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Abstract

Given the dynamic nature of traffic, we investigate the variant of robust net-
work design where we have to determine the capacity to reserve on each link
so that each demand vector belonging to a polyhedral set can be routed. The
objective is either to minimize congestion or a linear cost. Routing is assumed
to be fractional and dynamic (i.e., dependent on the current traffic vector).
We first prove that the robust network design problem with minimum con-
gestion cannot be approximated within any constant factor. Then, using the
ETH conjecture, we get a Ω( logn

log logn
) lower bound for the approximability

of this problem. This implies that the well-known O(log n) approximation
ratio established by Räcke in 2008 is tight. Using Lagrange relaxation, we
obtain a new proof of the O(log n) approximation. An important conse-
quence of the Lagrange-based reduction and our inapproximability results is
that the robust network design problem with linear reservation cost cannot
be approximated within any constant ratio. This answers a long-standing
open question of Chekuri (2007). We also give another proof of the result
of Goyal&al (2009) stating that the optimal linear cost under static routing
can be Ω(log n) more expensive than the cost obtained under dynamic rout-
ing. Finally, we show that even if only two given paths are allowed for each
commodity, the robust network design problem with minimum congestion or
linear cost is hard to approximate within some constant.
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1. Introduction1

Network optimization [1, 2] plays a crucial role for telecommunication2

operators since it permits to carefully invest in infrastructures, i.e. reduce3

capital expenditures. As Internet traffic is ever increasing, the network’s4

capacity needs to be expanded through careful investments every year or5

even half-year. However, the dynamic nature of the traffic due to ordinary6

daily fluctuations, long term evolution and unpredictable events requires to7

consider uncertainty on the traffic demand when dimensioning network re-8

sources.9

Ideally, the network capacity should follow the demand. When the traffic10

demand can be precisely known, several approaches have been proposed to11

solve the capacitated network design problem using for instance decomposi-12

tion methods and cutting planes [3, 4, 5]. But in practice, perfect knowledge13

of future traffic is not available at the time the decision needs to be taken.14

The dynamic nature of the traffic due to ordinary daily fluctuations, long15

term evolution and unpredictable events requires to consider uncertainty on16

traffic demands when dimensioning network resources. While overestimated17

traffic forecasts could be used to solve a deterministic optimization problem,18

it is likely to yield to a costly over-provisioning of the network capacities,19

which is not acceptable. Therefore, robust optimization under uncertainty20

sets is a must for the design of network capacities. In this context, our paper21

presents new approximability results on two tightly related variants of the22

robust network design problem, the minimization of either the congestion or23

a linear cost.24

Let’s consider an undirected graph G = (V (G), E(G)) representing a25

communication network. The traffic is characterized by a set of commodities26

h ∈ H associated to different node pairs. And the routing of a commodity27

can be represented by a flow fh ∈ RE(G) of intensity dh. To take into ac-28

count the changing nature of the demand, d is assumed to be uncertain and29

more precisely to belong to a polyhedral set D. The polyhedral model was30

introduced in [6, 7] as an extension of the hose model [8, 9], where limits on31

the total traffic going into (resp. out of) a node are considered.32

When solving a robust network design problem, several objective func-33

tions can be considered. Given a capacity ce for each edge e, one might be34

interested in minimizing the congestion given by maxe∈E(G)
ue
ce

where ue is the35
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reserved capacity on edge e. Another common objective function is given by36

the linear reservation cost
∑

e∈E(G) λeue. This can also represent the average37

congestion by taking λe = 1
ce

. h∈Hf
h
e (d). A popular approach is to minimize38

the maximum edge utilization given by max
eınE(G)

ue
ce

. The goal is to choose a39

reservation vector u so that the network is able to support any demand vec-40

tor d ∈ D, i.e., there exists a (fractional) routing serving every commodity41

such that the total flow on each edge e is less than the reservation ue.42

The robust network design variant that we are focusing on in this paper, is43

referred to as dynamic routing in the literature since the network is optimized44

such that any realization of traffic matrix in the uncertainty set has its own45

routing. The robust network design problem where a linear reservation cost is46

minimized was proved to be co-NP hard in [10] when the graph is directed. A47

stronger co-NP hardness result is given in [11] where the graph is undirected48

(this implies the directed case result). Some exact solution methods for49

robust network design have been considered in [12, 13]. Some special cases50

where dynamic routing is easy to compute have been described in [14, 15, 16].51

Routing with uncertain demands has received a significant interest from52

the community. As opposed to dynamic routing, static routing or stable53

routing was introduced in [6]: it consists in choosing a fixed flow xh of value54

