power-loss may occur in DRV mode, implying that the trace emitted by the on-going power-continuous section must be entirely discarded since it could be resumed in a subsequent run;

Failure 2: A power-loss may occur before checkpointing completes, implying that the subsequent run will resume from the last successful checkpoint.

We handle both kinds of failure separately. The overall architecture of the proof is given in Fig. 7. We detail the proof process a first time from Section 5.2 to Section 5.5 (included), where we show how to reduce a model with Failure 1 & 2 (PLF.sem) to a model with Failure 1 only (PL.sem, introduced below). Then, we repeat the same process from Section 5.6

to Section 5.8, where we show how to reduce the model with Failure 1 (PL.sem) down to a continuous-power execution model (SPEC.sem). We wrap up in Section 5.9 with the proof sketch of Theorem 5.3. Correctly handling the stuttering of PL.sem is key here: some transitions in PLFO.sem will eventually be aborted, so we must keep PL.sem from taking a transition forward. To solve this issue, we rely on the checkpointing oracle whose purpose is precisely to tell whether the next checkpointing will success or not.

Intuitively, the idea is to let PL.sem stutter in an OFF state as long as the next checkpointing will fail. Conversely, when the checkpointing oracle predicts that the next checkpointing will succeed, the two transition systems will proceed in lock-step. This is illustrated in Figure 9: the checkpointing oracle for the example PLFO.sem execution is tt ; ff ; tt ; (. . .). Before the first power-loss of PLFO.sem, transitions are performed in a lockstep fashion in both machines, because the checkpointing oracle predicts the success of the next checkpointing. At that point, the PL.sem machine steps in a reboot state, in which it will stutter for the next transition steps done in PLFO.sem, up until the point where the PLFO.sem machine restarts in a state where the oracle is predicting that the future checkpointing will succeed.

Letting PL.sem stutter in a reboot state while PLFO.sem is making some (silenced) computation steps raises the following concern: at the point where PL.sem starts again to step, we ought to prove that the two machines can indeed proceed back in lock-step. For this to hold, both machines should agree on their non-volatile checkpointing storage.

But, each time the PL.sem machine is reaching an OFF state, the checkpointing it just performed was successful (CKP.set), hence both of its last and next snapshots are consistent. In contrast, when the PLFO.sem steps while the oracle predicts a future failure, it keeps updating its next snapshot.

The crux of the simulation proof is an invariant stating that, during the whole subsequence of steps where the oracle is predicting the failure of the next checkpoint, both systems continue to agree on their last snapshots. Indeed, only the next snapshot is updated during the silenced computation steps of PLFO.sem, the last snapshot is kept untouched, and the checkpointing storage is CKP.reset at reboots. states. This is the case when the PLFO.sem machine executes while no previous successful checkpointing was ever made. In this rules, we only need to maintain the invariant that the last snapshots of both machines are consistent. The fact that the last and next snapshots of the PL.sem machine are in sync is obtained by the definition of CKP.init.

PLO: the logging oracle semantics

The next step of the proof is to establish a correspondence between PL.sem and SPEC.sem. We apply the same methodology as previously, which consists in defining an intermediate oracle-semantics PLO.sem, derived from PL.sem.

The system will operate on states PLO.state ≜ PL.state × Oracle A significant advantage of this explicit, executable filter function is that it is more actionable than its relational counterpart: it could e.g., be used by external users of a concrete implementation of a checkpointing scheme to test and assess the functional correctness of their (checkpointed) application by analyzing filtered dumps of device operation traces.

Interestingly, we derive the proof of Theorem 5.10 from Theorem 5.3 by simply proving that it is a complete implementation of the subtrace relation -≽ -: Lemma 5.12 (The filter function is complete []). For any traces t ∈ PLF.trace and t ∈ SPEC.trace, if t ≽ t, then t = filter(t). Lemma 5.12 is a direct consequence of Lemmas 5.11 and 5.2.

RELATED WORK

Failure-atomicity run-times. In the general case, i.e., distributed systems with volatile and non-volatile RAM, ensuring correctness and consistency of execution is a complex problem because volatile and non-volatile memories are out of sync after a crash [START_REF] Shull | Defining a high-level programming model for emerging NVRAM technologies[END_REF]. New programming models are proposed using locks [START_REF] Boehm | Persistence Programming Models for Non-Volatile Memory[END_REF][START_REF] Dhruva | Atlas: Leveraging Locks for Non-Volatile Memory Consistency[END_REF] or extended transactional memory [START_REF] Coburn | NV-Heaps: Making Persistent Objects Fast and Safe with next-Generation, Non-Volatile Memories[END_REF]. These legacy software systems provide minimally invasive change to programming models and environments, hence they propose concurrency-like abstractions. These concepts have been used in the context of low-power transientlypowered sensors [START_REF] Lucia | A simpler, safer programming and execution model for intermittent systems[END_REF][START_REF] Ruppel | Transactional concurrency control for intermittent, energy-harvesting computing systems[END_REF] that use NVM both for checkpointing and for regular program storage.