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Abstract

We develop a 3D Lattice Boltzmann Method (LBM) with Large Eddy Simulation
(LES), and a wall model, to simulate interactions of fully turbulent flows with ocean
structures. The LBM is based on a hybrid method, combining inviscid (far-field) and
viscous (near-field) perturbation flows. The inviscid flow is solved with potential
flow theory. The near-field perturbation flow, which satisfies perturbation Navier-
Stokes (NS) equations, is solved with a novel perturbation LBM model (pLBM),
based on a collision operator using perturbation equilibrium distribution functions
(DFs). The pLBM, previously applied to direct NS modeling (DNS) is extended to
highly turbulent flows using a LES, and a wall model representing viscous/turbulent
sub-layer near solid boundaries. The pLBM is first validated for turbulent channel
flows, for moderate to large Reynolds numbers, Re À [3.7 ù 104; 1.2 ù 106], and
we find the modeled plate friction coe�cient and near-field turbulence properties
agree well with both experiments and DNS results. We then simulate the flow past
a NACA-0012 foil using both a regular LBM-LES and the pLBM-LES models, for
Re = 1.44ù 106. A good agreement with experiments and results of other numerical
methods is found for the computed lift and drag forces, and pressure distribution on
the foil. The pLBM results are either nearly identical or slightly improved, relative to
LBM results, but are obtained with a significantly smaller computational domain and
hence computing cost, thus demonstrating the benefits of the new hybrid approach.

KEYWORDS:
Hybrid method; Lattice-Boltzmann Method; Large Eddy Simulation; potential flow; GPU implementa-
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1 INTRODUCTION

Numerical models simulating the irrotational motion of an incompressible, inviscid fluid, based on potential flow theory, are
computationally e�cient and often su�ciently accurate to simulate many large scale fluid-structure interaction problems in
ocean engineering, including those involving free surface waves18. However, potential flow models cannot be used in applica-
tions where viscous e�ects are important– for instance, in the boundary layer near solid boundaries, in the wake of blu� bodies,
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or when considering surface wave breaking. Standard Computational Fluid Dynamics (CFD) Navier-Stokes (NS) solvers, such
as based on a finite volume25,5,22 or Lattice Boltzmann (LBM)24,8,32,12,27,28 method, can accurately model these types of flows,
but are typically computationally costly. Additionally, for free surface flows, NS solvers are often too numerically dissipative to
model wave propagation over long distances5.

An alternative hybrid modeling approach, to accurately and more e�ciently solve fluid-structure interaction problems of
interest to ocean and other engineering disciplines, has been proposed in earlier work based on a Helmholtz decomposition
method1,17. Unlike one- or two-way coupled models that have separate regions of the computational domain matched along a
common boundary5,19; in this method, both the velocity and pressure fields are expressed as the sum of inviscid/irrotational (I)
and viscous perturbation (P ) components. Each component of the decomposition is solved using di�erent numerical models
and methods in separate, but overlapping, computational domains. In this decomposition approach, the P fields are governed by
a modified (perturbed) NS equation, forced by the I fields, obtained from the inviscid solution. This approach was previously
successfully used by Harris and Grilli 22 to model turbulent flows over solid boundaries using a finite volume method, and
validated for turbulent channel and wave induced boundary layer flows. It was also used to simulate viscous e�ects in linear ship
seakeeping by Reliquet43.

Following this approach, we develop and apply a new hybrid model in which the I fields, governed by potential flow equations,
are solved (analytically or numerically) over the complete, larger size, computational domain that includes the structure of
interest and extends to the far-field, and the P fields are solved with a LBM model in a smaller near-field domain around the
structure. The latter domain covers the region of the flow in which viscous/turbulent e�ects are deemed to be important based
on the considered problem (this will be made more clear in applications). Hence, the more computationally demanding LBM
model is only applied to the P fields in the smaller near-field domain, yielding a more computationally e�cient solution than
applying a LBM model to the entire domain, while ensuring that the complete NS solution is solved where the physics calls for
it. The coupling between continuum mechanics-based equations (or models), such as potential flow, and the kinetic-based LBM
is less straightforward than earlier implementations of the hybrid method based on a volume of fluid NS solver22. In particular,
as will be shown in the paper, one must derive a perturbation LBM equivalent to the nonlinear I *P coupling terms that appear
in the perturbation NS equations.

The presented perturbation method has advantageous fundamental properties such as exact mass conservation, and compu-
tational benefits from using the LBM to solve the NS equations. Compared to more standard finite volume solvers, the data
locality and kernel simplicity of the LBM, based on a weakly compressible approach, allow for a very e�cient parallel imple-
mentation of the model, particularly on “General Purpose Graphical Processor Units” (GPGPU)30,46,47. While a single GPGPU
still has a limited memory (although new and increasingly powerful hardware is regularly designed; e.g., the 2020 A100 NVDIA
GPU has 40 or 80 GB memory, nearly 7,000 cores and a 20 teraflop performance) a multi-GPGPU implementation of the LBM
may allow achieving a higher computational e�ciency, for an identical accuracy, than traditional CFD solvers implemented on
a massively parallel CPU cluster. In the hybrid method context, for many engineering applications, the smaller computational
domain size where the pLBM is solved can often be simulated using a single GPGPU (e.g.41), allowing simulations to be run on
a desktop computer equipped with a relatively inexpensive GPGPU co-processor. When the potential flow is also solved with
a numerical model, e.g., BEM based, its solution may then be calculated using the computer’s often parallelized CPUs, with
limited conflicting resource requirements. If a traditional NS solver were to be used in place of the LBM, a much larger number
of CPU cores would be required to run it at an accuracy equivalent to that of the LBM.

In engineering applications involving complex boundary conditions and/or boundary/structure geometry, the potential flow
solution over the entire computational domain must also be e�cient. To this e�ect, a generic numerical solver, such as that
based on the higher-order Boundary Element Method (BEM), have been used that feature fully nonlinear free surface boundary
conditions if applicable29,22. For simulating fully nonlinear wave-structure interactions in large three-dimensional (3D) domains,
e�cient BEM solvers with a parallelized Fast Multipole Algorithm (FMA) have been developed23. Cases with a free surface
are not considered in the present paper but have been reported on elsewhere. To assess the ability of the LBM to simulate
strongly nonlinear free surface flows, Janssen et al. 28,29,30 simulated 2D wave breaking problems already simulated with other
methods5,19, using a weak coupling approach between potential flow and a LBM in which a Volume Of Fluid (VOF) interface
tracking method was used. In such cases, the LBM model was simply initialized with potential flow results for waves that had
been propagated up to close to the breaking point in a potential flow BEM model13,15,14. Next, Janssen et al. computed similar
results with the hybrid method, in which the I * P coupling terms were represented as LBM body force terms, using the pre-
computed I fields to force the P field solution through these terms. This approach, while proven e�ective, required computing
spatial derivatives of both the I and P fields using finite di�erence approximations that yielded a compact but non-local LBM
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kernel, as well as higher truncation errors than in the original LBM collision operator. Both of these reduced the overall e�ciency
and accuracy of the parallelized GPGPU solution. Therefore, Janssen28 suggested that instead the nonlinear I * P coupling
terms could directly be introduced into the LBM equilibrium probability distribution functions (EPDFs), hence, to develop
perturbation EPDFs or pEPDFs. The latter were incrementally developed, implemented, and validated as part of the development
of a perturbation LBM (pLBM) model component to a hybrid naval hydrodynamic solver by O’Reilly et al. 39,40,41,42, in which
the potential flow solution, with fully nonlinear free surface boundary conditions (FNPF), was computed using a higher-order
BEM-FMA model23.

As an additional contribution to this line of work, the present paper details the development of a hybrid potential flow-LBM
model for external turbulent flows around submerged structures, that extends the pLBM approach proposed earlier42 to high-
Reynolds number flows, using large eddy simulations (LES) and a turbulent wall model. This new model is validated on a few
applications for which the potential flow fields I can be solved analytically to force the pLBM solution. Cases with a more
complex geometry could be easily solved later with the same model, using instead a number solution of the I field with the BEM-
FMA model mentioned earlier. In the paper, we first describe the pLBM formulation with a Multiple Relaxation Time (MRT)
collision operator and introduce the sub-grid turbulence scheme by modifying the LBM-LES model proposed by Krafczyk
et al. 32 to apply to the pLBM. To improve the representation of turbulent boundary layers near solid boundaries without the
need for a refined discretization, a wall model approach is added to the pLBM based on the work of Malaspinas and Sagaut34.
Some modifications were made to the wall model to improve its accuracy for highly curved boundaries of arbitrary shape and
orientation. The LBM-LES with the wall model and its pLBM counterpart were validated in terms of convergence and accuracy
by simulating turbulent channel flows for which there are reference solutions34. The method was then applied and validated for
a more demanding test, by computing the drag and lift forces, and pressure distribution on a NACA0012 foil at a few Reynolds
numbers, up to a large value Re = 1.44ù106, using both the standard LBM and perturbation LBM. Results were again compared
to reference data, and with each other, leading to a discussion of both methods’ performance.

