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Abstract

This paper introduces a novel strategy for point force localization in the fre-

quency domain, based on metamodeling techniques and independent of the

excitation level. More precisely, the ability of well-established techniques,

such as Polynomial Chaos expansion or Universal Kriging, in providing ac-

curate surrogate models for locating a point force through an optimization

procedure is evaluated. The proposed methodology is applied in a purely

data-driven context. Obtained results highlight the good performance of the

proposed strategy for relatively small data sets, as well as its robustness to

noise in both training and deployment phases.

Keywords: Force localization, Meta-modeling, Surrogate model,

Model-based strategy, Data-driven approach.

1. Introduction

Force identification is an important research field in the structural me-

chanics community, since it is at the core of several engineering domains such

as structural health monitoring or mechanical design of structures. Generally,
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the problem consists in locating and/or quantifying the excitation sources

causing the vibration field measured by a set of sensors distributed over a

structure. It results that force identification problems can be addressed by

considering the localization and the quantification problems separately or as

a whole. If we restrict ourselves to point source excitations, a rapid analysis

of the dedicated literature reveals a wide variety of possible approaches to

solve the three types of inverse problems above-mentioned.

When both the location and the evolution of a point force, i.e. its time

history or its spectrum, are to be jointly estimated, several strategies can

be implemented. Among the most widely used approaches, one can cite

Tikhonov-like regularization [1–4], Kalman-type filtering [5, 6] or methods

exploiting directly the equation of motion of the considered structure, such

as the Force Analysis Technique [7–9] or the Virtual Field Method [10, 11].

Apart from the methods cited above, original nested techniques have also

been proposed. They basically relies on the sequential application of the

Tikhonov regularization and a dedicated localization procedure until conver-

gence of the whole iterative process [12, 13]. It is eventually worth mentioning

methods based on the identification of the modal participation factors, that

efficiently solve the force reconstruction problem provided that the structure

is linear and time invariant [14–16].

In situations where the location of the point forces is known a priori or the

severity of an impact is sought, we are faced to a quantification problem,

meaning that the reconstruction of the excitation signal or its energy level

is the primary quantity of interest. In the first situation, the location of the

point force being known, regularization strategies [17, 18] and Kalman-like
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filtering [19, 20] can be directly implemented, since the only noticeable dif-

ference with the joint estimation problem (localization and quantification)

lies in the size of the mathematical system to deal with. In the second case,

where only the excitation level is required to assess the severity of an impact

event, learning strategies based on neural networks have been proposed to

efficiently perform this task [21–24].

Finally, the last problem encountered in the field of force identification is

the localization of a point force from vibration data. The specificity of this

inverse problem is that the point force amplitude is generally unknown. That

is why, methods based on the information provided by the measured data

only have been developed. From a very general standpoint, they mainly be-

long to the class of triangulation strategies. Among the latter, one can cite

the methods based on wave propagation models [25–29], super-resolution ap-

proaches [22, 30] or learning/metamodeling techniques [21, 23, 24, 31–34].

Metamodeling is commonly used in structural mechanics for multiparame-

ter optimization or uncertainty quantification, since they provide a surrogate

model whose instances are generally less expensive than those of the original

computational model. Although they appeared more than eighty years ago,

their application has really started to spread in the last three decades, thanks

to the increase in the computing resources. When focusing the literature re-

view on force localization problems, which is the core of this paper, one can

note that metamodeling approaches, such as artificial and convolutional neu-

ral networks, have gained in popularity over the last twenty years, especially

in the field of structural health monitoring [21, 23, 35–38]. However, other

strategies, such as Polynomial Chaos Expansion or Universal Kriging, which
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are well-established methods in structural mechanics, have apparently not

been fully exploited. Their suitability for solving data-driven machine learn-

ing regression problems has only been demonstrated in 2019 by Torre et al.

[39], paving the way for various applications in the context of force identifi-

cation. Actually, the first application of such metamodeling techniques has

been proposed very recently by Seno and Aliabadi in the context of Struc-

tural Health Monitoring [40]. They propose to apply Ordinary Kriging for

locating impact forces from the time of arrival of the Lamb waves measured

on a composite structure1.

Following the idea of Torre et al., the present paper introduces a novel

data-driven strategy for locating point forces in the frequency domain. The

proposed method relies on an optimization procedure taking advantage of the

metamodeling techniques commonly employed in computational mechanics

to perform the localization. More precisely, this contribution aims at evaluat-

ing the ability of Polynomial Chaos Expansion (PCE) and Universal Kriging

(UK) in providing accurate surrogate models for solving point force local-

ization problems. To this end, the paper is organized as follows. Section 2

introduces the general architecture of the localization procedure as well as

the related theoretical ingredients. In section 3, the localization strategy is

applied in a purely numerical context in order to assess the robustness of

the proposed approach with respect to various parameters, such as the mea-

1It is worth mentionning, that this work has been published short before the initial

submission of this paper. The author was not aware of the work of Seno and Aliabadi

when writting and submitting the paper.
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surement noise, the sensor configuration, the frequency range of interest or

the size of training data set. It should be mentioned that such a paramet-

ric and systematic study is rarely presented in the literature, essentially for

the sake of conciseness. As shown in this section, obtained results allows

defining some guidelines in the design decision process, while providing fur-

ther insights into the behavior of the proposed strategy in various conditions.

Finally, a real-world experiment is carried out in section 4 to appraise the lo-

calization performances of the present methodology in operating conditions.

Considering the existing literature, the main contributions or salient points

of this paper are:

• The application of PCE and UK to point force localization problem in

the frequency domain using a two-step strategy;

• The construction of training, validation and testing datasets adapted

to the specificities of the problem and the metamodeling strategies

considered;

• The proposed strategy only relies on the vibration spectra measured

by a set of sensors and no particular feature extraction is required;

• A careful and thorough parametric study of the design parameters of

an experiment (such as the sensors quality, the number and location of

the sensors or the size of the training data set);

• The determination of general guidelines to facilitate the design decision

process.
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2. Localization strategy

This section intends to introduce the general ideas behind the proposed

data-driven localization strategy. More precisely, a general overview of the

present approach is first given in order to define its main architecture. Then,

each building block of the method is detailed in a dedicated part to make

the paper self-contained and give the reader all the necessary information

to implement the method. As for the notation system, classical notations

are used, namely, bold characters for vectors or vector-valued functions and

normal font for scalars or scalar-valued functions.

2.1. General overview

The proposed strategy is a metamodel-based approach, which aims at

locating point force excitations acting on linear and time-invariant structures

in the frequency domain. In this regards, its general architecture, defined in

Fig. 1, is divided, as for any data-driven strategy, into two distinct stages: a

training phase and a deployment phase.