1 for each commodity h. The actual flow fh(d) for the demand scenario d55

will then be scaled by the actual demand dh of commodity h, i.e. fh(d) =56

dhx
h. Static routing is also called oblivious routing in [17, 18]. In this case,57

polynomial-time algorithms to compute optimal static routing (with respect58

to either congestion or linear reservation cost) have been proposed [6, 7, 17,59

18] based on either duality or cutting-plane algorithms. When the routing60

for each commodity is restricted to be on a single path, the problem becomes61

NP−hard even in the deterministic case, this follows from the NP−hardness62

of the edge-disjoint path computation problem [19].63

To further improve solutions of static routing and overcome complexity is-64

sues related to dynamic routing, a number of restrictions on routing have been65

considered to design polynomial-time algorithms (see [20, 21] for a complete66

survey). This includes, for example, the multi-static approach, introduced67

in [22], where the uncertainty set is partitioned using an hyperplane and68

routing is restricted to be static over each partition. This idea has been gen-69

eralized in [23] to unrestricted covers of the uncertainty set and an extension70

to share the demand between routing templates, called volume routing, has71

been proposed in [24]. [25] applied affine routing for robust network design,72
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based on affine adjustable robust counterparts introduced in [26], restricting73

the recourse to be an affine function of the uncertainties. The performance74

of this framework has been extensively compared to the static and dynamic75

routing, both theoretically and empirically [27, 21]. In practice, affine rout-76

ing provides a good approximation of the dynamic routing while it can be77

solved in reasonable time thanks to polynomial-time algorithms. Finally, an78

approach encompassing the previous approaches is the multipolar approach79

proposed in [28, 29].80

In this work, we will only focus on the complexity of the robust network81

design problem under dynamic routing, while minimizing either congestion82

or some linear cost. To close this section, let us summarize the main contri-83

butions of the paper and review some related work.84

1.1. Our contributions85

• We first prove that the robust network design problem with minimum86

congestion cannot be approximated within any constant factor. The87

reduction is based on the PCP theorem and some connections with88

the Gap-3-SAT problem [30]. The same reduction also allows to show89

inapproximability within Ω(log n
∆

) where ∆ is the maximum degree in90

the graph and n is the number of vertices.91

• Using the ETH conjecture [31, 32], we prove a Ω( logn
log logn

) lower bound92

for the approximability of the robust network design problem with min-93

imum congestion. This implies that the well-known O(log n) approxi-94

mation ratio that can be obtained using the result in [33] is tight.95

• We show that any α-approximation algorithm for the robust network96

design problem with linear costs directly leads to an α-approximation97

for the problem with minimum congestion. The proof is based on La-98

grange relaxation. We obtain that robust network design with mini-99

mum congestion can be approximated within O(log n). This was al-100

ready proved in [33] in a different way.101

• An important consequence of the Lagrange-based reduction and our in-102

approximability results is that the robust network design problem with103

linear reservation cost cannot be approximated within any constant104

ratio. This answers a long-standing open question stated in [34].105

Another consequence is a new proof for the existence of instances for106

which the optimal static solution can be Ω(log n) more expensive than107
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a solution based on dynamic routing, when a linear cost is minimized.108

This was already proved in [35] in a different way.109

• We show that even if only two given paths are allowed for each com-110

modity, there is a constant k such that the robust network design prob-111

lem with minimum congestion or linear costs cannot be approximated112

within k.113

1.2. Related work114

Let us first assume that the graph is undirected and a linear cost is115

minimized. A result attributed to A. Gupta ([34], see also [35] for a more116

detailed presentation) leads to an O(log n) approximation algorithm for lin-117

ear cost under dynamic fractional routing. Furthermore, this approximation118

is achieved by a routing on a (fixed) single tree. In particular, this shows119

that the ratios between the dynamic and the static solutions under frac-120

tional routing (
Linstat−frac
Lindyn−frac

) (Lin denotes here the optimal linear cost of the121

solution) and between single path and fractional routing under the static122

model (
Linstat−sing
Linstat−frac

) is O(log n) and provides an O(log n) approximation for123

static single path routing Linstat−sing. On the other hand [36] shows that124

the static single path problem cannot be approximated within a Ω(log
1
4
−ε n)125

ratio unless NP 6⊂ ZPTIME(npolylog(n)). As noticed in [35], this implies126

(assuming this complexity conjecture) that the gap
Linstat−sing
Linstat−frac

is Ω(log
1
4
−ε n).127

[35] has shown that the gap
Linstat−frac
Lindyn−frac

is Ω(log n).128

For the linear cost and undirected graphs, an extensively studied polyhe-129

dron is the symmetric hose model. The demand vector is here not oriented130

(i.e, there is no distinction between a demand from i to j and a demand from131

j to i), and uncertainty is defined by considering an upper-bound limit bi for132

the sum of demands related to node i. A 2-approximation has been found133

for the dynamic fractional case [9, 10] based on tree routing (where we route134

through a static tree that should be found) showing that Linstat−tree
Lindyn−frac