2 THE LATTICE BOLTZMANN METHOD

In the LBM, the weakly compressible NS equations (assuming a low Mach number Ma) are modeled by solving an equivalent
mesoscopic problem, in which the fluid is represented by particles interacting over a (typically regular) lattice (or grid). The main
LBM variables are the particle distribution functions (DFs) f

↵
(t, x, ⇠), which represent the normalized probability of finding

particle ↵ at location x and time t, moving with velocity ⇠. Once the DFs are computed at time t, the macroscopic hydrodynamic
quantities, i.e., velocity u (or u

i
) and density ⇢ are found as moments of the DFs, and the pressure is expressed as p = ⇢c

2
s
, where

c
s

denotes the speed of sound in the considered medium (see later for details).

2.1 Summary of macroscopic flow equations
The macroscopic equations solved in the LBM are the standard mass and momentum conservation NS equations (using the
summation convention of tensor notation; i, j = 1, 2, 3),

)u
i

)x
i

= *1
⇢

D⇢
Dt + O(�x2,�t2) + O(Ma2) (1)
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<

)u
i
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j
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=

=
)⌧

ij

)x
j

+ ⇢G
i
+ O(�x2,�t2) + O(Ma2), (2)

where ⌧
ij

is the stress tensor and G
i

the body force acceleration (usually gravity). For an isothermal fluid, a Chapman-Enskog
expansion (see Appendix A) would show that LBM equations approximate NS equations up to second-order in grid spacing
�x, time step �t, and Mach number Ma = U_c

s
, with U a characteristic flow velocity4. For incompressible Newtonian fluids,

we further have ⌧
ij
= *p �

ij
+ 2�S

ij
, with � the dynamic viscosity (⌫ = �_⇢, the kinematic viscosity) and S

ij
the rate of strain

tensor defined later. For small Mach numbers Ma ~ 1, ⇢* ⇢0_⇢0 ~ 1, with ⇢0 a reference (average) density; hence, the fluid
can be considered as nearly incompressible44.

When modeling turbulent flows at high Reynolds numbers, the velocity and pressure are usually decomposed into mean and
fluctuation components, i.e., u

i
= u

i
+u®

i
and p = p+p® (with overbars indicating time averaging). Introducing this decomposition

into Eqs. (1) and (2) and averaging them formally yields identical equations for the mean flow variables, referred to as Reynolds
averaged NS equations (RANS), with an additional Reynolds stress term,R

ij
= *⇢u®

i
u
®
j
, in the stress tensor, representing e�ects
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of turbulent momentum exchanges. Note, in the context of LES modeling, which is introduced later, it is more accurate to refer
to the averaged Eqs. (1) and (2) as filtered NS equations and to R

ij
as subgrid scale (SGS) stresses.

In the standard LES model, the deviatoric part of the Reynolds stresses, Rd
ij
= R

ij
* 1

3Rkk�ij (note, 1
3Rkk = 2

3⇢ k, where
k here denotes the turbulent kinetic energy), is parameterized by a SGS turbulent closure model as Rd

ij
= �

T
S
ij

, with �
T

the
eddy viscosity, a function of flow parameters, and S

ij
the mean (resolved) rate of strain tensor (see details later). For gravity

forces we further have, ⇢G
i
= * )

)x
i

(⇢gx3) (with g the gravitational acceleration) and, defining the resolved turbulent dynamic
pressure as, Ép = p + ⇢gx3 *

2
3⇢k, the resolved turbulent shear stress tensor to use in the right-hand-side (RHS) of filtered Eq.

(2) without gravity forces reads, É⌧
ij
= Ép �

ij
+ (� + �

T
)S

ij
.

Overbars will be dropped in the following as filtered LES equations will be those used to represent mean (resolved) turbulent
flows.

2.2 LBM basics
The time evolution of the discrete particle DFs is governed by the Boltzmann advection-collision equation,

Df
↵

Dt
=
)f

↵
(t, x)
)t

+ e
↵
�
)f

↵
(t, x)
)x = ⌦

↵
+ B

↵
, (3)

in which, e
↵

denotes the discrete velocity vector of particle ↵, ⌦
↵

is a collision operator describing interactions between particles,
and B

↵
represents e�ects of volume forces. Eq. (3) is discretized over a regular 3D lattice of grid spacing �x = �y = �z,

here following the standard D3Q19 scheme (Fig. 1), using n = 19 discrete particle velocities and respective directions referred
to as ↵ = 0, ..., 18, with ↵ = 0 denoting the reference particle lattice location. The corresponding velocity vectors: e

↵
=

{0, 0, 0}; {±c, 0, 0}; {0,±c, 0}; {0, 0,±c}; {±c,±c, 0}; {±c, 0,±c}; {0,±c,±c}, for ↵ = 0, ..., 18, point in the directions of 18
neighboring particles from the reference particle location. The particle propagation speed on the lattice is defined as c = �x_�t,
which means that each particle travels the length of one lattice grid cell over one time step. Note, when a LBM model with
nested meshes is used, the lattice resolution is refined within some sub-regions of the flow, such as near structures42.

In the standard single relaxation time (SRT) LBM, Eq. (3) is discretized by finite di�erences in space and time yielding,

f
↵
(t + �t, x + e

↵
�t) = f

↵
(t, x) * �t

t0
{f

↵
(x, t) * feq

↵
(⇢,u)} + �t B

↵
, (4)

where feq↵ (⇢,u) are the equilibrium DFs (towards which the DFs converge), defined later as a function of ⇢ and u, and ⌦
↵
=

(feq↵ * f
↵
)_t0, with t0 the single relaxation time. In the SRT method, the e�ect of a homogeneous body force such as gravity

is typically expressed as, B
↵
= w

↵
e
↵
�G

↵
_c2

s

6, where G
↵

denotes the gravity force applied to particle ↵. LBM simulations are
split into a nonlinear collision step, which locally drives the particle DFs to their equilibrium values, and a linear propagation
step, during which the updated DFs are advected24.

For the LBM solution to converge towards that of the incompressible (i.e., weakly compressible) NS Eqs. (1) and (2), the
equilibrium function must be defined as24,

f
eq

↵
(⇢,u) = w

↵

0

⇢ + ⇢
o

0

3
(u � e

↵
)

c2
+ 9

2
(u � e

↵
)2

c4
* 3

2
u2
c2

11

, (5)

with, to achieve the stated truncation errors, t0 = 3⌫_c2 + �t_2 and ⇢
o

the average fluid density, with ⇢ * ⇢0 being a small
perturbation resulting from the weak fluid compressibility. In the D3Q19 lattice scheme, isotropy is maintained by applying
direction dependent weights w

↵
to the equilibrium DFs, i.e., w0 = 1_3, w1...6 = 1_18 and w7...18 = 1_36 and defining the speed

of sound in the medium as c
s
= c_

˘

3. Once the LBM equations are solved for the particle DFs, the macroscopic hydrodynamic
quantities are found at each lattice node as moments of the DFs as,

⇢ =
n*1
…

↵=0
f
↵
, ⇢

o
u
i
=

n*1
…

↵=0
e
↵i
f
↵
. (6)

When modeling high Reynolds number flows, however, earlier work has shown8 that more accurate and stable results can
be obtained using the multiple relaxation time (MRT) LBM. In this method, the collision operator is defined as a function of
higher-order moments of macroscopic flow properties that each have di�erent physical meaning33. Using the D3Q19 lattice
scheme, 19 equilibrium moments m

↵
are thus defined, some of which will be used to implement the LES in the LBM, allowing
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Figure 1 D3Q19 sub-lattice LBM, where vectors indicate ↵ = 1, ..., 18 directions (and length) for a particle to move on the
lattice.

one to simulate high Reynolds number turbulent flows. The MRT collision operator is defined as (↵, �, � = 0, ..., 18),

⌦
↵
= *M*1

↵�
D
��
(M

��
f
�
* meq

�
), (7)

and is replaced in Eq. (4), where M
↵�

denotes the transformation matrix from DFs to moments m
�
, with f

↵
= M

*1
↵�
m
�

and
D
��

is a diagonal collision matrix of relaxation parameters that allows applying di�erent weights to di�erent moments/fluid
properties4. The equilibrium moments corresponding to Eq. (5) and the NS equations are found as,

m
eq

0 = ⇢, m
eq

3 = ⇢u
x
, m

eq

5 = ⇢u
y
, m

eq

7 = ⇢u
z

m
eq

1 = e
eq = ⇢0(u2x + u

2
y
+ u2

z
), m

eq

9 = 3peq
xx

= ⇢0(2u2x * u
2
y
* u2

z
)

m
eq

11 = p
eq

zz
= ⇢0(u2y * u

2
z
), m

eq

13 = p
eq

xy
= ⇢0(uxuy)

m
eq

14 = p
eq

yz
= ⇢0(uyuz), m

eq

15 = p
eq

xz
= ⇢0(uxuz), (8)

where non-listed moments are not used here, i.e., m2 representing the kinetic energy, m4,6,8 related to the heat fluxes, m10,12
representing the fourth-order moments, and m16,17,18 the third-order moments.