Figure 1: Basic workflow of the localization strategy
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The training phase aims at creating an accurate metamodel of the con-

sidered system based on the vibration data collected on a given set of sensors

resulting from a point force excited the structure at various locations. The

deployment phase consists in exploiting the metamodel in order to estimate,

through an optimization procedure, the point force location from new vibra-

tion data, i.e. from data not used for training the metamodel. For the sake

of clarity, the practical organization of each phase is proposed in the next

subsections to properly introduce the related theoretical elements.

2.2. Training phase – Metamodel construction

By definition, a metamodel, a.k.a. surrogate model, is a model of a

possibly unknown model, built from a training data set, related some input

parameters x to some quantities of interest y . Basically, a metamodel M

aims at approximating the mapping between the input parameters and the

quantities of interest from the relation:

y ≈M(x). (1)

In the present paper, the input parameters x are the point force coordinates,

while the quantities of interest y correspond to the vibration data (displace-

ment, velocity or acceleration) measured by a set of sensors distributed over

the structure considered.

As illustrated in Fig. 2, the construction of a model requires four basic

steps: design of experiment, data generation and normalization, metamodel

computation and validation. At the end of the process, a usable metamodel is

obtained and can be used to generate inexpensive predictions of the vibration
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responses for point force locations that have not been seen before. Because

each step of the metamodel construction deserves a particular attention, a

specific section is dedicated to each of them.

Figure 2: Training phase – Block diagram of the metamodel construction

2.2.1. Design of experiment

Any metamodel construction starts by the generation of sample points in

the input parameters space. In the present application, the sample points

correspond to a set excitation points. Their distribution over the structure

is generally chosen to properly fill the input space. When the metamodel

construction is based on a physical model, space-filling techniques, such as

Latin Hypercube Sampling or low-discrepancy sequences (Halton, Hammers-

ley or Sobol), can be used to generate samples that are reasonably uniformly

distributed [41]. However, when the metamodel is build from experimental

data, these methods can be hardly applied, essentially for practical reasons

(materialization of the grid of excitation points, accessibility issues, . . . ). In-

stead, a common practice in force localization problems consists in using a

regular grid [21, 23]. Following these considerations, it has been chosen to
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define a set of ne evenly-spaced excitation points, noted Xtrain, to generate

the corresponding vibration responses collected in the set Ytrain.

2.2.2. Data generation and normalization

Once the set Xtrain, containing ne excitation points, is defined, the set of

the corresponding vibration responses Ytrain can be generated. Practically,

Ytrain gathers the data measured (or computed from a calibrated numerical

model) at nf frequencies by a set of ns sensors distributed over the structure,

for each excitation point defined in Xtrain. Unfortunately, the vibration re-

sponses can’t be used directly to train the metamodel for two main reasons.

First of all, most of the methods developed for building metamodels generally

operate on real-valued data, whereas the vibration responses expressed in the

frequency domain are inherently complex-valued data2. To bypass this prob-

lem and enable the application of a wide range of metamodeling algorithms, a

simple and classical solution consists in splitting the vibration measurements

into real and imaginary parts. In doing so, the vector y(fj,xk) correspond-

ing to the vibration response measured by the ns sensors at the frequency

fj, resulting from a force located at point xk, has 2ns components3.

Second, since the structures are supposed linear, the measured vibration lev-

els are directly proportional to that of the excitation. In particular, this

implies that the excitation level must theoretically be known, if one wants to

obtain an accurate surrogate model. To make the localization method inde-

2This apparent limitation is mainly related to some of the algorithms used to compute

the internal parameters of the metamodels.
3More precisely, the first ns components (resp. the last ns ones) are the real parts

(resp. the imaginary parts) of the vibration measured by the ns sensors.
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pendent of the excitation level, the vibration responses must be normalized.

To do so, each component of the vector y(fj,xk) is divided by the Euclidean

norm ‖y(fj,xk)‖2.

In the end, the set of vibration responses Ytrain, resulting from the trans-

formations described above, is a collection of ne× 2ns× nf normalized real-

valued data. Given this definition, an element of Ytrain will consequently be

noted yi(fj,xk) for i ∈ [1, 2ns].

2.2.3. Metamodel computation

After defining the experimental design and generating the data, a training

set T = (Xtrain,Ytrain) is available for building a metamodel. The existing

literature is rich of metamodeling algorithms [42, 43] and comparing all these

techniques is outside the scope of this paper. Here, it has been chosen to as-

sess the ability of Polynomial Chaos expansion (PCE) and Universal Kriging

(UK) in providing accurate surrogate models for solving point force localiza-

tion problems. This particular choice has been made, because these methods

are well-established in the structural mechanics community and have proved

their efficiency for dealing with multiparameter optimization or uncertainty

quantification problems.

When applying PCE or UK strategies, one has to keep in mind that these

metamodeling techniques are MISO (Multiple-Inputs and Single-Output) ap-

proaches. It results that a metamodel should be at least computed for each

component i ∈ [1, 2ns] , that is:

yi(f,x) ≈Mi(f,x). (2)
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This approach implies the use of the whole training dataset at once. However,

due to the necessary complexity of the model, such an approach leads to a

substantial increase in the computation resources, and so in the computation

time. That is why, it has been chosen, instead, to build one metamodel per

component yi and frequency fj. It results that a total of 2ns×nf independent

metamodels is built. In doing so, one has more but simpler metamodels to

compute (see section 2.4).

In the rest of this section, PCE and UK metamodeling techniques are

briefly recalled, along with the main internal parameters used in the numer-

ical and experimental applications carried out in sections 3 and 4. In the

present contribution, their practical implementation relies on the UQLab

toolbox [44].

Polynomial Chaos Expansion

PCE has been originally proposed by Wiener in a seminal paper published

in 1938 [45]. Considering the input parameters x, i.e. the unknown point

force location, as a random vector with M independent components xm,

corresponding to the coordinates of the point force, PCE assumes, for any

vibration response yi(fj,x), the following spectral expansion [46]:

yi(fj,x) ≈
P−1∑
p=0

βp(fj)Ψp(x). (3)

In the previous equation, P is the number of terms, βp(fj) are the unknown

deterministic coefficients, while Ψp(x) are multivariate orthogonal polynomi-

als. Because the components of x are independent, Ψp(x) can be expressed
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as the tensor product of univariate orthogonal polynomials ψαm
m of maximum

degree d, that is:

Ψp(x) =
M∏
m=1

ψαm
m (xm) with αm = 0, 1, . . . , d and

M∑
m=1

αm ≤ d. (4)

The latter equation implies that the multivariate polynomials Ψp(x) retained

in the expansion have a total degree less than or equal to d. Accordingly,

the total number of terms P in the PCE is equal to the binomial coefficient

C(M + d, d).