≤ 2. It135

has been conjectured that this solution resulted in an optimal solution for the136

static single path routing. This question has been open for some time and137

has become known as the VPN conjecture. It was finally answered by the af-138

firmative in [37]. The assymetric hose polytope was also considered in many139

papers. An approximation algorithm is proposed to compute Linstat−sing140

within a ratio of 3.39 [38] (or more precisely 2 plus the best approximation141
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ratio for the Steiner tree problem). If D is a balanced asymmetric hose poly-142

tope, i.e.,
∑

v∈V b
out
v =

∑
v∈V b

in
v where binv (resp. boutv ) is the upper bound143

for the traffic entering into (resp. going out of) v, then the best approxi-144

mation factor becomes 2 [38]. Moreover, if we assume that boutv = binb , then145

Linstat−sing is easy to compute and we get that Linstat−tree = Linstat−sing146

[39]. In other words, there is some similarity with the case where D is a147

symmetric hose polytope.148

When congestion is considered, [40] proved the existence of an oblivi-149

ous (or static) routing with a competitive ratio of O(log3 n) with respect150

to optimum routing of any traffic matrix. Then, [41] improved the bound151

to O(log2 n log log n) and gave a polynomial-time algorithm to find such a152

static routing. Finally, [33] described an O(log n) approximation algorithm153

for static routing with minimum congestion. Notice that the bound given154

by static routing cannot provide a better bound than O(log n) since a lower155

bound of Ω(log n) is achieved by static routing for planar graphs [42, 43].156

It has also been shown in [44] that the gap between the dynamic fractional157

routing and a dynamic fractional routing restricted to a polynomial number158

of paths can be Ω( logn
log logn

).159

When a directed graph is considered and congestion is minimized, [18] has160

shown that the gap between static fractional routing and dynamic fractional161

routing can be Ω(
√
n) while [45] proves that the gap is upper-bounded by162

O(
√
kn

1
4 log n) (where k = |H| is the number of commodities). More results163

can be found in [45] and the references therein.164

Using an approximate separation oracle for the dual problem to obtain165

an approximate solution of the primal is a well-known technique already166

used in [46, 47, 48] at least in the context of packing-covering problems.167

Lagrangian relaxations are also used in [49, 50, 51] to produce dual solutions168

that are near-optimal.169

2. From Gap-3-SAT to robust network design with minimum con-170

gestion171

Given an edge e, let s(e) and t(e) be the extremities of e. Similarly to172

edges, for a commodity h ∈ H, let s(h) and t(h) denote the endpoints of h.173

And let U(D) be the set of u ∈ RE(G) such that each traffic vector d ∈ D can174

be routed on the network when a capacity ue is assigned to edge e. Since D175

is polyhedral, U(D) is also polyhedral (see, e.g, [34]).176
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We are interested in minimizing the congestion under polyhedral uncer-177

tainty and dynamic routing: min
u∈U(D)

max
e∈E(G)

ue
ce

.178

Given a polytope represented by Ax ≤ b, the size of the polytope denotes179

the total encoding size of the entries in A and b.180

Our first main result is related to the inapproximability of the minimum181

congestion problem within a constant factor.182

Theorem 2.1. Unless P = NP , the minimum congestion problem cannot183

be approximated with a polynomial-time algorithm within any constant factor184

even if D is given by {d : Ad+ Bψ ≤ b} whose size is polynomially bounded185

by |V (G)|.186

Notice that it is important to consider polyhedral uncertainty sets that are187

easy to describe (otherwise the inapproximability results would be a direct188

consequence of the difficulty to separate from the uncertainty set).189

To prove Theorem 2.1, we will need the PCP (Probabilistically Checkable190

Proof) theorem [30] and an intermediate lemma. For a 3-SAT formula ϕ we191

note val(ϕ) the maximum fraction of the clauses which are satisfiable at192

the same time. In particular, val(ϕ) = 1 means that ϕ is satisfiable. The193

problem where we have to decide if val(ϕ) < ρ or val(ϕ) = 1 for a 3-SAT194

formula ϕ is called Gap-3-SAT.195

The instances such that ρ ≤ val(ϕ) < 1 do not need to be considered.196

One way to state PCP theorem is to say that there exists a constant 0 <197

ρ < 1 for which Gap-3-SAT is NP-compete. In other words, it is NP-hard to198

distinguish between satisfiable 3-SAT formulas and those for which strictly199

less than a fraction ρ of clauses can be simultaneously satisfied.200

To prove the theorem 2.1, we will use the following lemma (where cong201

denotes the optimal congestion of the corresponding instance).202

Lemma 2.1. For every γ ∈ N there is a mapping fγ computable in poly-203

nomial time from 3-SAT instances to minimum congestion instances de-204

fined by an undirected graph Gγ, a set of commodities Hγ and a polytope205

Dγ = {d : Aγd+ Bγψγ ≤ bγ} such that |V (Gγ)| = O(mγ), |E(Gγ)| = O(mγ)206

and the size of Dγ is O(mcγ) where c is some positive constant and m is the207

number of clauses. The mapping satisfies the following:208

• val(ϕ) = 1 =⇒ cong(fγ(ϕ)) ≥ 1 + γ(1− ρ)209

• val(ϕ) < ρ =⇒ cong(fγ(ϕ)) ≤ 1.210
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Figure 1: G1 and G2