In the LBM, it is customary to scale the physical variables using spatial, temporal, and mass scales: �, ⇥, and$, respectively
and define non-dimensional lattice variables (denoted by primes in the following). Thus, for the mesh parameters we have,
�x® = �x_�,�t® = �t_⇥, c® = c⇥_�, andm® = m_$. It is also customary to assume that c® = 1, which is equivalent to having a
unit mesh Courant number. If the length scale is further defined as � = �x, we have�x® = 1, which also requires that⇥ = �t and,
hence, �t® = 1. With these definitions, c®

s
= 1_

˘

3 and, in the SRT, t®0 = 3⌫®+1_2, with ⌫® = ⌫⇥_�2. In applications, scaled flow
properties will be specified by their Mach number Ma = U_c

s
= U

®_c®
s

and Reynolds number, Re = Ul_⌫ = U
®l®_⌫® (with

l a representative length scale of the flow). Combining the various definitions we find, U ® = Ma_
˘

3 and Ma =
˘

3Re ⌫®_l®.
For simplicity, in the following, we will drop the prime notation and use non-dimensional lattice variables in the LBM, unless
stated otherwise.

2.3 Macroscopic equations for the perturbation LBM
We first recap the equations of the NS perturbation method used in earlier work17,22,42 and develop the corresponding LBM
equations, referred to as perturbation LBM (pLBM), with a MRT approach. Applying a Helmholtz decomposition to the flow,
both the resolved velocity u

i
and dynamic pressure Ép are expressed as,

u
i
= u

I

i
+ uP

i
with Ép = Ép

I + Ép
P
. (9)

As indicated before, superscripts I denote inviscid flow quantities, where uI
i
= (

i
�
I satisfies Euler equations, with �I the

velocity potential of the inviscid flow field, and superscripts P represent perturbation flow quantities that are driven by the
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inviscid flow fields. Applying this decomposition to NS Eqs. (1) and (2), assuming a LES, and using Euler equations to eliminate
part of the inviscid fields, the perturbation NS-LES equations read22,
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ij
, (10)

where ⌫ and ⌫
T

are kinematic molecular and turbulent viscosity, respectively, with the latter being expressed through the
Smagorinsky method as,

⌫
T
= (C

S
�)2S, with S
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= S
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ij
+ SI
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, (11)

the rate of strain tensor, expressed as the sum of its perturbation SP
ij

and inviscid SI
ij

components, both found as a function of
the corresponding velocity components. C

S
is the Smagorinsky coe�cient, � = (�x�y�z)1_3 the grid filter length scale, and

S =
˘

S
ij
S
ij

.
Equations for the pLBM, are first derived assuming a SRT method corresponding to Eq. (10), by decomposing the DFs into

their inviscid and perturbation components, f
↵
= f

I

↵
+ fP

↵
. Introducing these into in Eq. (4) and subtracting the LBM equation

for the inviscid flow without body forces, using the dynamic pressure, we find,

f
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where the feq,I↵ (⇢I ,uI ) satisfy Euler equations42. The perturbation equilibrium DFs are then found as, feq,P↵ (⇢P ,uP ,uI ) =
f
eq
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These results are then extended to the MRT using the collision operator defined in Eq. (7), which yields the perturbation
equilibrium moments,
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P

z
+ uP

x
u
I

z
+ uP

z
u
I

x
), (15)

with unlisted moments being unchanged from the standard MRT formulation.
Applying a Chapman-Enskog expansion to Eq. (13) would show that the pLBM solution converges to Eq. (10), without the

contribution of the eddy viscosity (see Appendix A). Note the presence in Eqs. (13) and (14) of nonlinear interaction terms
between the I and P fields, which express the forcing from the inviscid flow, which is independently computed, onto the
perturbation flow solved in the pLBM; note, also, there is no need for computing derivatives of the velocity.

Next, we show how the eddy viscosity terms of Eq. (10) are recovered using the pLBM with a LES.

2.4 LES turbulence modeling with the perturbation LBM
Krafczyk et al. 32 showed that the 2nd-order moments of the DFs can be expressed as,

P
ij
=

n*1
…

↵=0
e
↵i
e
↵j
f
↵
= c

2
s
⇢�

ij
+ ⇢u

i
u
j
*

2c2
s
⇢

s
xx

S
ij
, (16)
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where s
xx

is a relaxation frequency for these moments. Since the 1st and 2nd terms in Eq. (16)’s RHS are functions of flow
quantities that can be obtained through zeroth-order moments of the DFs, the resolved rate of strain tensor can be expressed as,

S
ij
=

s
xx

2c2
s
⇢
{c2
s
⇢ �

ij
+ ⇢u

i
u
j
* P

ij
} =

s
xx

2c2
s
⇢
Q
ij
. (17)

Krafczyk et al. 32 further assumed that the Q
ij

’s are functions of the non-equilibrium part of the DFs, fneq↵ = f
↵
* f

eq

↵ and
provided their expressions as a function of the 2nd-order MRT moments 3p

xx
, p

zz
, p

xy
, p

yz
, and p

xz
(i.e., m9,11,13,14,15). This will

be detailed in the next section.
Similar to LES Eq. (11), they calculated the turbulent viscosity as,

⌫
T
= (C

S
�)2S =

s
xx

2c2
s
⇢
(C

s
�)2Q, with Q =

t

Q
ij
Q
ij
. (18)

To apply the LES with a LBM, one replaces ⌫ by ⌫ + ⌫
T

, which yields a new relaxation frequency (or relaxation time 1_s
xx

for
the 2nd-order moments,

s
xx

= 1
t0 + tT

with t
T
= 1

2

0

t

t
2
0 + 18(C

s
�)2Q * t0

1

, (19)

where t0 is the relaxation time based on the molecular viscosity defined before and t
T

includes e�ects of ⌫
T

.
Now, when applying a similar LES approach to the pLBM, the moments PP

ij
are those given by the last Eq. (14). Hence,

introducing Eq. (9) into Eq. (17) yields an expression for the perturbation rate of strain tensor that features nonlinear interaction
terms between the I and P fields similar to those of PP

ij
,

S
P

ij
=

s
xx

2c2
s
⇢

0

c
2
s
⇢�

ij
+ ⇢uP

i
u
P

j
+ ⇢uI

i
u
P

j
+ ⇢uP

i
u
I

j
* PP

ij

1

=
s
xx

2c2
s
⇢
Q
P

ij
. (20)

The rate of strain tensor for the total flow is thus given by,

S
ij
=

s
xx

2c2
s
⇢
Q
P

ij
+ SI

ij
. (21)

Therefore the Q term to use in LES Eqs. (18) and (19), in combination with the MRT pLBM Eqs. (12) to (15), is modified as
follows,

Q =
t

R
ij
R
ij
, with R

ij
= Q

P

ij
+

2c2
s
⇢
o

s
xx

S
I

ij
, (22)

where the QP

ij
terms are computed with Eq. (20).

Finally, based on Eq. (A14), which was derived by applying a Chapman-Enskog expansion to the equilibrium DFs of Eq.
(13), and replacing ⌫ by ⌫ + ⌫

T
for the LES, we find,

)u
P

i

)t
+ uP

j

)u
P

i

)x
j

= *1
⇢

) Ép
P

)x
i

+ (⌫ + ⌫
T
)
)
2
u
P

i

)x
j
)x

j

*
0

)u
I

i

)x
j

u
P

j
+ uI

j

)u
P

i

)x
j

1

, (23)

which is identical to the second perturbation NS Eq. (10), except for the last term, which is function of the spatial gradient of the
eddy viscosity. This term is not recovered also when using the standard LBM-LES scheme detailed before and, to the authors’
knowledge, no other LBM-LES method has been proposed that can do so. An alternate way of including this term in the LBM
model would be to add it as a body force term, such as B

↵
in Eq. (4). This, however, was not investigated further since results

of applications presented hereafter agreed well with their reference solution.

3 TURBULENT WALL MODEL

3.1 Overview
When simulating high Reynolds number flows around ocean structures (Re ¿ 106), with a LBM/pLBM or another computational
fluid dynamics method for that matter, one typically uses a wall model to represent the flow within the thin boundary layers
(BLs), near solid boundaries, rather than resolving it by refining the grid, which would be computationally prohibitive (even
using an adaptive grid refinement), due to the large range of spatial and temporal scales involved. In such a model, the flow
velocity is assumed to be one-dimensional, stationary, nearly wall-parallel, and well represented by a semi-empirical profile.
While the LES adequately resolves the large eddies and parameterizes the SGS turbulent dissipation within the bulk of the flow,
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Figure 2 Sketch of LBM/pLBM node DF ((—–) known, and (- - - -) missing) reconstruction and typical boundary layer (BL)
profile37 near a solid boundary/wall (here assumed to be 2D for simplicity). The wall parallel coordinate system is defined as
(x<, y<), based on unit normal and tangential vectors to the wall ( Çn, Çt). In this sketch, U

LES
= Éu2 and íx

i
= x

i
, as used in the text.

the wall model allows for an accurate representation of the large velocity gradients and corresponding shear stresses, that occur
near solid boundaries as a result of the no slip boundary condition on the walls.