At this stage, it remains to choose the univariate polynomial family ψαm
m

associated to each input parameter xm, to define the polynomial order d and

to compute the expansion coefficients βp(fj) to obtain a PCE adapted to the

proposed localization strategy.

The univariate polynomial family is chosen according to the marginal prob-

ability distribution of the input parameters xm, considered as random vari-

ables. Here, each point force location is considered equiprobable over the

structure, which is a reasonable hypothesis in absence of any prior informa-

tion. It is thus assumed that the point force coordinates xm are uniformly

distributed along the related axis. Following Askey and Wilson, the cor-

responding univariate polynomial family ψαm
m is the Legendre polynomial

family [47].

The definition of the polynomial order d for a particular application is far

from an easy task, since the size of the basis is conditioned to that of the ex-

perimental design, while a sufficient number of elements is required to obtain

an accurate metamodel. For this reason, it is often recommended to apply
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a basis-adaptive strategy, that allows selecting a suitable basis by progres-

sively increasing the maximum polynomial degree d and choosing the basis

minimizing some generalization error [48]. For the applications presented in

this paper, the optimal polynomial degree d is sought in the range [20, 50]

because of the non linearity of yi(fj,x) w.r.t. the point force location x.

Finally, several techniques can be implemented to compute the expansion co-

efficients βp(fj), such as projection methods (Gaussian or Smolyak’s quadra-

ture) or regression approaches (dense or sparse). In the present contribution,

the sparse Least Angle Regression method has been adopted, because it is

robust to noise and requires fewer design points ne than basis functions P

[39, 48].

Universal Kriging

Universal Kriging finds its roots in the original work of Krige in 1951 [49],

although its theoretical developments are due to Matheron in the 1960s [50].

By definition, the Universal Kriging approximates the vibration response

yi(fj,x) as a sum of a global approximation gi(fj,x), representing its trend,

and a local approximation li(fj,x), describing the local variations of the

function around gi(fj,x). Consequently, the Universal Kriging model simply

writes:

yi(fj,x) ≈ gi(fj,x) + li(fj,x). (5)

Because Universal Kriging is a Gaussian process modeling, gi(fj,x) is the

mean value of the Gaussian process, while li(fj,x) is related to its variance.

From a general perspective, the function li(fj,x) is defined as weakly station-

ary stochastic process with zero mean Zi(fj,x) and constant process variance
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σ2, that is:

li(fj,x) = σ2 Zi(fj,x). (6)

In the previous equation, the Gaussian process Zi(fj,x) is characterized by

its covariance function R(x,x′) measuring the correlation between two sam-

ples points xm and x′m of the design space. Furthermore, if the noise ni(fj)

corrupting the vibration data is considered as an additive white Gaussian

noise process with variance σ2
n, then:

li(fj,x) = σ2 Zi(fj,x) + ni(fj), (7)

is a zero-mean Gaussian process with covariance function Σ(x,x′) = σ2R(x,x′)+

σ2
n δxx′ (where δxx′ is the Kronecker delta function).

It results from what follows that the general Universal Kriging model is

given by:

yi(fj,x) ≈ gi(fj,x) + σ2 Zi(fj,x) + ni(fj). (8)

Eq. (8) shows that a Universal Kriging model is fully defined after select-

ing the trend gi(fj,x) and the covariance function R(x,x′) and calculating

all the unknown parameters, such as σ2 and σ2
n, through optimization.

The choice of the trend is a crucial step in the definition of the Universal

Kriging model, since it aims at capturing the global behavior of the function

to approximate. Similarly to Eq. (3), it can generally be expressed as [51]:

gi(fj,x) =
P−1∑
p=0

βp(fj) kp(x). (9)

where kp(x) is a multivariate polynomial basis function. In this paper, two

particular trends are considered: multivariate polynomial and Polynomial
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Chaos trends. For the Polynomial Chaos trend, kp(x) is given by Eq. (4),

while, for the multivariate polynomial trend, it is written:

kp(x) =
M∏
m=1

xαm
m with αm = 0, 1, . . . , d and

M∑
m=1

αm ≤ d, (10)

where d is the maximum polynomial degree. As for the PCE, a basis-

adaptivity strategy can be adopted to determine the adequate polynomial

degree. Instead, a set of numerical experiments has been conducted by mak-

ing varying d from 0 to 5 in order to find the polynomial degree leading to the

best trade-off in terms of computational efficiency and localization accuracy.

Based on this return on experience, a quadratic trend is chosen, meaning

that d = 2. The resulting Universal Kriging formulations will be referred to

as Polynomial Chaos Kriging (PCK) and Quadratic Trend Kriging (QTK)

in the rest of the paper. It should be noted that the Polynomial Chaos trend

has been implemented rather recently in the Universal Kriging framework,

compared to the multivariate polynomial trend [52]. The basic motivation

behind PCK is to obtain more accurate metamodels by combining the global

approximation ability of PCE with the local interpolation property of Krig-

ing4.

Regarding the choice of the correlation function R(x,x′), a separable struc-

ture is adopted, since the point force coordinates are supposed independent.

This assumption leads to:

R(x,x′) =
M∏
i=1

Rm(xm, x
′
m). (11)

4For PCK, the orthogonal polynomial basis ψαm
m and the interval defined to search the

optimal polynomial degree d are the same as those used for building the PCE metamodel.

15



The literature is rich of correlation models for Rm(xm, x
′
m), such as Gaussian

or Matérn types, satisfying the Mercer’s conditions (continuous, symmetric

and positive definite) [43]. In the present paper, the Matérn 3/2 correlation

function has been chosen, because it provides metamodels robust to noisy

training data5 [53]. Consequently, the correlation function Rm(xm, x
′
m) is

defined such that:

Rm(xm, x
′
m) =

(
1 +

√
3 |xm − x′m|

`m

)
exp

(
−
√

3 |xm − x′m|
`m

)
, (12)

where `m is the strictly positive correlation length.

Finally, once the main ingredients of the Kriging model have been defined,

it remains to compute the expansion coefficients βp(fj), the variances σ2 and

σ2
n as well as the correlation lengths `m. Practically, all these quantities are

computed through an optimization procedure. Here, we have opted for the

cross-validation estimation method, which is the default option in UQLab

[54].

2.2.4. Metamodel validation

To complete the training phase, it is important to evaluate the accuracy

of the metamodel by estimating its generalization ability. In other words,

it is intended to assess the performance of the metamodel on unseen data.