Proof. of Theorem 2.1 We are going to use Lemma 2.1 and PCP Theorem211

for the proof. Suppose that congestion can be approximated in polynomial212

time within a constant approximation factor α. We first choose γ such that213

α < 1 + γ(1− ρ).214

Starting from a 3-SAT formula such that either val(ϕ) < ρ or val(ϕ) = 1,215

we construct fγ(ϕ) in polynomial time. The optimal congestion will satisfy216

either cong(fγ(ϕ)) ≥ 1 + γ(1 − ρ) or cong(fγ(ϕ)) ≤ 1. Applying the α-217

approximation to fγ(ϕ) provides an approximate value β̃ for congestion. If218

β̃ < 1+γ(1−ρ) holds, then we can deduce that cong(fγ(ϕ)) ≤ β̃ < 1+γ(1−ρ).219

This implies that cong(fγ(ϕ)) ≤ 1 and hence val(ϕ) < ρ. Otherwise, we have220

β̃ ≥ 1 + γ(1− ρ) and α× cong(fγ(ϕ)) ≥ β̃ (since β̃ is an α-approximation),221

leading to cong(fγ(ϕ)) ≥ 1+γ(1−ρ)
α

> 1. We consequently have cong(fγ(ϕ)) ≥222

1 + γ(1 − ρ) and val(ϕ) = 1. This proves that a constant α-approximation223

for the congestion problem allows the solution of Gap-3-SAT.224

Furthermore, as the size of the polytope used in Lemma 2.1 is O(mcγ)225

while |V (Gγ)| = O(mγ), its size is polynomially bounded in the number of226

vertices as announced in Theorem 2.1227

We are now going to prove Lemma 2.1 by first constructing instances of228

the congestion problem leading to some inapproximabilty factor. Then, this229

factor is increased by recursively building larger instances with higher values230

of γ.231

Proof. of Lemma 2.1, case γ = 1232

We start with a 3-SAT formula ϕ, with m clauses and r variables. We233

note L = {l1, . . . , lr,¬l1, . . . ,¬lr} the set of the literals appearing in formula234

ϕ and li,j the literal appearing in the i-th clause Ci at the j-th position for235

i = 1, ...,m and j = 1, 2, 3 (it is not restrictive to assume that each clause236

contains exactly 3 literals).237
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We build as follows a graph G1 and a set of commodities H1. For each238

i = 1, ...,m, j = 1, 2, 3 we add 3 consecutive edges ei,j (i.e. such that t(ei,1) =239

s(ei,2) and t(ei,2) = s(ei,3)) and 3 commodities hi,j with s(hi,j) = s(ei,j) and240

t(hi,j) = t(ei,j). We impose that all nodes s(ei,1) (resp. t(ei,3)) for i = 1, ...,m241

are equal to a single node noted s1 (resp. t1) (see Figure 1). We consider an242

additional commodity h0 between s1 and t1.243

We create a polyhedron D1 of the form D1 = {d : A1d + B1ψ1 ≤ b1} as244

follows. We consider for each literal l ∈ L a non-negative variable ξl and add245

for k = 1, ..., r the constraint ξlk + ξ¬lk = 1. We also consider, for i = 1, ...,m246

and j = 1, 2, 3, the constraint dhi,j = ξli,j . A constraint related to dh0 is also247

integrated: dh0 ≤ m(1 − ρ). Finally, the capacity ce of each edge e is here248

equal to 1 (ce = 1).249

If val(ϕ) = 1, then there is a demand vector such that for each path250

between s1 and t1 (there is one path corresponding to each clause), at least251

one commodity whose endpoints are on the path is equal to 1 (a commodity252

corresponding to a true literal). This implies that all paths are blocked and253

thus the optimal routing for commodity h0 is to equally spread m(1 − ρ)254

between the m paths leading to a congestion of 1 + (1− ρ).255

Let us now assume that val(ϕ) < ρ. Notice first that the components of256

the extreme points of the polyhedron D1 are integers (except dh0). This is257

due to the fact that D1 can be seen as a coordinate projection of the higher258

dimensional polytope {(d, ψ)|A1d+B1ψ} whose extreme points are obviously259

integers (except dh0). For such an extreme demand vector d ∈ D1 there are260

at least m(1 − ρ) free paths to route the demand dh0 allowing a congestion261

less than or equal to 1. This implies that all demands in D1 can also be262

routed with a congestion less than or equal to 1263

Observe that |V (G1)| = O(m), |E(G1)| = O(m), D1 has the appropriate264

form (D1 = {d : A1d + B1ψ1 ≤ b1}) and the size of D1 is O(mc) for some265

constant c.266

Proof. of Lemma 2.1, case γ ≥ 2267

For γ ≥ 2, having constructed Gγ−1,Hγ−1,Dγ−1, we build Gγ,Hγ,Dγ268

as follows. We will construct the graph Gγ, by taking the graph G1 and269

replacing each edge by a copy of the graph Gγ−1 denoted by Gi,j
γ−1. Each270

copy Gi,j
γ−1 contains a node sγ−1 that is identified with s(ei,j) and a node271

tγ−1 identified with t(ei,j) (see Figure 1). All commodities related to Gi,j
γ−1272

(belonging to Hγ−1) are also considered as commodities of Hγ. Let us use273

di,j ∈ RHγ−1 to denote the related demand vector. Hγ also contains a non-274
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negative commodity h0,γ constrained by dh0,γ ≤ mγ(1 − ρ). Thus |Hγ| =275