In this section, we detail how the LBM/pLBM models detailed before are modified, in particular how the DFs are re-
constructed, at lattice nodes adjacent to solid boundaries, to include a turbulent wall model, together with a standard LBM
“bounce-back scheme”28,42. Our method is based on that proposed by Malaspinas and Sagaut34, who used Musker’s semi-
empirical profile37 in the BLs, which combines an experimentally validated turbulent outer region, with a logarithmic profile
(for y< À [�

i
,�

y
]), and a viscous sublayer, with a linear shear profile close to the wall (for y< < �

i
), “patched” in a transition

region (Fig. 2), i.e.,

u
x<(y+) = u

⌧

0

5.424 atan
0

2.0 y+ * 8.15
16.7

1

+ 0.434 log10

0

(y+ + 10.6)9.6
(y+2 * 8.15 y+ + 86.0)2

1

* 3.507279
1

, (24)

where u
x< denotes the mean velocity component parallel to the wall, in the local direction x<, and u

⌧
the friction velocity, and

y
+ the non-dimensional distance from the wall in the BL, are defined as,

u
⌧
=
˘

⌧
w
_⇢ and y

+ = y
< u⌧
⌫
, (25)

with the wall shear stress formally given by, ⌧
w
= �()u

x<_)y<) at y< = y
+ = 0.

In addition, within the BL region of the LBM/pLBM lattices, rather than using the LES Eq. (11) or (18), the turbulent eddy
viscosity is parameterized using a standard model2,

⌫
T
=
0

qD

12
Û

Û

Û

Û

)u
x<

)y<
Û

Û

Û

Û

, (26)

where , the von Kármán constant, is set to 0.384 based on experimental data38 and D = (1 * e
*y+
A+ ) is a Van Driest damping

function (with D = 0 at y+ = 0), which prevents an over-prediction of the eddy viscosity near the wall, with A+ = 26, the Van
Driest constant.

To more accurately represent e�ects of highly curved boundaries on the LBM-DF reconstruction within the BL, Malaspinas
and Sagaut’s wall model was modified as detailed below. Indeed, a large curvature will cause rapid changes in the distance to
the wall of the LBM nodes that are closest to the wall (q and x1, respectively, in Fig. 2), which will a�ect the accuracy of the
DF values calculated next to the wall.

The wall model will first be validated for a turbulent channel application, using LBM discretizations where nodes x1 are
located at various distances from the wall within the logarithmic BL region (Fig. 2). Then the model will be used to simulate
the flow around a NACA foil, whose geometry has some highly curved areas (e.g., near the nose).
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3.2 Combining the LBM/pLBM with the turbulent wall model
The wall model velocity profile and eddy viscosity (Eqs. (24) to (26)) are used to reconstruct the DFs at nodes that are nearest
the wall in the cross-wall direction, i.e., at locations x1 (distance q), together with velocity u2 computed in the LBM/pLBM
solution at time t, at the next layer of nodes that are closest in the cross-wall direction, i.e., at locations x2. As is standard in the
LBM “bounce back" type wall treatment, near solid boundaries, the DFs of particles moving away from the wall are assumed
to be unknown after the propagation step and, hence, must be reconstructed. In Fig. 2, these are the DFs for particle vectors
marked by dashed lines, for which e

↵
� Çn < 0, with Çn the local outward normal unit vector to the wall.

To apply the wall model, one first solves Éu2 = u
x<(y+2 , ⌧w) for the wall shear stress ⌧

w
, using Eqs. (24) and (25), with Éu2 the

module of the total flow velocity computed with the LBM or pLBM at node x2 (hence not just the perturbation flow in the latter
case) and tildes now indicating that flow parameters are computed using the wall model, within the BL. Then one computes
Éu1 = u

x<(y+1 , ⌧w) and the eddy viscosity ⌫
T 1 = ⌫

T
(q,D, )u

x<_)y<) calculated at x1, using Musker’s profile and Eq. (26). Details
of numerical methods are given in the next section.

Once the flow parameters are computed in the BL, the DFs are reconstructed at x1 and time t as,

f
↵
(x1, t) = f

eq

↵
( É⇢, Éu1) + fneq↵

0

) Éu
) Éy (x1)

1

, (27)

with feq↵ given by Eq. (5) or (13) for the LBM or pLBM implementations, respectively, Éu1 = Éu1Çt, with Çt the local tangential unit
vector to the wall, and ) Éu_) Éy = *) Éu_) Çn. Consistent with a thin BL assumption, we set É⇢ = ⇢(x2).

Based on earlier work32,34 and using Eq. (17), we have for the LBM,

f
neq

↵
= *

w
↵
⇢0D

c2
s
t
⌫

{e
↵i
e
↵j
* c2

s
�
ij
}S

ij
, (28)

where t
⌫
Ì t0 denotes a laminar relaxation time. For the pLBM, fneq,P↵ is calculated using SP

ij
= S

ij
* SI

ij
instead of S

ij
in Eq.

(28). In the BL, near the wall, the total or perturbed rate of strain tensors are computed using flow parameters computed at x1 as
detailed above. Similar to the eddy viscosity in Eq. (26), to prevent an over-estimation of fneq↵ for small y+ values near the wall
(within the lower turbulent and transitional regions of the BL), the non-equilibrium DFs are multiplied by a Van Driest damping
function D in Eq. (28).

We verified in applications that using the Van Driest damping function improves the convergence of the solution to its reference
data with grid refinement, over a larger range of y+ values. This is more particularly the case when there are highly curved
boundaries within a regular lattice, causing rapid variations in q along the boundary. We damped fneq↵ withD rather thanD2, as
for the eddy viscosity, based on a convergence test done for the turbulent channel application reported in Section 4.1. Note that,
using this non-physical damping function, the shear stress is not well resolved by Eq. (28), for y+ ô 0. However, this stress is
not used to compute forces acting on the boundary, which instead are based on the shear stress calculated using the macroscopic
Musker profile Eq. (24) and the Newton law of viscosity. Finally note that, we verified that if one attempted to reconstruct the
unknown values of fneq↵ using some combination of

≥

↵
f
(neq)
↵ = ≥

↵
e
i↵
f
(neq)
↵ = 0 and Eq. (27) with a known velocity gradient,

this would yield either an under-determined or inconsistent set of equations using a D3Q19 lattice scheme, depending on the
wall orientation and number of unknowns.

3.3 Numerical implementation of wall model in the LBM
As indicated above, to evaluate the macroscopic variables of interest at each time t in the BL region of the LBM lattice (i.e., at
nodes x1; Fig. 2), equation Éu2 = u

x<(y+2 , ⌧w) must first be solved for the wall shear stress ⌧
w

and friction velocity u
⌧
, using Eqs.

(24) and (25), the flow velocity computed at current time with the LBM at x2, and assuming É⇢ = ⇢(x2). This equation is solved
using Newton iterations, with Éu2 = u(x2, t)�Çt, the local projection of the LBM-LES velocity in the (tangential) direction parallel
to the boundary Çt. Once u

⌧
is known, the flow variables at nodes x1 are computed with Eq. (24), i.e., u

x<(y+1 ) and )u
x<_)y<(y+1 )

and the corresponding eddy viscosity ⌫
T 1 is computed with Eq. (26).

Based on these flow variables, the 2nd-order DF moments (and DFs) are reconstructed at nodes x1 of the LBM lattice using
the relaxation frequency,

s
xx

= 1
t0 +

⌫
T 1
c2
s

(29)

instead of using the LES relaxation frequency defined in Eq. (19).
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When applying the wall model and related methods to an arbitrary boundary geometry, a shift in reference frame is needed,
such that the local x<-axis points towards the local streamwise direction Çt and locations x1 and x2 align with the outward wall-
normal direction Çn (Fig. 2). Accordingly, locations x2 in the LBM lattice are found by first finding the direction ↵ in the D3Q19
lattice yielding the largest normalized distance, (e

↵
�* Çn)_e

↵
, in the wall-normal direction, at the closest lattice nodes x1, with

Çn the corresponding outward unit normal vector at the wall; then x2 = x1 + e
↵
�t is computed. When the wall does not coincide

with lattice nodes, a small (but acceptable) geometrical error will occur as no e
↵

will perfectly align with the wall normal at x1.
To apply this method, for each selected x1, both Çn and q must thus be computed at/from the closest point on the boundary to

x1. To do so, the geometry of arbitrary curved boundaries is locally approximated by a polynomial (e.g., see Section 4.2) and the
minimum distance to x1 is found by Newton iterations, here using a maximum error of �x_12 to limit the number of iterations.
Because both the considered objects and the LBM nodes are stationary, these computations of Çn and q are done at the start of
simulations (t = 0) for all x1 locations. The tangential direction Çt, however, which is aligned with the streamwise flow, is time
dependent. Following Malaspinas and Sagaut34, it is found at each time t based on the LBM-LES flow velocity computed at x2
as,

Çt =
u2 * (u2 � Çn) Çn
u2 * (u2 � Çn) Çn

. (30)

Finally, note that for highly curved boundaries, there are situations where, for a given x1, the associated x2 also requires a
separate wall model evaluation (i.e., x2 also has lattice links that cross the solid boundary). Special consideration of these cases
is needed to avoid a race condition during parallel implementation of the model.