This is generally a crucial step, since it provides a degree of confidence in

the metamodel built previously. If a validation set V = (Xval,Yval) is avail-

able, the quality of the metamodel can be estimated from the predictivity

5Actually, the Matérn correlation functions yields to less smooth metamodels than

those obtained with Gaussian kernels, which is often a more realistic assumption in many

engineering applications.
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coefficient Q2 [55]. Here, a modified version of this indicator is proposed to

evaluate the global accuracy of the set of 2ns × nf metamodels built in the

previous step. As a result, if Xval is a collection of n′e excitation points, then

Yval has n′e × 2ns × nf elements and the global predictivity coefficient Qg
2

writes:

Qg
2 = 1− n′e − 1

n′e · 2ns · nf

2ns∑
i=1

nf∑
j=1


n′
e∑

k=1

(
yi(fj,xk)− ŷi(fj,xk)

)2
n′
e∑

k=1

(
yi(fj,xk)− µi(fj)

)2

 , (13)

where xk is an element of Xval, yi(fj,xk) is an element of Yval, ŷi(fj,xk) is the

corresponding value estimated by the metamodel and µi(fj) = 1
n′
e

∑n′
e
k=1 yi(fj,xk)

is the sample mean over Xval of the element (i, j) of Yval.

If the metamodels quality is judged poor, the metamodel construction

can be enriched by increasing the number of excitation points ne and/or the

number of sensors ns of the training set T . In what follows, the quality of

the metamodels is considered representative of the actual model and usable

for localization purposes if Qg
2 ≥ 0.76. In the applications presented in the

rest of the paper, the value of the global predictivity coefficient is not given,

except when it does not satisfy the validation requirement.

2.3. Deployment phase – Force localization

The deployment phase consists in integrating the metamodel into the

force localization process. As illustrated in Fig. 3, the metamodel serves as

6This lower bound has been set on the basis of the results presented in section 3 and

from another set of numerical experiments not presented in the present paper.
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the basis for estimating an unknown point force location from a set normal-

ized vibration data unseen during the training phase.

Figure 3: Deployment phase – Block diagram of the force localization procedure

Practically, the unknown point force location is sought as the solution of

the following minimization problem:

x̂ = argmin
x

1

2ns · nf

2ns∑
i=1

nf∑
j=1

(
yi(fj,x)− ŷi(fj,x)

)2
, (14)

where the notations used are the same as in Eq. (13).

In the present paper, two strategies are implemented to solve the previous

minimization problem. The first one is the brute-force search. This approach

is considered here, because the metamodel provides an almost inexpensive

approximate of the vibration response for a given potential point force lo-

cation. The latter property allows defining a dense search space to find the
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actual point force location or at least define the possible excitation region.

The second strategy consist in applying the Particle Swarm Optimization

(PSO) technique, which is a metaheuristic optimization that has proved its

suitability for solving force localization problems [56].

If a test set S = (Xtest,Ytest) is available, the localization performances

of proposed methodology can be easily evaluated. To this end, an indicator,

measuring the localization accuracy w.r.t. a characteristic dimension of the

considered structure, is defined. For a particular point force location xt

belonging to Xtest, the localization error εt is mathematically expressed as:

εt =
dt
Lc
, (15)

where dt = ‖x̂t − xt‖2 is the Euclidean distance between the estimated

and the actual point force location, x̂t and xt respectively, while Lc is the

characteristic length of the structure undergoing the excitation. For straight

beams, Lc is the length, whereas for rectangular plates, it is chosen as the

length of the diagonal.

From the localization error, several indicator can be derived such as the

median value ε̄t, the 95% credible interval (CI), as well as the probability of

good localization:

Pγ = P ({εt ≤ γ}) =
card({εt ≤ γ})

n′′e
, (16)

where γ is the target localization error and n′′e is the number of point force

locations in Xtest. In other words, Pγ is the probability of locating a point

force within a tolerance γ.
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2.4. Practical considerations

The proposed localization strategy, based on PCE or UK metamodels,

differs from the other data-driven techniques, and more particularly from

neural networks approaches, essentially in the design decision process. In-

deed, although the general workflow is similar for all the data-driven/learning

strategies, the construction of a representation model requires different levels

of expertise depending on the method considered.

When neural networks is chosen as metamodeling technique, many design

decisions have to be made. First, the general architecture of the network has

be to defined. This implies the choice of the number of layers (shallow or

deep network), their type (convolutional, recurrent, fully connected, normal-

ization, etc.) and their width (i.e. the number of nodes in a specific layer)7.

These decisions have an impact on the network complexity. The more com-

plex the network is, the more it is prone to overfitting. To prevent this effect,

some regularization techniques can be implemented such as `2 and `1 regular-

ization, dropout, batch/layer normalization or early stopping. However, each

regularization strategy is generally accompanied by a set of parameters that

have to be tuned or learned during the training phase. Second, a training

algorithm must be selected. The most widely used algorithms is the gradient

descent and its variants (RMSprop, Adam, AdaBelief, etc.) that requires a

proper choice a the learning rate parameter. When defining the optimizer,

7There exists no general rules for determining a priori an adequate architecture. To

this end, automated search techniques can be employed for testing different network con-

figurations.
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one also has to define to loss function to minimize, the number of epochs

and/or a convergence criterion and the size of the mini-batches, if any.

On the contrary, the proposed approach requires less design decisions. In-

deed, the design process is generally limited to the choice of the type of the

metamodel (PCE or UK), the definition the order of the polynomial expan-

sion and the computation and the tuning of the parameters and hyperparam-

eters associated to the selected metamodeling strategy from well-established

optimization procedures (Least-squares or genetic algorithms, quasi-newton

methods, etc.). In this sense, the proposed strategy can be implemented in

a straightforward manner by a non-expert user (i.e. a person not expert or

well versed in data-driven methods).

When comparing neural networks and PCE/UK metamodels, it is inter-

esting to evaluate the number of parameters of each model. As a pream-

ble, it should be recalled that neural networks are a MIMO (Multiple-Input

and Multiple-Output) approaches, while PCE/UK metamodels are MISO

approaches. From a practical standpoint, this means that, at a particular

frequency, a single model can computed for neural networks, while 2ns inde-

pendent models have to be computed for PCE/UK.

For neural networks, let us consider a multilayer perceptron made of L layers.