1 + 3m× |Hγ−1|.276

We are going to build an uncertainty set Dγ as a coordinate projection of277

a higher-dimensional polyhedron Ξγ, involving demand variables in addition278

to auxiliary non-negative variables ξl related to literals, and also auxiliary279

variables ψi,jγ−1 related to Gi,j
γ−1 and the description of Hγ−1. We gradually280

explain the construction. For k = 1, ..., r, we add the constraint ξlk+ξ¬lk = 1.281

And for ei,j ∈ E(G1), we impose that di,j ∈ ξli,jDγ−1 := {ξlijd0|d0 ∈ Dγ−1}.282

Let us explain how this can be done. By induction, we know that Dγ−1 = {d :283

Aγ−1d + Bγ−1ψγ−1 ≤ bγ−1} and this representation includes (among others)284

non-negativity constraints of all variables in addition to constraints implying285

that all variables are upper-bounded. Then by writing Aγ−1d
i,j +Bγ−1ψ

i,j ≤286

ξli,jbγ−1, we can ensure that ξli,j = 0 implies di,j = 0, while ξli,j > 0 leads287

to 1
ξli,j

di,j ∈ Dγ−1. In particular when ξli,j = 0, from outside, the whole288

subgraph corresponding to Gi,j
γ−1 acts like a single edge of capacity mγ−1.289

Dγ can be seen as the projection of a polytope Ξγ = {(d, ψγ)|Aγd+Bγψγ ≤
bγ} where ψγ contains the auxiliary variables appearing in all levels. More
precisely, Ξγ is defined by:

dh0,γ ≤ mγ(1− ρ)

−dh0,γ ≤ 0,

−ξl ≤ 0, ∀l ∈ L
ξlk + ξ¬lk ≤ 1, ∀k = 1, ..., r

−ξlk − ξ¬lk ≤ −1, ∀k = 1, ..., r

Aγ−1d
i,j +Bγ−1ψ

i,j
γ−1 − ξli,jbγ−1 ≤ 0, ∀i = 1, ...,m, j = 1, 2, 3. (1)

By simple induction, we have |V (Gγ)| = O(mγ), |E(Gγ)| = O(mγ) and290

the size of Dγ is O(mcγ) where c is some positive constant.291

We observe that all extreme points of Ξγ are such that ξl ∈ {0, 1} for292

l ∈ L. To verify that, we first recall that constraints (1) are equivalent to293

di,j ∈ ξli,jDγ−1 (in this way, the vectors ψi,jγ−1 can be ignored). Second, let L+294

be the set of literals appearing in positive form. We observe that variables ξl295

for l ∈ L+ are pairwise independent. Only variables di,j such that either li,j =296

l or li,j = ¬l depend on ξl since di,j ∈ ξlDγ−1 in the first case and di,j ∈ (1−297

ξl)Dγ−1 in the second case. This immediately implies that given some arbi-298

trary real vectors qi,j and f , minimizing
∑

i=1,..,m;j=1,2,3

qTi,jd
i,j+

∑
l∈L+

flξl is equiv-299
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alent to minimizing
∑
l∈L+

ξl

(
fl +

∑
i,j:li,j=l

min
di,j∈Dγ−1

qTi,jd
i,j −

∑
i,j:li,j=¬l

min
di,j∈Dγ−1

qTi,jd
i,j

)
.300

It is then clear that optimal ξl values will be either 0 or 1. Since this holds301

for an arbitrary linear objective function, we get the wanted result about302

extreme points.303

304

Let us now show that val(ϕ) < ρ =⇒ cong(fγ(ϕ)) ≤ 1. Assume that305

val(ϕ) < ρ. We prove by induction that the congestion of (Gγ,Hγ,Dγ) is306

1. Suppose that this is true for some γ − 1. If ξli,1 = ξli,2 = ξli,3 = 0 for307

some i, a flow of value mγ−1 can be routed between sγ and tγ by sending a308

flow of value 1 on each edge of Gi,j
γ−1 for j = 1, 2, 3. Since val(ϕ) < ρ, there309

are necessarily at least m(1− ρ) such i, thus we can send the whole demand310

mγ−1m(1− ρ) = mγ(1− ρ) this way. For the indices i, j such that ξli,j = 1,311

by the induction hypothesis (cong(fγ−1(ϕ)) ≤ 1), the demands inside Gi,j
γ−1312

can be routed without sending more than one unit of flow on each edge of313

Gi,j
γ−1.314

Notice that to show that all traffic vectors of Dγ can be routed with con-315

gestion 1, we considered demand vectors corresponding with {0, 1} ξ vari-316

ables. The result shown above about extreme points is useful here since it317

allows us to say that each extreme point of Dγ can be routed with congestion318

less than or equal to 1 implying that each demand vector inside Dγ can also319

be routed with congestion less than or equal to 1.320

321

Let us now show that val(ϕ) = 1 =⇒ cong(fγ(ϕ)) ≥ 1 + γ(1 − ρ). We322

are going to use induction to build a cut δ(Cγ) where Cγ is set of vertices323

of V (Gγ) containing sγ and not containing tγ. The number of edges of the324

cut will be mγ and each edge has a capacity equal to 1. We also show the325

existence of a demand vector d ∈ Dγ such that the sum of the demands326

traversing the cut is greater than or equal to mγ(1 + γ(1− ρ)). This would327

show that there is at least one edge that carries at least 1 + γ(1− ρ) units of328

flow.329

Since ϕ is satisfiable, there is a truth assignment represented by ξ variables330