3.4 Modified wall model implementation for the pLBM
To apply the wall model with the pLBM, one needs to consider the total flow, u = uI + uP (where uI is known at time t from
the inviscid solution in the hybrid model) when reconstructing the BL solution, hence, Éu2 = (uI + uP ) � Çt at x2, when solving
for ⌧

w
using Musker’s profile. The inviscid flow components are removed once the total solution is found. The equilibrium DFs

in Eq. (27) are now those given by Eq. (13) and Eq. (30) becomes,

Çt =
(uI2 + uP2 ) * ((uI2 + uP2 ) � Çn) Çn
(uI2 + uP2 ) * ((uI2 + uP2 ) � Çn) Çn

. (31)

4 APPLICATIONS

4.1 Simulation of a turbulent channel flow
We assess the accuracy of the pLBM, with a LES and the turbulent wall model detailed before, for simulating turbulent flows
in a horizontally bi-periodic channel in (x, z), bounded by two flat plates separated by a distance H in the vertical y direction.
Results for various Reynolds numbers and discretizations are compared with those of DNS simulations26, the semi-empirical
profile of Musker37, and laboratory measurements9. Although this benchmark was considered before, to validate LBM-LES34

and pLBM-LES40,41 simulations with a wall model, here, we present a more complete investigation that considers a wider range
of grid resolution, analyzes some turbulent properties of the flow, and demonstrates convergence of the friction coe�cient and
force applied to the plates.

Simulations are performed in a domain of x-length L = 2⇡H , y-height H , and z-width W = ⇡H , with rigid boundaries
specified at y = 0 and y = H , over which the turbulent wall model is applied. Periodic boundary conditions are specified in the
2 horizontal directions at x = 0 and L (streamwise) and z = 0 and W (cross-stream). The flow is forced through the channel
using a body force term, B

↵
, in the LBM Eq. (4) and adding it to Eq. (12) for the pLBM simulations, based on an acceleration

G
↵
= F e

x
with F computed from a control volume approach as7,34,

F = 2
H

{u2
⌧
+ u

m
(u
m
* u)} (32)

in which u denotes the instantaneous space-averaged x-component of the velocity, u
⌧

is the space-averaged friction velocity for
the flow past the plates, given by Eq. (25) and based on the velocity profile in the wall model (Eq. (24)), and u

m
is the target bulk

(mean) flow velocity (i.e., averaged over y) obtained from Dean9’s correlation between the friction Reynolds number of the flow
computed as, Re

⌧
= (H_2)u

⌧
_⌫ and the corresponding bulk Reynolds number Re

m
= Hu

m
_⌫, i.e., Re

m
= 14.641Re8_7

⌧
.



Hybrid LBM-LES flow modeling 11

In the pLBM, a steady uniform inviscid velocity is specified in direction x as, uI = (U , 0, 0), computed with the wall model
Eq. (24) at y = H_2, i.e., U = u

x<(y+m). The Smagorinsky coe�cient used in the LES is C
S
= 0.16 in all simulations, which is

in the middle of the range of recommended values. Each simulation is run until a fully turbulent flow, with quasi-steady mean
velocity and pressure, is achieved.

Simulations are performed for three friction Reynolds number values, the first two being those also used by Malaspinas and
Sagaut34, Re

⌧
= 950, 2,000, and the third value being much larger, Re

⌧
= 20, 000; using9’s experimental correlation, these

correspond to bulk Reynolds numbers, Re
m
= 37, 042, 86,773, and 1.21 ù 106. Each case is simulated using 4 di�erent LBM

discretizations, �x = �y = �z = H_(2N), with N = 10, 20, 30, and 40. The full channel width is thus discretized with 2N
LBM nodes in the y direction.

In each simulation, the friction force F
f

applied to the plates in direction x is computed as detailed below, with the corre-
sponding friction coe�cient defined as,C

f
= F

f
_( 12⇢u

2
m
A), withA = 2WL the wetted area of the plates. The total force applied

to the plates is formally defined as,

F =
   

A

{p Çn + ⌧
w
Çt} dA. (33)

In the present application, due to symmetry with respect to y = H_2, the mean normal component of the total force is zero and,
in any case, its instantaneous value does not contribute to the friction force in the x direction. In view of this, considering the x
direction and discretizing the above equation over the LBM lattice yields,

F
f
=

Q
…

i=1
⌧
i

w
(�x)2, (34)

whereQ denotes the total number of plate boundary nodes in the lattice. In the standard LBM, ⌧
w

is usually computed using the
non-equilibrium component of the second-order moments defined in Eq. (16). However, this approach may not be su�ciently
accurate since the stress vectors acting on the boundary have to be extrapolated to it from the nearest lattice nodes35. Here,
instead, the wall shear stress is more accurately computed using the values obtained using the wall model for each pair of nodes
(x1, x2) (Fig. 2).

Figs. 3a-c show the x-component of the mean velocity, averaged in the x direction, u+ = Éu_u
⌧
, computed with the pLBM-

LES model as a function of the non-dimensional distance y+ across the channel, compared to Musker’s profile. Results of
the 4 discretizations agree well with each other and with Musker’s semi-empirical profile, for each of the 3 Reynolds number
values, confirming that the wall model allows accurately simulating the near-boundary flow with the pLBM, for a wide range of
discretizations and, hence, y+ locations of the first o�-wall node in the lattice, x1 (about 10 to 1,000). For these simulations, Fig.
3d shows the bulk friction coe�cient C

f
computed as a function of Re

m
with the pLBM, based on Eq. (34), compared to the

mean experimental value9; the upper and lower bounds of these measurements are marked in the figure, indicating a significant
experimental variance.

Fig. 4 shows statistics of the resolved turbulent velocity fluctuations plotted as a function of the scaled distance from a plate,
in the form of scaled filtered stresses *R

ij
_⇢ = u

®
i
u
®
j
, i.e., (u®

i
u
®
j
)+
rms

=
t

u
®
i
u
®
j
_u

⌧
, computed with the pLBM-LES model, with

the wall model, using N = 40 nodes over the channel half height, for Re
m

=37,042 and 87,000. Results are compared to those
of direct NS (DNS) simulations26. Overall, the pLBM-LES results agree well with the DNS reference data, but all the turbulent
statistics are under-predicted near the plate (mostly for y < 0.1H), indicating that the turbulent kinetic energy k of the flow is
too low in the model near the wall. This is likely due to the use of Musker’s mean velocity profile (Eq. (24)) in the wall model,
which assumes that there are no mean pressure or velocity gradient in the x direction. A more advanced non-equilibrium model
that does not make these hypotheses would likely improve the results.

As stated in Section 3, when Eq. (28) was used without the Van Driest damping (D = 1) to compute the non-equilibrium DFs
in the wall model34,40,41, the solution diverged near the wall for Re

⌧
= 950 and 2,000, with the finest discretization and in the

calculation of C
f

. The present results, which use the complete Eq. (28), show a significant improvement in the convergence of
the wall model solution with the finer grid (see Figs. 3c,d and 4).

Finally, for the sake of brevity, results of the LBM-LES model are not shown for this application, as they were closely identical
to the results of the pLBM-LES model, both using the wall model.
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(a) (b)

(c) (d)

Figure 3 Results (symbols) of turbulent channel flow simulations. (a-c) Semi-log plots of mean scaled velocity u+ = Éu_u
⌧

as
a function of the distance y+ from one plate, for a half-channel, computed using the pLBM-LES with a wall model, for Re

m
=

(a) 37,042, (b) 87,000, and (c) 1.21ù106, with a grid resolution N = (÷) 10, (∑) 20, (À) 30, and N = 40 (⁄). Musker37’s
profile (——) is shown for comparison. Note, for clarity, results for N = 20, 30, and 40 were shifted by �u+ = 10, 20, and 30,
respectively. (d) Friction coe�cient C

f
on the plates as a function of Reynolds number, computed with the pLBM (symbols),

compared to Dean9’s experimental data: mean (——) and upper/lower bounds (- - - -).