For such an architecture, the number of parameters Npj at the frequency fj

is given by the following formula:

Npj =
L∑
l=0

Nl−1 ·Nl +
L∑
l=1

Nl, (17)

where Nl is the number of nodes of the layer l. In the present study, N0 = M

and NL = 2ns.
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To go a little further, it is worth applying Eq. (17) to the beam and plate

structures describes in sections 3 and 4, for which (M,ns) = (1, 2) and

(M,ns) = (2, 4) respectively. If one considers a single hidden layer containing

Nn nodes, one finds:

Npj =

6Nn + 4 for a 1D structure (beam)

11Nn + 8 for a 2D structure (plate)
. (18)

On the contrary, for PCE/UK, the number of parameters N (i)
pj of the i th

metamodel (i ∈ [1, 2ns]) at the frequency fj is given by:

N
(i)
pj =

P for PCE

P +M + 2 for UK
. (19)

As an example, if d = 38, one has:

N
(i)
pj =

4 (7) for PCE (UK) for a 1D structure

10 (14) for PCE (UK) for a 2D structure
. (20)

The previous analysis can be summarized by saying that, compared to strate-

gies based on neural networks, the proposed approach requires the construc-

tion of 2ns times more, but less complex, metamodels. In general, a lower

complexity implies a lower amount of data to fit a model (consider for in-

stance the difference between linear and nonlinear models).

Another particularity of the proposed strategy stems from the direct use

of the measured vibration signals. Except the normalization of the data to

8For PCE, the maximum degree of the polynomial basis is generally higher than that

necessary with UK.
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be independent from the excitation level, no particular feature extraction is

required. In the existing literature, features extraction is generally performed

and the input parameters of the metamodels are, for instance, the time of

arrival of vibration waves [36, 40, 57] or the frequency integrated real and

imaginary parts of the measured vibration spectra [21].

3. Numerical application

The proposed numerical application intends to assess the suitability of

the strategy described above for accurately locating a point force excitation

in the frequency domain. More specifically, its overall performances w.r.t.

the measurement noise level in both training and deployment phases, the

sensors configuration, the number of frequencies considered, as well as the

optimization strategy used for solving Eq. (14) are evaluated. Consequently,

this numerical application is mainly focused on the intrinsic behavior of the

proposed methodology by avoiding any experimental bias, such as geometri-

cal and material uncertainties or inaccuracies in sensors locations. In what

follows, all the vibration data have been generated from a home-made code.

3.1. Problem description

The studied structure is a simply supported steel beam of length L = 1

m, cross-sectional area S = 12.5 mm2 and second moment of area I = 6.5

mm4, excited by a point force of amplitude F0 between 10 Hz and 1 kHz.

In the training phase, illustrated in Fig. 4, the noiseless vibration re-

sponses ỹi(fj,xk), corresponding to the displacement measured at frequency

fj by a set of sensors due to a unit point force applied at coordinate xk ∈ Xtrain
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(M = 1), is computed from an analytical modal expansion. Here, all the

modes having a resonance frequency below 5 kHz are retained in the modal

basis with a modal damping ratio set to 0.01. Then, a Gaussian white noise

with a prescribed signal-to-noise ratio (SNR) is added to the noiseless data

to synthesize the measured vibration response gathered in Ytrain.

Figure 4: Illustration of the training phase

In the deployment phase, the noisy displacement data belonging to Ytest

are computed from the finite element method to avoid the so-called inverse

crime. The FE mesh is made up with 100 plane beam elements and the point

force amplitude is set to 30 N. Similarly to the training phase, the noise cor-

rupting the data is an additive white Gaussian noise with a prescribed SNR,

assumed different from that used in the training phase. From a practical

standpoint, this means that different sets of sensors and point force ampli-

tudes are used for training and exploiting the metamodel. In doing so, the

generalization ability of the present localization strategy can be evaluated.

In absence of contradictory information, the default configuration consid-

ered throughout this section is the following:

• Sensor configuration
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– Number of sensors: 2 (2ns = 4).

– Sensors locations9: 1 cm and 99 cm.

• Frequency resolution: 110 Hz (nf = 10 evenly spaced frequencies).

• Training phase

– Point force amplitude: 1 N.

– Xtrain: 100 evenly-spaced excitation points (ne = 100).

– Xval: 104 randomly distributed excitation points (n′e = 104).

– SNR for Ytrain and Yval: 25 dB.

• Deployment phase

– Point force amplitude: 30 N.

– Xtest: 104 randomly distributed excitation points (n′′e = 104).

– SNR for Ytest: 20 dB.

– Spatial resolution for brute-force search: 1 mm.

– Swarm size for PSO: 10

3.2. Application

This first application aims at illustrating the results that can be expected

by applying the localization strategy for the default configuration described

in the previous section. For this particular configuration, the results obtained

for the three metamodeling techniques considered previously and using either

the brute-force search or PSO in the localization step are presented in Fig. 5.

9All the coordinates are measured from the left end of the beam.
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Figure 5: Spatial distribution of the localization error obtained from the default config-

uration from (a) Brute force search and (b) PSO for the three metamodeling techniques

considered: (—) PCE, (−−) QTK and (− · −) PCK – ( ¦ ) Sensors locations

The qualitative analysis of these results shows that the localization per-

formances are globally the same whatever the metamodeling method used to

build the surrogate model. It is, however, interesting to note that brute-force

search allows localizing a point force excitation more accurately than PSO.

To confirm this observation, quantitative information are gathered in Ta-

bles 1 and 2. The localization error statistics (median and 95% CI) confirm

the qualitative analysis, despite being less significant than expected. Further

insights can be obtained by analyzing the value of P2%, corresponding to the

probability of good localization within 2% (i.e. within 2 cm) in conjunction

with Fig. 5b. Actually, the large discrepancies observed in Fig. 5b are rare

events that are mainly concentrated close to the structure boundaries.
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Table 1: Localization performances using brute-force search for three metamodeling tech-

niques considered

PCE QTK PCK

ε̄t (%) 0.13 0.05 0.07

95% CI (%) [0.006, 0.88] [0.002, 0.27] [0.003, 0.39]

P2% (%) 99.8 100 100

Ttrain (s) 4.41 13.54 20.27

Ttest (s) 1.15 1.15 1.17

Table 2: Localization performances using PSO search for three metamodeling techniques

considered

PCE QTK PCK

ε̄t (%) 0.11 0.05 0.06

95% CI (%) [0.004, 2.02] [0.002, 1.66] [0.003, 2.23]

P2% (%) 97.4 97.8 97.3

Ttrain (s) 4.41 13.54 20.27

Ttest (h) 12 40 88
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Another interesting point is the comparison of the computation times rel-

ative to the deployment phase. Indeed, while the brute-force search requires

less than 1.5 s to localize 104 independent point forces, PSO is far more de-

manding in terms of computational resources, which significantly impacts

the computation times (more than half a day in the present case). To bet-

ter understand the computational inefficiency of PSO, it is worth studying

the shape of the objective function J(x) to minimize in the localization step

(see Eq. (14)). Fig. 6 presents the spatial distribution of J(x), computed

for the PCE, QTK and PCK metamodels, for two particular tested point

force locations. It should be noticed that the objective function is highly

non-convex whatever the metamodeling strategy implemented. This obser-

vation may explain the difficulty of PSO in converging rapidly to an optimal

global solution. As a workaround, hybrid strategies combining global and

local optimizations can be implemented, but their application is outside the

scope of this paper [58]. In light of this comparison, only the brute-force

search will be used in the rest of the paper.
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Figure 6: Objective function J(x) associated to the PCE, QTK and PCK metamodels for

two particular tested point force locations – (—) x = 45 cm and (− · −) x = 2 cm
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3.3. Influence of the measurement noise

The results presented in the previous section suggest a certain robustness

of the proposed localization strategy w.r.t. to noise. To investigate this ques-

tion into more details, we propose to study the influence of the measurement

noise, modelled as an additive white Gaussian noise with a prescribed SNR,

in both training and deployment phases on the localization performances.