(the auxiliary variables) such that for each i = 1, ...,m there is a j(i) such331

that ξli,j(i) = 1. By considering the graph G
i,j(i)
γ−1 and using the induction332

hypothesis, we can build a cut δ(Ci
γ−1) separating the node s(ei,j(i)) and333

t(ei,j(i)) and containing mγ−1 edges. We also build a demand vector di,j(i) ∈334

Dγ−1 such that the sum of demands traversing the cut is greater than or equal335
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to mγ−1(1 + (γ−1)(1−ρ)) (still possible by induction). By taking the union336

of these m disjoint cuts we get a cut δ(Cγ) that is separating sγ and tγ having337

the required number of edges. A demand vector d can be built by combining338

the vectors di,j(i) and the demand dh0,γ taken equal to mγ(1− ρ). Since the339

demand from sγ to tγ is also traversing the cut, the total demand through340

δ(Cγ) is greater than or equal to mγ(1− ρ) +m.mγ−1(1 + (γ − 1)(1− ρ)) =341

mγ(1 + γ(1− ρ)).342

Lemma 2.1 can be further exploited in different ways since there are many343

possible connections between the value 1+γ(1−ρ) and the characteristics of344

the undirected graph built in the proof of the lemma. Observe, for example,345

that by a simple induction we get that the number of vertices |V (Gγ)| =346

2 + 2m (3m)γ−1
3m−1

leading to |V (Gγ)| ' 2 × 3γ−1mγ (when m goes to infinity).347

We also have ∆(Gγ) equal to mγ where ∆(.) denotes the maximum degree348

in the graph. Consequently, log( |V (Gγ)|
∆(Gγ)

) ' γ log 3 + log 2/3. Then by taking349

any constant k such that k × log 3 < (1 − ρ) where ρ is the constant in the350

PCP Theorem we get a lower bound of the approximability ratio. This is351

stated in the following corollary.352

Corollary 2.1. Under conditions of Theorem 2.1, for any constant k <353

1−ρ
log 3

, it is not possible to approximate the minimum congestion problem in354

polynomial time within a ratio of k log |V (G)|
∆(G)

.355

3. A Ω( logn
log logn

) approximability lower bound356

To get an approximability lower bound, we will use the well-known ETH357

conjecture that is recalled below.358

Conjecture 3.1 (Exponential Time Hypothesis). [31, 32] There is a con-359

stant δ such that no algorithm can solve 3-SAT instances in time O(2δm),360

where m is the number of clauses.361

Let us use n to denote the number of vertices of the graph.362

Theorem 3.1. Under Conjecture 3.1, there exists a constant k such that no363

polynomial-time algorithm can solve the minimum congestion problem with364

the approximation ratio k logn
log logn

.365
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Proof. The combination of PCP Theorem and ETH Conjecture 3.1 implies366

that distinguishing between 3-SAT instances such that val(ϕ) < ρ and367

val(ϕ) = 1 cannot be done in time O(2m
β
) for some constant β > 0 (a368

slightly better bound is O(2m/logcm) for some constant c, but this will not369

help us to improve the lower bound of Theorem 3.1).370

Suppose that there is an algorithm that solves the minimum congestion371

problem with an approximation factor α(n) and a running time O(nc1).372

Given a 3-SAT instance and a function γ : N −→ N we can construct a373

minimum congestion instance fγ(m)(ϕ) as in Lemma 2.1 in time O(mc2γ(m))374

and where the number of vertices of the instance is mγ(m). Then by running375

the approximation algorithm for minimum congestion we get a total time of376

O(mc3γ(m)) where c3 = max{c1, c2}. Thus by choosing γ(m) = mβ

c3 logm
we get377

an algorithm that runs in time O(2m
β
). And if the approximation factor α(n)378

is small enough, that is if α(mγ(m)) < 1 + (1 − ρ)γ(m) for a big enough m,379

we get an algorithm solving Gap-3-SAT and thus contradicting Conjecture380

3.1. This is the case for k logn
log logn

for some constant k. To see this, we can381

observe that:382

1+(1−ρ)γ(m)

α(mγ(m))
=

1+(1−ρ) mβ

c3 logm

k
mβ/c3

β logm−log c3

' β(1−ρ)
k

. By taking k < β(1− ρ) we get the383

wanted inapproximability result.384

4. From minimum congestion to linear costs385

Given any λ ≥ 0, the robust network design problem with linear costs386

is simply the following where U(D) is the set of possible capacity vectors387

defined in Section 2:388

min
u∈U(D)

λTu. (2)