4.2 Simulations of turbulent flow around a submerged foil
4.2.1 Overview
We simulate the more realistic case of the turbulent flow around a three-dimensional foil, with a NACA-0012 profile in the x-
streamwise direction, forced by a uniform inviscid free-stream velocity uI = (U , 0, 0). Due to the foil highly curved boundary
near its nose and large gradients of both the inviscid and perturbation fields near the foil, this is a significantly more rigorous test
of the LBM/pLBM-LES models, with the wall model implementation. Simulations are performed for a high Reynolds number
value, Re = UC_⌫ = 1.44 ù 106 (with C the foil chord) at 3 angles of attack of the foil, ✓ = 0˝, 4˝, 8˝.

In this application, we use versions of the models developed for nested grid simulations, and run each simulation for 4 nested
grid levels (referred to as Grids 0 to 3 from coarse to fine; Fig. 5), each with 4 di�erent discretization �x_C values, in order to
assess the convergence of model results with grid resolution. To ensure a smooth transition of the computed solution between
nested grids, we specify a 3 lattice nodes overlap between the boundary of a domain and the boundary of a nested (finer)
domain. The DFs are passed between nodes in this overlapping region of nested meshes using a method proposed earlier11 for
the LBM and applied by O’Reilly et al. 42 to the pLBM. Nested grid discretization ratios used in the present application, which
are listed in Fig. 5a, vary from 4 to 2, with the reference discretization being the finest one in Grid 3, that encompasses the foil.
In simulations, the Grid 3 resolution is set to �x_C = 4.0 ù 10*3, 3.5 ù 10*3, 3.0 ù 10*3, or 2.5 ù 10*3.

The turbulent wall model described in Section 3 is applied over the entire foil surface, so it is assumed that no laminar to
turbulent transition occurs along the foil boundary during simulations, as the flow moves from the foil nose to its trailing edge.
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(a) (b)

Figure 4 Statistics of velocity fluctuations, in turbulent channel flow simulations with: (bullets) the pLBM-LES model with the
wall model and N = 40, and (lines) a DNS model26, for Re

m
= (a) 37,042, and (b) 87,000. The scaled root-mean-square (rms)

of products of velocity fluctuations, (u®
i
u
®
j
)+
rms

=
t

u
®
i
u
®
j
_u

⌧
is plotted as a function of the distance from a plate for: (i = j = 1)

(÷), (i = j = 2) (÷), (i = j = 3) (÷), and (i = 1, j = 2) (÷).

(a) (b)

# Min. Extent Dimensions Nesting
(x, y, z)_C (x, y, z)_C Ratio

0 (-23.7 -30.0 -0.3) (72.0, 60.0, 0.8) 32
1 (-1.85 -1.5 -0.1) (6.0, 3.0, 0.4) 8
2 (-0.45 -0.25 0.0) (3.0, 1.0, 0.25) 2
3 (-0.1 -0.125 0.025) (1.7, 0.25, 0.2) 1

Figure 5 Nested grid set-up for LBM/pLBM-LES simulations of turbulent flows around a submerged foil of chord C , with a
NACA-0012 profile in (x, y) streamwise direction, with its leading edge located at x = y = z = 0. LBM simulations are run
in Grids 0-3, but pLBM simulations only use Grids 1-3. The foil span S extends to the cross-stream boundaries (z-direction)
of each grid, to the outermost lateral boundary. (a) Grid geometry and mesh size parameters. b) Sketch (not to scale) of nested
boundaries of Grids 1-3 (black lines) with the foil marked in orange.

With the grid setup in Fig. 5, a maximum value y+ = 292 was found in the wall model, for the first lattice node o� the foil
boundary, when using the coarsest mesh for ✓ = 8˝, which in view of the previous application should be acceptable (see Fig. 3c).

Assuming a foil chord length C = 1 m and that the simulations take place in air (⌫ = 1.5 ù 10*5m2/s), for the assumed Re
value, we find the free stream velocity, U = ⌫Re_C = 21.758 m/s and, assuming c

s
= 343 m/s (for air at 20C), we match the

simulated Mach number to its physical value as, Ma = U_c
s
= U

®_c®
s
= 0.063. The associated physical time step and LBM

scaling parameters can now be found as detailed in Section 2.2.
In the following, we compare the LBM or pLBM simulation results to wind tunnel measurements21,45 and to results of the

commonly used airfoil analysis model Xfoil10. Gregory and O’Reilly21 measured flow parameters for NACA-0012 foils of
varying roughness, at Re = 1.44 ù 106, and Sheldahl and Klimas45 performed similar experiments at Re = 1.36 ù 106. In
these experiments, the flow was allowed to freely transition from laminar to turbulent regimes (i.e., no trigger wires were used)
and e�orts were made to eliminate 3D e�ects such as tip vorticies. Xfoil is a 2D BEM potential flow solver that simulates the
boundary layer and trailing wake using an integral boundary layer formulation. All the Xfoil simulations were run to match the
Mach and Reynolds numbers values of the LBM/pLBM simulations, using 200 BEM panels on the foil surface (which ensured
convergence), and a turbulent boundary layer was specified along the foil boundary that developed streamwise from its leading
edge.
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Results of the LBM/pLBM simulations are used to compute the classical airfoil performance metrics, which are compared
with the reference experimental and numerical data in the following sections. These are the pressure coe�cient distribution
C
P
(x) obtained from the calculated mean pressure distribution along the foil boundary p(x), and the lift and drag coe�cients

(C
L
,C

D
) obtained from the mean hydrodynamic force applied to the foil, computed by integrating the pressure and shear stress

(p, ⌧) along the foil surface, formally given by Eq. (33), with F
L
= F � e

y
and F

D
= F � e

x
, i.e.,

C
P
(x) =

p(x) * p
a

1
2⇢U

2
, C

D
=

F
D

1
2⇢U

2CS
and C

L
=

F
L

1
2⇢U

2CS
, (35)

with p
a

the reference ambient pressure. In the present application, the force F applied to the foil is computed in the LBM and
pLBM simulations using the momentum exchange method28.

4.2.2 Simulations with the LBM-LES, with turbulent wall model
To simulate this application with the standard LBM model, relevant boundary conditions are specified in Grid 0 (Fig. 5a), i.e.:
(i) periodic DFs along the cross-stream/sidewall boundaries (at z = *0.3C , 0.5C); (ii) a free stream velocity uÿ = (U , 0, 0) on
the inlet/top/bottom boundaries (x = *23.7C , y = ±30C), by way of setting the DFs to, f

↵
= f

eq

↵ (⇢
a
,uÿ); (iii) a zero normal

gradient of the DFs, )f
↵
_)x = 0 on the outlet boundary (x = 48.3C). Preliminary simulations, not shown here, confirmed that

the domain boundaries in the (x, y) directions were su�ciently far enough away from the foil, to prevent any spurious e�ect on
the computed flow around the foil, and that the domain was wide enough in the spanwise (z) direction to allow for the largest
eddies to develop in a 3D manner, which is particularly important to the LES.

In the simulations quasi-steady mean fields (i.e., a fully developed turbulent flow) were achieved after 3 seconds for a foil angle
of attack, ✓ = 0˝ or 4˝, and 5 s for ✓ = 8˝. Simulating 1 s of the flow in the finest resolution used for Grid 3, �x_C = 2.5ù10*3,
required 5.1 h of computations on a NVIDIA® Tesla® K80 GPU, in single precision. Further results also showed that if Grid 3’s
discretization was further refined, double precision calculations were required to achieve convergence in the Newton iterative
scheme used to invert Eq. (24) in the wall model; which led to longer computations and also to having less memory available to
store the grid on the GPU. Using an explicit wall model that does not require an iterative solution could thus potentially increase
our model’s computational e�ciency. This was proposed by Wilhelm et al. 48, in their LBM-RANS simulations, who assumed
a power law for the velocity profile within the entire BL. However, such BL profiles would yield less accurate results within the
linear shear and transitional BL profile regions and, hence, less accurate computations of forces applied to the foil.