However, to discriminate the influence of the noise level in each phase on

the localization accuracy, the procedure is applied by varying the SNR from

35 dB to 20 dB in one phase, while keeping it constant and equal to 20 dB

in the other phase.

Fig. 7 (resp. Fig. 8) presents the statistics of the localization error εt as

well as the probability of good localization P2% for a varying measurement

noise level in the training (resp. testing) dataset and a fixed measurement

noise level in the testing (resp. training) dataset. Obtained results show that

the localization accuracy is quite insensitive to the noise in the data whatever

the phase considered. This conclusion can be quite counterintuitive, but is

actually in line with some observations made in the field of machine learning

[39, 59]. In the present case, a possible explanation could be related to

the use of polynomial bases to build the various metamodels that tends to

"regularize" the surrogate model. Practically, this observation results in a

value of the global predictivity Qg
2 coefficient between 72% and 92% for the

considered measurement noise levels.
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Figure 7: Influence of the measurement noise level in Ytrain on the localization perfor-

mances for the PCE, QTK and PCK metamodels and 20 dB SNR in Ytest – (first row)

Statistics of the localization error: median ε̄t and 95% CI, (second row) P2%: Probability

of good localization within 2%
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Figure 8: Influence of the measurement noise level in Ytest on the localization performances

for the PCE, QTK and PCK metamodels and 20 dB SNR in Ytrain – (first row) Statistics

of the localization error: median ε̄t and 95% CI, (second row) P2%: Probability of good

localization within 2%
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3.4. Influence of the number of frequencies considered

Until now, 10 evenly spaced frequencies (from 10 Hz to 1 kHz) have

been used to apply the proposed localization strategy. In particular, this

demonstrates that considering all the frequency content of the collected data

is not necessary to obtain accurate solutions. An interesting side effect is

that a trade-off between the computational efficiency and the localization

accuracy can be obtained by restricting the useful information to only a

particular subset of the measured vibration data. In this regard, it could

be interesting to determine the minimal number of frequencies required to

obtain satisfying localization performances. To this end, we propose to apply

the proposed localization strategy for six frequency sets, noted Fi in the

following, where i is the number of frequencies included in a particular set.

The frequency sets considered in this section are defined in Table 3. It should

be noted here that the frequencies included in each set Fi are not resonance

frequencies. Indeed, at these specific frequencies, the dynamic response of

lightly damped structures is mainly driven by its vibration modes implying

that these frequencies don’t convey any useful information on the point force

location.

Fig. 9 presents the results obtained for the six frequency sets Fi. The

immediate conclusion is that using only one frequency is not sufficient to

obtain satisfying localization performances, since P2% is about 40%, while the

median localization error is about 20% for PCE, QTK and PCK metamodels.

This result can be potentially problematic for harmonic excitations. In this

situation, the number of sensors used to measure the vibration data needs

to be increased (see section 3.5). From two frequencies, the localization are
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Table 3: Definition of six frequency sets Fi

Set ID Frequencies (Hz)

F1 500

F2 {330, 660}

F3 {250, 500, 750}

F5 {125, 250, 500, 750, 825}

F10 Range = [10, 1000], Resolution = 110

F20 Range = [10, 1000], Resolution = 52.1

drastically improved, since the median localization errors is less than 0.2%,

while P2% is greater than 99.7% (see Fig. 10).
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Figure 9: Influence of the number of frequencies considered in the localization procedure

– (first row) Statistics of the localization error: median ε̄t and 95% CI, (second row) P2%:

Probability of good localization within 2%
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Restriction to [F2, F20]– (first row) Statistics of the localization error: median ε̄t and 95%
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3.5. Influence of the number of sensors

It have been shown in section 3.4 that using only one frequency and

two sensors does not lead to satisfying localization performances. This ob-

servation is somewhat problematic for harmonic excitation. The solution

to improve the localization accuracy consists in increasing the number of

sensors used to collect the training and testing data. Fig. 11 presents the

evolution of the statistics of the localization error, as well as that of the

probability of good reconstruction within 2% w.r.t. the number of sensors

(evenly distributed over the structure). This figure shows that from 5 sensors

the amount of information is sufficient to properly locate 73% of the point

forces from the PCE metamodel, while this value reaches 91% for the QTK

and PCK metamodels. In this case, however, the 95% CIs remain relatively

large, even if the median localization errors are below 1%. Here, to signifi-

cantly reduce the width of the CI and consequently improve the probability
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of good localization, at least 10 sensors, evenly distributed over structure,

are necessary (see Fig. 12).
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Figure 11: Influence of the number of sensors for the frequency set F1 – (first row) Statistics

of the localization error: median ε̄t and 95% CI, (second row) P2%: Probability of good

localization within 2%
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34



3.6. Influence of the size of the training set

As any metamodel-based technique, the accuracy of the proposed local-

ization strategy is mainly conditioned to the quality of the surrogate model

built from the information collected in the training set Ttrain. In this section,

we are more precisely interested in the influence of the number of training

point force locations on the localization performances. To this end, the lo-

calization procedure is applied by varying the number of training point force

locations from 10 to 100, corresponding to a spatial resolution comprised

between 10 cm and 1 cm. As shown in Fig. 13, a too low number of training

point force location leads to poor localization performances. This can be ac-

tually related to the value of the predictivity coefficient, which is below 7%

for the PCE, QTK and PCK metamodels when considering 10 training point

force locations. From 20 point force locations, the metamodels are predictive

and the localization performances are improved accordingly (see Fig. 14).
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Figure 13: Influence of the size of the training set – (first row) Statistics of the localization

error: median ε̄t and 95% CI, (second row) P2%: Probability of good localization within

2%
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3.7. Influence of the sensor configuration

When implementing a data-driven strategy, one of the crucial issue con-

cerns the type, the number and the location of the sensors used to record

the data. In the present case, using displacement, velocity or acceleration

data has almost no influence, since the methodology is applied in the fre-

quency domain. On the contrary, the location and the number of sensors

may have a significant impact on localization performances. To better assess

the influence of the sensor configuration, let us consider two particular con-

figurations: (i) one sensor located at 1 cm from the left end of the beam and

two sensors located at 30 cm and 70 cm from the left end of the beam. For

these configurations, the spatial distributions of the localization error, ob-

tained from the PCE, QTK and PCK metamodels, are presented in Fig. 15.