Assume that there exists a number α ≥ 1 such that Problem (2) can be389

solved in polynomial time within an approximation ratio α. More precisely,390

we have a polynomial-time oracle that takes as input a non-negative linear391

cost λ ∈ RE(G) and outputs a uap(λ) ∈ U(D) such that λTu(λ) ≤ λTuap(λ) ≤392

αλTu(λ) where u(λ) ∈ U(D) is the optimal solution of (2).393

Recall that the congestion problem is given by394
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min
β,u

β (3)

ue ≤ ceβ, ∀e ∈ E(G)

u ∈ U(D)

where β and u are optimization variables.395

Let us consider a Lagrange relaxation of (3) by dualizing the capacity396

constraints and using λ for the dual multipliers. The dual problem is then397

given by max
λ≥0

min
β,u∈U(D)

β +
∑

e∈E(G) λe(ue − βce) (where β is an optimization398

variable). If λ is chosen such
∑
e

λece 6= 1, then the value of the inner minimum399

would be −∞. Thus in an optimal solution, we will always have
∑
e

λece = 1.400

The problem is then equivalent to:401

max
λ≥0∑

e∈E(G)
λece=1

min
u∈U(D)

∑
e∈E(G)

λeue = max
λ≥0∑

e∈E(G)
λece=1

λTu(λ). (4)

Since U(D) is polyhedral and all constraints and the objective function are402

linear, there is is no duality gap between (3) and (4).403

Observe that (4) can be expressed as follows:

max
β,λ≥0

β (5a)

β ≤
∑

e∈E(G)

λeue,∀u ∈ U(D) (5b)

1 =
∑

e∈E(G)

λece (5c)

We are going to approximately solve (5) using a cutting-plane algorithm404

where inequalities (5b) are iteratively added by using the α-approximation or-405

acle. Let (β′, λ′) be a potential solution of (5), we can run the α-approximation406

of robust network design problem (2) with the cost vector λ′ to get a solution407

uap(λ′). If β′ >
∑

e∈E(G)

λ′eu
ap
e (λ′) we return the inequality β ≤

∑
e∈E(G)

λeu
ap
e (λ′),408

otherwise the algorithm stops and returns (β′, λ′). We know from the separation-409

optimization equivalence theorem [52] that (5) can be solved by making410

a polynomial number of calls to the separation oracle leading a globally411
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polynomial-time algorithm. Notice that this happens if the separation oracle412

is exact. In our case, the oracle is only an approximate one, implying that the413

cutting plane algorithm might be prematurely interrupted before obtaining414

the true optimum of (5). Observe however that this implies that the com-415

puting time is polynomially bounded. Let (β̃, λ̃) be the solution returned by416

the cutting-plane algorithm. Let (β∗, λ∗) be the true optimal solution of (5).417

The next lemma states that the returned solution is an α-approximation of418

the optimal solution.419

Lemma 4.1. The cutting-plane algorithm computes in polynomial time a420

solution β̃ satisfying:421

β∗ ≤ β̃ ≤ αβ∗. (6)

422

Proof. Observe that β∗ = λ∗Tu(λ∗). Moreover, since (5) is equivalent to423

(4), we get that λ∗Tu(λ∗) = β∗ ≥ λ̃Tu(λ̃). From the approximation factor424

of the oracle, one can write that λ̃Tuap(λ̃) ≤ αλ̃Tu(λ̃). Using the fact that425

no inequalities can be added for (β̃, λ̃), we get that β̃ ≤ λ̃Tuap(λ̃). Finally,426

since (β∗, λ∗) is feasible for (5), we obviously have β̃ ≥ β∗. Combining the 4427

previous inequalities leads to (6).428

The above lemma has many consequences.429

Theorem 4.1. Unless P = NP , the robust network design problem with430

linear costs cannot be approximated in polynomial time within any constant431

ratio. Unless the ETH conjecture is false, the robust network design problem432

with linear costs cannot be approximated within Ω( logn
log logn

).433

Proof. The result is an immediate consequence of Theorems 2.1, 3.1 and434

Lemma 4.1.435

The theorem above answers a long-standing open question of [34]. All436

other inapproximability results proved for the congestion problem directly437

hold for the robust network design problem with linear cost.438

Another important consequence is that the congestion problem can be439

approximated within O(log n). This result was already proved in [33] using440

other techniques. In our case, the result is an immediate consequence of441

the O(log n)-approximation algorithm for the robust network design problem442

with linear cost provided by [53, 54] and fully described in [34, 35].443
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Theorem 4.2. [33] Congestion can be approximated within O(log n).444

Notice that Theorem 3.1 tells us that the ratio O(log n) is tight.445

Starting from the results of [42, 43] showing the existence of instances for446

which the ratio
congstat−frac
congdyn−frac

is Ω(log n), one can also use the reduction above447

to prove, differently from [35], the existence of instances for which the ratio448