Fig. 6 shows results of the grid convergence simulations with the LBM-LES model, for C
L

and C
D

, computed as a function
of the foil angle of attack using Eq. (35), with the hydrodynamic forces being averaged over the last 10% of each simulation;
Xfoil results and experimental measurements21,45 are shown for comparison. The figure both demonstrates a good convergence
of the computed coe�cients, and a good agreement of those obtained in the finest grid with the experimental measurements
and with Xfoil results. This is more so for the lift coe�cient, which essentially results from di�erences in the dynamic pressure
distribution along the upper and lower boundaries of the foil. In the LBM model, as with any NS solver, pressure is more
accurately simulated than shear stresses, which both depend on the solution in the lower BL and, in this application, are much
smaller than pressure, leading to drag coe�cients also smaller by an order of magnitude than the corresponding lift coe�cients.
This is also reflected in the experimental measurements that show, for each angle of attack, a wider range of values obtained
for C

D
than for C

L
, as a function of foil roughness and small di�erences in Re values. Both the LBM and Xfoil results for C

D

are well within this experimental uncertainty. Note that in experiments, the rough foil has larger C
D

values, because both skin
friction is larger due to the increased roughness and the added roughness also trips a turbulent BL close to the leading edge of
the foil, further increasing shear stresses and drag. In the LBM simulations, we assumed a fully turbulent BL over the entire
foil. Accordingly, our calculated C

D
values in the finest grid resolution are in better agreement with measurements made for a

smooth foil; this observation also applies to Xfoil results.
Fig. 7 shows the distribution of the pressure coe�cient C

P
(x) along the upper and lower boundaries of the foil, at angles of

attack ✓ = 0˝ and 8˝, computed with the LBM-LES model using Eq. (35), in the 3 finest discretization used for Grid 3 (Fig. 5),
compared to Xfoil results. The figure demonstrates a good convergence of LBM results as a function of grid resolution, with the
finest grid results agreeing well with Xfoil results. Note that, the pressure applied to the foil surface was calculated by linearly
extrapolating that computed at the lattice nodes closest to the foil boundary. As the LBM uses a Cartesian grid, however, here
as in most LBM simulations of the flow around a highly curved body, small spurious oscillations of the extrapolated pressure
occur near the body surface. To reduce these oscillations, a 7-point moving average filter was applied to the computed pressure
before calculatingC

P
; as seen in Fig. 7, however, the latter still exhibits small oscillations. Another important factor for reducing
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Figure 6 LBM-LES simulations of (a) lift, and (b) drag coe�cient for a NACA-0012 foil profile, as a function of the angle
of attack ✓, for Re = 1.44 ù 106 with a Grid 3 resolution �x_C (Fig. 5): (÷) 4.0 ù 10*3, (÷) 3.5 ù 10*3, (÷) 3.0 ù 10*3, and
(÷) 2.5 ù 10*3.; compared to: (↵) Xfoil results and measurements pf Gregory and O’Reilly21 for Re = 1.44ù 106, for rough (—)
and smooth (- - -) foils, and Sheldahl and Klimas45 at Re = 1.36 ù 106, for a smooth foil (– - –).
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Figure 7 Pressure coe�cients (plotted as *C
p
) along a NACA-0012 foil upper and lower boundaries, calculated with the LBM-

LES model for Re = 1.44ù 106 with a Grid 3 resolution (Fig. 5): �x_C = (—) 3.5ù 10*3, (—), 3.0ù 10*3, and (—) 2.5ù 10*3,
at angles of attack: (a) ✓ = 0˝ and (b) 8˝, compared to (—) Xfoil results.

pressure oscillations, as noted by Wilhelm et al. 48, is to define the grid and foil geometry such that the smallest distance q of the
nearest LBM nodes to the boundary (Fig. 2) is neither too small nor too large. Here we ensured that, in Grid 3, q

min
Ù 0.1�x

when applying the wall model. We found that further decreasing this minimum distance increased pressure oscillations, while
increasing it yielded a smoother pressure distribution, at the expense of an accurate representation of the foil geometry, and, in
this application, a decrease in the drag coe�cient.

4.2.3 Simulations with the pLBM-LES, with turbulent wall model
To simulate this application with pLBM-LES with the wall model, the inviscid flow solution uI

i
must first be computed. Here,

because of the simple geometry, this is done using an analytical solution by first approximating the NACA-0012 foil by a Kármán-
Tre�tz foil profile, for which there exists a conformal transformation that maps the foil onto a circular cylinder, for which the
analytical solution is trivial (i.e., the superposition of a uniform flow with a doublet). The inviscid solution is then used to force
the perturbation flow u

P

i
, which is solved in the pLBM. Because the far-field flow is exactly known from the inviscid solution,

the pLBM model domain can be smaller than that required to apply the LBM, for a similar accuracy. Specifically, Grid 0 is
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(a) (b)
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Figure 8 (a) Comparison of the Kármán-Tre�tz foil profile (—), used to compute the potential (inviscid) flow component of the
flow around the NACA-0012 foil profile (—-) in he pLBM. (b) Module of flow velocity calculated with the pLBM at steady state,
for �x_C = 2.5 ù 10*3 and ✓ = 4˝: (top) total velocity, u

i
= u

I

i
+ uP

i
; (middle) inviscid velocity, uI

i
; and (bottom) perturbation

velocity, uP
i

.

not used in the pLBM simulations, and Grid 1 is slightly extended outwards, by 3C units, in the x and y directions. While this
already represents a significant reduction of the domain size/number of unknowns, relative to the LBM, we believe that one
could still further reduce the size of the pLBM domain, within the same result accuracy; this will be assessed in future work. For
Grid 1, boundary conditions are specified as: (i) periodic DFs along the sidewall boundaries (z = *0.1C , 0.3C); (ii) a vanishing
perturbation solution, i.e., pP = u

P

i
= 0 on the x and y extremities of the domain42.

As indicated, the inviscid flow solution is analytically calculated by applying the Kármán-Tre�tz conformal mapping
function31,

z = F (⇣ ) = �a
(⇣ + a)� + (⇣ * a)�
(⇣ + a)� * (⇣ * a)�

(36)

which transforms a circle of radiusR centered at (⇠
c
, ⌘
c
) in the complex plane ⇣ = ⇠+i⌘ to a foil in the complex plane z = x+iy,

when a = R + ⇠
c

and � = 2 * ↵_180, with ↵ denoting the angle (in degree) of the foil trailing edge. A symmetric foil (without
camber), such as a NACA-0012 foil, is obtained by setting, ⌘

c
= 0.

The Kármán-Tre�tz transformation Eq. (36) is first used to find the values of a, R and � that yield a best fit with the NACA-
0012 foil geometry. Then the corresponding complex potential, W (F (⇣ )) = �

I (x, y) + i  
I (x, y) of the flow around the foil

(with  I the stream function) is computed, and the complex flow velocity, F (z) = u(x, y) * i v(x, y) is finally found as,

F (z) = dW (⇣ (z))
d⇣

0

dF
d⇣

(⇣ (z))
1*1

with W (⇣ ) = U

0

⇣ + R
2

⇣

1

. (37)

where ⇣ (z) is found by inverting Eq. (36). More details of this mapping method can be found in references31.
To best fit the NACA-0012 foil geometry (Fig. 8a), whose trailing edge angle is ↵ = 8.5˝, yielding � = 1.9528, we found

(⇠
c
= *0.019, 0) for the circle center in the ⇣ -plane, with a radiusR = 0.273, hence, a = R+⇠

c
= 0.254. Using these parameters,

Fig. 8b (middle) shows the module of the inviscid velocity around the foil, F  =
˘

u2 + v2, calculated using Eqs. (36) and
(37). Note that although this potential flow model provides a close fit, this Kármán-Tre�tz foil has a slightly smaller chord,
0.9972C and thickness 0.1192C than the NACA-0012 foil, which has a thickness 0.12C for a chord C . Hence, there will be
slight errors in the computed inviscid fields. More accurate results would be obtained by solving potential flow equations for the
actual NACA-0012 foil geometry using a higher-order Boundary Element Method. This will be reported on elsewhere41,36,23.

Fig. 8b shows the module of the inviscid uI
i

(middle), perturbation uP
i

(bottom), and total flow u
i
= u

P

i
+ uI

i
(top) components

around the foil, in the finest discretization �x_C = 2.5 ù 10*3, for ✓ = 4˝. Qualitatively, the total flow appears reasonable,
showing larger/lower velocities near the nose along the upper/lower boundaries of the foil. As no circulation is included in the
analytical solution from Eq. (37), per d’Alembert paradox, no force will be applied to the foil as a result of the inviscid flow.
Hence, the pLBM solution must (and will) supply the additional perturbation flow (see Fig. 8b (bottom)) that creates a circulation
around the foil (equivalent to a Kutta condition at the trailing edge) and causes lift and drag forces on the foil. Note that at high
angles of attack, the velocity resulting from the additional perturbation flow is in fact not small around the foil.
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(a) (b)

Figure 9 Lift (top) and drag (bottom) coe�cient of a NACA0012 foil, as a function of its angle of attack. pLBM simulation
results, calculated at Re = 1.44 ù 106, are plotted as dots, for minimum Grid 3 resolution (�x_C) of: 4.0 ù 10*3(÷), 3.5 ù
10*3(÷), 3.0 ù 10*3(÷), 2.5 ù 10*3(÷). Xfoil simulation results are plotted as black diamonds (↵), the measurements of Gregory
and O’Reilly21 for Re = 1.44ù106 for a rough foil (—), and smooth foil (- - -), and the measurements of Sheldahl and Klimas45

at Re = 1.36 ù 106 for a smooth foil (– - –).