This figure highlights an interesting phenomenon, since an abrupt increase

in the localization error is observed closed to the boundaries of the beam. A
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Figure 15: Spatial distribution of the localization error obtained for a sensor configuration

using (a) one sensor located at 1 cm and (b) two sensors located at 30 cm and 70 cm from

the left end of the beam and considering 10 frequencies in [10 Hz, 1 kHz]: (—) PCE, (−−)

QTK and (− · −) PCK – ( ¦ ) Sensors locations

careful analysis shows that the length of this region is equal to half of the

bending wavelength computed at the maximal frequency considered, 1 kHz

in the present case. At this particular frequency, the half bending wavelength

is equal to 7.6 cm. Consequently, larger localization errors are expected in

the regions [0 cm, 7.6 cm] and [92 cm, 100 cm] if no sensor is placed in these

sections, which is actually observed in Figs. 15a and 15b.

To confirm this observation, the localization procedure is now applied by

extending the frequency range up to 2 kHz, while keeping the same frequency

resolution. In this case, the half bending wavelength is equal to 5.4 cm.

Consequently, large localization errors are expected in the regions [94 cm, 100

cm] and/or [0, 5.4 cm], as confirmed in Fig. 16. It is also worth mentioning

that increasing the frequency range allows not only reducing the size of the
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Figure 16: Spatial distribution of the localization error obtained for a sensor configuration

using (a) one sensor located at 1 cm and (b) two sensors located at 30 cm and 70 cm from

the left end of the beam and considering 20 frequencies in [10 Hz, 2 kHz]: (—) PCE, (−−)

QTK and (− · −) PCK – ( ¦ ) Sensors locations

region of large localization error but also decreasing the value of the maximal

localization error. Indeed, in the present situation, the maximal localization

error goes from 7.5% to 5.3% (see Figs. 15 and 16). As a side note, one

can notice that even with a single sensor, it is possible to accurately localize

point force excitations (see Table 4).

3.8. Summary

This numerical application intended to answer the main practical issues

that can arise when implementing the proposed purely data-driven localiza-

tion procedure. In summary, the following conclusions can be drawn:

• The proposed procedure is robust to noise in the data in both training

and deployment phases.
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Table 4: Localization performances for a single sensor depending on the maximal frequency

fmax

PCE QTK PCK

fmax = 1 kHz

ε̄t (%) 0.33 0.21 0.17

95% CI (%) [0.02, 5.13] [0.009, 2.63] [0.007, 3.22]

P2% (%) 93.8 96.4 95.7

fmax = 2 kHz

ε̄t (%) 0.15 0.09 0.08

95% CI (%) [0.008, 2.62] [0.004, 1.57] [0.003, 1.81]

P2% (%) 96.7 98.2 97.7

• There exists two practical ways of improving the localization accuracy.

They mainly consists in increasing the number of vibration sensors

and/or the frequency range.

• The number of training point force locations must be sufficient to en-

sure a fairly good representativeness of the metamodel. Following our

observations, the training dataset should be chosen so as to obtain a

predictivity coefficient between 70% and 90%. In doing so, the meta-

model built from the training dataset is expected to generalize pretty

well.

• If point forces are expected to act in the vicinity of the boundaries of

the studied structure, it is recommended either to place a sensor at

most at the half wavelength from the structure boundary or to increase

the frequency range considered in the analysis.

• Accurate localizations can be obtained with a single sensor.
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• QTK performs generally better than PCE and PCK.

4. Real-world application

In this section, a real-world application is carried out on a real-world

application in order to confirm some of the conclusions drawn in the previous

numerical experiment.

4.1. Description of the experimental set-up

The structure under test is a thin aluminum plate of 60 cm in length, 40

cm in width and 6 mm in thickness, clamped along its length in a wooden

support. The effective width of the plate resulting from the mounting con-

ditions is 39.1 cm. To perform all the subsequent measurements the system

is suspended to a rigid structure through a set of elastic bungee cords (see

Fig. 17).

To form the training set T , the validation set V and the test set S, a

collection of Frequency Response Functions (FRF) is estimated using a roving

hammer procedure for four accelerometers (ns = 4) located at the corners of a

grid of 17×17 excitation points (see Fig. 17). Practically, the impact hammer

has been equipped with a steel tip in order to properly excite the structure

until 6.5 kHz. For the sake of the completeness, it must be said that each

FRF has been estimated from the vibration responses resulting from three

consecutive impacts. Consequently, considering a frequency resolution of 0.5

Hz, the experimental dataset E is the collection of an input dataset Xexp of

289×2 elements (M = 2), corresponding to the coordinates (xexp, yexp) of

the 289 point forces, and an output dataset Yexp of 289×8×13000 elements,
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Figure 17: Structure under test – Definition of the grid of excitation points

corresponding to all the estimated FRFs, normalized using the procedure

described in section 2.2.2.

It results from what precedes that the training and validation sets, T and V ,

are actually defined as a particular subset of E . The test set S is built from

the FRFs measured for the point force locations contained in Xval
10. More

specifically, each FRF is multiplied by the average force spectrum estimated

from the three consecutive impacts at the corresponding excitation location

in order to obtain a set of acceleration responses. Finally, these vibration

responses are normalized to form the output dataset Ytest.

10Using Xval in both validation and test steps does not bias the results, since here the

validation dataset only serves to assess the metamodel quality and not to improve it.
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In absence of contradictory information, the default configuration consid-

ered in this experimental application is presented in Fig. 18. In this configu-

ration, odd numbered excitation points define the input dataset Xtrain, while

even numbered excitation points form the validation (resp. test) dataset Xval

(resp. Xtest). The output datasets Ytrain, Yval and Ytest are derived from

Yexp by restricting the dataset to 20 evenly spaced frequencies between 100

Hz and 2 kHz (frequency resolution: 100 Hz). This implies that Ytrain has

145×8×20 elements, while Yval and Ytest have 144×8×20 elements.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
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Figure 18: Default configuration – (◦) Xtrain, (∗) Xval = Xtest and (D) Acceleration sensors

4.2. Application

The application of the proposed localization procedure to the default

configuration leads to the results summarized in Table 5 and presenting the

localization error statistics (median and 95% CI) as well as the probability of
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locating a point force within 3% (i.e. within a circle of radius 2 cm). As for

the numerical application, accurate localizations are obtained, proving that

the proposed method is also applicable to real mechanical structures.