Linstat−frac
Lindyn−frac

is Ω(log n) where a linear cost is minimized.449

Theorem 4.3. [35] There are instances for which
Linstat−frac
Lindyn−frac

is Ω(log n).450

Proof. Similarly to U(D) defined when dynamic routing is considered, let451

Ustat(D) be the set of capacity vectors for which there exists a static frac-452

tional routing satisfying all demand vectors of D. Ustat(D) is obviously a453

polyhedral set. The mathematical programs (3), (4) and (5) can be consid-454

ered in the same way: we only have to replace U(D) by Ustat(D). All results455

stated above about the equivalence of (3), (4) and (5) still hold in the static456

case. Consider an instance from [42, 43] for which
congstat−frac
congdyn−frac

is Ω(log n).457

congstat−frac is computed from (5). Then there is at least one vector λstat ≥ 0458

and one vector ustat ∈ Ustat(D) such that congstat−frac =
∑

e∈E(G) λ
stat
e ustate459

and
∑

e∈E(G) λ
stat
e ce = 1. This implies that ustat is an optimal solution of460

the linear problem where we minimize
∑

e∈E(G) λ
stat
e ue under the condition461

u ∈ Ustat(D). We consequently have congstat−frac = Linstat−frac for the con-462

sidered instance.463

Let u′ ∈ U(D) be an optimal solution minimizing the linear cost
∑

e∈E(G) λ
stat
e ue464

under dynamic routing. In other words, Lindyn−frac =
∑

e∈E(G) λ
stat
e u′e when465

the coefficients of the objective function are λstat. Moreover, we know from466

(5) that congdyn−frac is obtained by maximizing through λ, implying that467

congdyn−frac ≥
∑

e∈E(G) λ
stat
e u′e = Lindyn−frac. Using that

congstat−frac
congdyn−frac

is468

Ω(log n), we get that
Linstat−frac
Lindyn−frac

is Ω(log n) for the same instance where the469

linear objective function is defined through λstat.470

5. Restriction to a constant number of given paths per commodity471

First, observe that in the proof of Lemma 2.1, the minimum congestion472

instances built there are such that some commodities can be routed along473

many paths. For example, in graph G1 (Figure 1), commodity h0 (between474

s and t) can use up to m paths. Second, consider an instance of the mini-475

mum congestion problem where only one path is given for each commodity.476
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Figure 2: G′

Then computing the minimum congestion is easy since we only have to com-477

pute max
d∈D

∑
h∈He

dh where He denotes the set of commodities routed through478

e. The congestion is just given by max
e∈E(G)

1
ce

max
d∈D

∑
h∈He

dh. Combining these479

two observations, one can wonder whether the difficulty of the congestion480

problem is simply due to the number of possible paths that can be used by481

each commodity. We will show that the problem is still difficult even if each482

commodity can be routed along at most two fixed given paths.483

Theorem 5.1. Unless P = NP , for some positive constant k, minimum484

congestion cannot be approximated within a ratio k even if each commodity485

can be routed along at most two given paths.486

Proof. The proof is a simple modification of the proof of Lemma 2.1 (case487

γ = 1). We are going to slightly modify graph G1 in such a way that at most488

2 paths are allowed for each commodity. Given a 3-SAT formula ϕ with m489

clauses, we construct G′,H′,D′ as follows. We first create two nodes s1 and490

t1 and an edge e0 between s1 and t1 of capacity mρ (ρ is the constant in491

PCP theorem). Then for each clause index i = 1, ...,m, as in Lemma 2.1,492

we create 3 consecutive edges ei,j (j = 1, 2, 3) such that t(ei,j) = s(ei,j+1)493

and a commodity hi,j between s(ei,j) and t(ei,j) that is allowed to be routed494

only through ei,j. We also add one edge between s(ei,1) and s1 and one edge495

connecting t1 and t(ei,3) of infinite capacity and a commodity hi,0 between496

s(ei,1) and t(ei,3) with a demand dhi,0 = 1. hi,0 is allowed to be routed only497

through the path Pi containing the edges (ei,1, ei,2, ei,3) and the path going498

through s1, e0 and t1 (see Figure 2). We consider auxiliary variables ξl for499

each literal l. We add constraints ξl + ξ¬l = 1 and dhi,j = ξli,j .500
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If val(ϕ) < ρ there are at least m(1 − ρ) commodities hi,0 that can be501

routed on the paths Pi and the remaining mρ can be routed on the edge e0.502

This implies that each extreme point of D′ can be routed with congestion503

≤ 1. Notice that the observation made in the proof of Lemma 2.1 about504

extreme points is still valid here: extreme points corresponds to 0− 1 values505

of the variables ξl.506

If val(ϕ) = 1, then there is a cut and a demand vector d (corresponding to507

the truth assignment satisfying ϕ) such that the capacity of the cut is mρ+m508

and the demand that needs to cross the cut is 2m. There is consequently509

at least one edge of congestion greater than or equal to 2m
(1+ρ)m

= 2
1+ρ

. By510

taking k < 2
1+ρ

we get the wanted result.511

Finally, observe that the result above can also be stated for the linear512

cost case using again the Lagrange based reduction of the previous section.513

Corollary 5.1. Unless P = NP, for some positive constant k, robust network514

design with linear costs is difficult to approximate within a ratio k even if each515

commodity can be routed along at most two given paths.516
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