Fig. 9 shows results of applying the pLBM model to compute the flow around the NACA-0012 foil, using 3 levels of nested
grids and 4 increasingly fine discretizations, similar to the computations shown in Fig. 6 for the LBM. As before, the calculated
forces, and hence the lift and drag coe�cients (C

L
,C

D
), are averaged over the last 10% of each simulation. Comparing the LBM

and pLBM results, we see that overall the coe�cients computed using the finest discretization are in good agreement with each
other, and that the pLBM results agree as well with the reference data from Xfoil and the laboratory experiments as the LBM
results, although the predicted drag coe�cient may be slightly too small at the lower angles of attack. Fig. 10 shows the pressure
coe�cients computed for the total, inviscid, and perturbation flows around the foil, with �x_C = 2.5 ù 10*3, for the cases that
were simulated with the LBM (Fig. 7). Similar to the LBM results, the total pressure coe�cient C

P
is in good agreement with

Xfoil results, although slightly worse than the LBM results near the nose on the upper boundary of the foil (x_C < 0.13).
The slight underprediction of C

L
and C

P
in the pLBM results, for the latter near the foil nose, is likely a result of using

an inviscid flow solution corresponding to the slightly di�erent Kármán-Tre�tz foil, rather than the actual NACA-0012 foil
geometry. As shown in Fig. 8a, the former foil is thinner than the NACA foil near both its leading (nose) and trailing edges. This
likely results in a slight underprediction of uI

i
near the leading edge, which leads to an underprediction of the maximum of -C

P

in this area (Figs. 10c,d), which a�ects the lift coe�cient. Near the trailing edge of the foil, with a non-zero angle of attack, the
high inviscid velocities (Fig. 8b) require a larger correction from the perturbation solution, to provide circulation. This is also
true for the pressure, as seen in Figs. 10b,d, where there are large perturbation components near the trailing edge. Hence, a more
accurate representation of the NACA foil geometry, and corresponding inviscid flow fields, would likely improve the solution
in these areas and the resulting force coe�cients. As indicated before, such a solution could be obtained using a BEM model.

Nevertheless, the results presented here demonstrate that the pLBM can accurately compute the flow around and forces applied
to the foil, when forced by an (even slightly approximate) inviscid flow solution. The pLBM solves more complicated equations
(due to the inviscid forcing terms), however, in a smaller domain and hence with an improved computational e�ciency. Using
the finest resolution grids, the pLBM required Ì 4.8 h to compute 1 s of simulations on the same hardware as used for the LBM,
which only represents a slight speed-up. However, steady-state results were achieved after only 2 s whereas it took 3 s to do so
using the LBM, which means, in this application, the overall speed-up resulting from using the pLBM was 37%.

5 CONCLUSIONS

In this paper a hybrid-LBM model proposed earlier and applied to DNS simulations of flows around structures at moderate
Reynolds number values was extended to apply to high Reynolds number fully turbulent flow, by implementing a LES with a wall
model. The hybrid solution performed in the pLBM model is based on a Helmholtz decomposition of the total flow with inviscid
and perturbation flow components. In the presented applications, the inviscid/potential flow solution is computed analytically,
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(a) (b)

(c) (d)

Figure 10 Pressure coe�cients (plotted as *C
p
) along the NACA-0012 foil upper and lower boundaries, calculated with the

pLBM-LES model for Re = 1.44 ù 106 with a Grid 3 resolution �x_C = 2.5 ù 10*3, at angles of attack: (a,c) ✓ = 0˝, and
(b,d) 8˝, compared to Xfoil results (—). (a,b) perturbation/inviscid components, CP

P
(—)/CI

P
(—), and (c,d) total coe�cient,

C
P
= C

I

P
+ CP

P
(—).

but this could be done e�ciently using a BEM model. To implement the LES in the pLBM equations, we show that perturbation
DFs can be used and provide proof that the solution converges to the that of the perturbation Navier-Stokes equations.

Results show that even for fully turbulent flows in a channel or around a foil, the perturbation solution is able to provide
the large correction to the potential flow required to achieve an accurate solution for the total flow. In the foil simulations, in
particular, accurate lift coe�cients are obtained for a range of angles of attack, without the need to supply a circulation to the
inviscid solution (e.g., through a Kutta condition at the trailing edge). This indicates the possibility for the pLBM to correct
an inviscid solution in future applications where 3D e�ects would be larger and for instance tip vortices and viscous spanwise
flows would become more important. While only a small 37% computational speed-up relative to the LBM was achieved in
the application of the pLBM to a NACA-0012 foil, which still is a fairly 2D flow, no attempt was made to assess whether
the computational domain dimensions could be reduced without significantly a�ecting the pLBM results, which could further
increase the computational speed-up. This will be assessed in future work, also using a more accurate BEM-based inviscid
solution. Finally, higher speed-ups would be expected in other types of applications, where the bulk of the computations would
not be devoted to applying the wall model to the lattice nodes located near the foil and also for truly 3D cases (e.g., underwater
vehicles), for which the reduction in computational domain size would also apply to the cross-stream (z) direction. Further
speed-up is also anticipated for applications with free surface e�ects as the perturbation solver will no longer need to propagate
waves over large distances away from a submerged body.
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APPENDIX

A CONVERGENCE OF PLBM SIMULATIONS TOWARDS RESULTS OF THE
PERTURBATION NS EQUATIONS

In the LBM literature, the Chapman-Enskog (CE) perturbation expansion has been used as a standard tool to demonstrate the
macroscopic behavior of LBM model formulations20,28,3,42. In CE expansions, the expansion parameter ✏ is usually proportional
to the ratio of the lattice grid size �x to a characteristic macroscopic length (e.g., l). In the following, the CE analysis is applied
to the perturbation equilibrium particle density functions (pEPDFs), defined in Eq. (13) for the pLBM, to shows that these
indeed yields a solution that converges towards that of the perturbation NS Eqs. (10) (except for their last term, as noted before).

A.1 CE expansion
Let us first consider the following quantities and scales. To simplify notations, time derivatives )_)t are denoted by )

t
and spatial

derivatives )_)x
i

by (
i
. Assuming that, ✏ = �x_l ~ 1, the particle density functions (DFs) are expanded as,

f
↵
= f

(0)
↵

+ ✏f (1)
↵

+ ✏2f (2)
↵

+ O(✏3) with )
t
= ✏)

t1
+ ✏2)

t2
+ O(✏3) and (

i
= ✏(

i
(A1)

With these definitions, the Taylor series expansion of the LHS of Eq. (4) reads,
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+ e
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↵
(t, x

i
) + O(✏3), (A2)

Introducing Eqs. (A1) and (A2) in Eq. (4) and collecting terms of di�erent orders yields, to the first-order (zeroth-order in ✏)20,28,

O(1) : 0 = *�t
⌧
(f (0)
↵

* feq
↵
), (A3)

hence f 0
↵
= f

eq

↵ .
Defining the operatorD

↵
= )

t1
+e

↵i
(
i
, the particle DF components of O(✏) and O(✏2) are then defined as the non-equilibrium

components of the particle DFs, fneq↵ , i.e.,
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Substituting Eq. (A4) into Eq. (A5) yields,
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A.2 Particle DF moments
Computing the zeroth-order moment of Eq. (A4) and using the pEPDFs from Eq. (13) recovers the conservation of mass equation
for the perturbation NS equations,

n
…
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…

↵=1
e
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i
u
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i
= 0, (A7)

while the inviscid mass conservation equation is recovered when the inviscid form of the EPDFs are used42,

⇢
o
(
i
u
I

i
= 0. (A8)

Taking the first-order moment of Eq. (A4) and using the pEPDFs from Eq. (13) recovers the leading order terms of the
perturbation NS equations,
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and the inviscid momentum conservation equations (Euler equations) are recovered when the inviscid form of the EPDFs of Eq.
(5) are used42,
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The latter confirms that Euler equations are exactly represented in the LBM when using the inviscid form of the EPDFs in Eq.
(5), feq,I↵ . This is unlike NS or perturbation NS equations, in which non-equilibrium components of the EPDF’s must be included
to represent viscous e�ects. Therefore, in the hybrid modeling context, this implies that an inviscid potential flow field satisfying
Euler equations can be exactly mapped to the LBM variables using feq,I↵ . Finally, this confirms that the decomposition method
used to derive Eqs. (13) does not need to consider fneq,I↵ terms or their moments, since these are zero by definition.

Based on these conclusions, one may infer that the numerical kinematic viscosity of the pLBM can be selected as identical
to that obtained from the CE of the standard LBM. This is confirmed by taking the first-order moment of Eq. (A6), and then
applying Eq. (13),
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where the first moment of f (1,P )
↵

is zero in the absence of a body force, and its second moment found by considering, ✏⇧(1,P ) =
⇧ * ⇧(0,P ), with,
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and giving,
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The perturbation momentum conservation equations is finally recovered to within O(✏2) and O(Ma2), from Eqs. (A9) and (A11)
as,
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when the viscosity is defined as,

⌫ =
0
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1

c
2
s
, (A15)

which confirms that the standard LBM relaxation time is suitable for use in the pLBM.
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