Table 5: Localization performances for the default configuration

PCE QTK PCK

ε̄t (%) 1.22 0.76 1.08

95% CI (%) [0.15, 3.05] [0.14, 2.07] [0.24, 3.10]

P3% (%) 95.8 99.3 96.5

Ttrain (s) 86.4 97.5 231.3

Ttest (s) 19.1 21.3 18.1

Results have been obtained using a brute-force search approach in the

localization phase. Of course, more sophisticated optimization strategies can

be implemented, but their performance would be strongly affected by the

shape of the objective function to minimize. In the present case, the objective

function is highly non-convex (see Fig. 19), implying that the optimization

algorithm has to be chosen and applied with care.

4.3. Influence of the maximal frequency considered

As suggested in section 3.7, the frequency range retained to perform the

analysis can have a beneficial impact on the localization accuracy. To confirm

this observation, the localization procedure is applied by ranging the maxi-

mal frequency considered from 1 kHz to 5 kHz, while keeping the frequency

resolution constant to 100 Hz. The results presented in Fig. 20 indeed reveal
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Figure 19: Objective function J(x, y) associated to the PCE, QTK and PCK metamodels

for an actual point force located at point (x, y) = (17.6 cm, 26.4 cm) of the experimental

grid

an effect of the maximal frequency retained for the analysis, since the me-

dian localization error tends to decrease whatever the metamodeling strategy

implemented. Regarding the width of the CI, it is interesting to note that

it continuously decreases for the QTK metamodel, while it remains almost

constant from a maximal frequency of 2 kHz for the PCE and PCK meta-

models. This behavior has a direct impact on P3%, the probability of good

reconstruction within 3%, which tends to stabilize from 2 kHz11.

4.4. Influence of the training configuration

In this section, the influence of the training configuration is studied. To

this end, four configurations are considered and presented in Fig. 21. More

precisely, the input datasets Xtrain, Xval and Xtest are derived from the exper-

imental input dataset Xexp and satisfy the relations:

Xexp = Xtrain ∪ Xval and Xexp = Xtrain ∪ Xtest. (21)

11Given the number of excitation points in Xtest, namely 144, an increase in P3% by

1.4% corresponds to two additional locations properly estimated.
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Figure 20: Influence of the maximal frequency retained in the analysis – (first row) Statis-

tics of the localization error: median ε̄t and 95% CI, (second row) P3%: Probability of

good localization within 3%

Here, configuration C1 corresponds to the default configuration presented in

Fig. 18 and recalled in Fig. 21a for the sake of comparison. In configuration

C2, 1 point out of 3, i.e. 97 in total, is retained to form Xtrain (see Fig. 21b),

while 1 point out of 4, i.e. 73 in total, is kept in configuration C3 to build the

input training dataset (see Fig. 21c). Finally, configuration C4 defines Xtrain

as a collection of 100 randomly chosen excitation points (see Fig. 21d).

Fig. 22 summarizes the results obtained for the four configurations de-

scribed above. The analysis of the results calls for two conclusions. First,

the denser the spatial distribution of training excitation points is, the better

the localization accuracy is. Second, we observe that training the meta-

models from data collected on a regular grid allows obtaining more accurate

localizations than those resulting from a random-grid-based training.

45



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x (m)

y
(m

)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x (m)

y
(m

)

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x (m)

y
(m

)

(c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x (m)

y
(m

)

(d)

Figure 21: Definition of the studied configuration – (a) Configuration C1: default, (b)

Configuration C2, (c) Configuration C3 and (d) Configuration C4 – (◦) Xtrain, (∗) Xval =

Xtest and (D) Acceleration sensors
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Figure 22: Influence of the size of the training set – (first row) Statistics of the localization

error: median ε̄t and 95% CI, (second row) P3%: Probability of good localization within

3%

4.5. Applicability for one vibration sensor

The results presented in section 3.7 have shown that using a single vibra-

tion sensor could lead to reasonable localization performances. This property

is interesting in a practical context where having a large number of sensor is

not always possible. In this section, it is intended to assess the localization

accuracy of the proposed approach by using the information provided by each

of the four acceleration sensors mounted on the structure. The ID and the

coordinates of each sensor, measured from the point (0, 0) of the excitation

grid (see Fig. 18), are defined in Table 6.

Fig. 23 shows that the localization performances are better when the

sensor is located close to clamped edge (A1 and A2). A closer analysis of

the results indicates that all the point force locations are estimated within a

circle of radius 3.3 cm for A1 and A2, 5.7 cm for A3 and 4.6 cm for A4.
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Table 6: Definition of the ID and the coordinates of each acceleration sensor

ID Coordinates (x, y) (cm)

A1 (0, 0)

A2 (56.2, 0)

A3 (0, 35.1)

A4 (56.2, 35.1)
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Figure 23: Applicability for one acceleration sensor – (first row) Statistics of the local-

ization error: median ε̄t and 95% CI, (second row) P3%: Probability of good localization

within 3%
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4.6. Summary

The results presented in this experimental validation allows confirming

some of the conclusions drawn from the numerical validation conducted in

section 3. More specifically, it has been shown in this section that:

• The maximal frequency considered in the analysis has a direct influence

on the localization accuracy.

• Training the metamodels from data collected on a regular grid al-

lows obtaining more accurate localizations than those resulting from

a random-grid-based training.

• A single vibration sensor can be used for point force localization. How-

ever, the larger the number of sensors is, the better the localization

performances are.

• QTK performs globally better than PCE and PCK.

5. Conclusion

This paper has introduced a novel data-driven approach, based on the

used of classical metamodeling strategies, for localizing point force excita-

tions in the frequency domain. The proposed localization method is divided

into a training stage, in which a metamodel is built, and a deployment phase,

consisting in an optimization procedure taking advantage of the metamodel

to efficiently estimate the point force location given new vibration data. In

the course of this paper, three metamodeling techniques have been tested:

Polynomial Chaos Expansion (PCE), Quadratic Trend Kriging (QTK) and
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Polynomial Chaos Kriging (PCK). From the numerical and experimental val-

idations conducted, it has been demonstrated that the proposed approach is

robust to noise and allows accurate localizations for relatively small datasets

and sparse sensors configurations. In addition, we have shown that QTK

metamodel leads to localizations more accurate than those obtained from

PCE and PCK metamodels. Finally, a single vibration sensor can poten-

tially be used provided the structure is rather simple and/or the localization

region has limited extent.
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