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New bounds for subset selection from conic relaxations

Walid Ben-Ameura, José Netoa,∗

aSamovar, Télécom SudParis, Institut Polytechnique de Paris,
19 place Marguerite Perey, 91120 Palaiseau, France

Abstract

New bounds are proposed for the subset selection problem which consists in min-

imizing the residual sum of squares subject to a cardinality constraint on the

maximum number of non-zero variables. They rely on new convex relaxations

providing both upper and lower bounds that are compared with others present

in the literature. The performance of these methods is illustrated through com-

putational experiments.

Keywords: Combinatorial optimization, subset selection, convex relaxation

1. Introduction

This paper is dedicated to the well-known subset selection problem (denoted

by SSP) which may be presented as follows. Let A ∈ Rm×n and y ∈ Rm be

some given matrix and vector respectively. Let k represent a positive integer

value. Then, SSP can be formulated as

(SSP1)


Z? = min ‖y −Ax‖22

s.t. ‖x‖0 ≤ k

x ∈ Rn

where, for any vector x ∈ Rn, ‖x‖0 = |{i : xi 6= 0}| (i.e., the number of non-

zero entries in x, or equivalently, the cardinality of its support), while ‖x‖2 =
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√∑n
i=1 x

2
i is the Euclidean norm of x. In words, the problem consists in deter-

mining a vector in a subspace generated by at most k column vectors of A, and

that is closest to the vector y with respect to Euclidean distance.

SSP is known to be NP-hard (see Natarajan (1995)). It has many ap-

plications, e.g., for (sparse) decomposition of audio signals (see Gribonval &

Bacry (2003)), video coding (Neff & Zakhor (1997)), image denoising (see Elad

& Aharon (2006); Mairal et al. (2008)), shape representation and recognition

(Mendels et al. (2006)), health monitoring (Chakraborty et al. (2009)) and ma-

chine learning (Girosi (1998)). SSP is also related to the feature selection prob-

lem (also called “variable selection” or “attribute selection” problem) arising in

the data mining area where the objective is to determine a subset of relevant

features to build simple models providing a more compact representation of an

important amount of available information. Classical applications include the

analysis of written texts (Wichmann & Kamholz (2008)) and DNA microarray

data (Davis et al. (2006)).

Related to SSP is the following problem:

min
x∈Rn

‖y −Ax‖22 + p(x), (1)

where p (·) stands for some penalty function. For the particular case p(x) =

λ‖x‖1, where ‖x‖1 denotes the L1 norm and λ ∈ R+, (1) becomes a convex

quadratic optimization problem that can be solved efficiently (see Efron et al.

(2004)) and corresponds to the Lagrangian form of the lasso (‘least absolute

shrinkage and selection operator’) estimate (see Tibshirani (1996)). However,

lasso has also some drawbacks, such as biased regression or a large support

of the solution (see, e.g., Bertsimas et al. (2016) and the references therein).

To overcome these, there has also been some interest to consider non convex

penalties in (1) (see e.g. Fan & Li (2001); Zhang (2010)). Methods based on

non convex penalty functions such as in Mazumder et al. (2011), look for a local

minimizer and come with no guarantee on the approximation of the solution

found. And in general, differently from SSP, a (local or global) minimizer of

(1) may not comply exactly with some desired level of sparsity. Shen et al. (2013)
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draw a comparison between the formulations (SSP1) and (1) with p(x) = λ‖x‖0,

λ ∈ R+; see also Tropp (2006) and the references therein.

The methods just mentioned have also been widely used to derive approxi-

mate solutions heuristically for SSP, in particular with greedy-type procedures

which basically consist in iteratively selecting or eliminating variables, the de-

cision at each step being based on a criterion related to the objective value of a

subproblem of the same form as SSP, see e.g. Miller (2002); Moghaddam et al.

(2006). Theoretical bounds on the performance of greedy algorithms appear in

Das & Kempe (2011).

Approaches to solve SSP (exactly or approximately) with branch and bound

algorithms include Furnival & Wilson (1974); Hand (1981); Moghaddam et al.

(2008); Narendra & Fukunaga (1977). More recently, Bertsimas et al. (2016)

present an approach for solving SSP, which is based on a reformulation of the

problem as a mixed-integer quadratic optimization program (MIQP). A different

approach, which we explore further in this paper, has consisted in looking for

new convex relaxations for SSP. In particular, this work may be viewed in the

continuity of Bach et al. (2010) and Atamtürk & Gómez (2019). (For clarity

of the presentation, we postpone a description of their and other formulations

present in the literature to the next section). Our contributions are new convex

relaxations providing lower bounds together with procedures relying on them

for producing approximate solutions. We also illustrate the performance of

our approach compared to Bach et al. (2010) and Atamtürk & Gómez (2019)

through computational experiments.

The paper is organized as follows. In Section 2 we survey formulations of

SSP present in the literature.

In Section 3, we prove some preliminary results and show connections be-

tween the approaches of Bach et al. (2010), Atamtürk & Gómez (2019) and ours.

New lower bounds relying on different convex relaxations are then introduced

in Section 4. Heuristics based on the solutions of such relaxations are then

presented in Section 5 to obtain upper bounds. Computational experiments

illustrating the performance of the different approaches are reported in Section
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6, before we conclude in Section 7.

2. Formulations and convex relaxations from the literature

Atamtürk & Gómez (2019) derived convex relaxations for sparse regression

from convex formulations of rank one quadratic terms with indicator variables.

Among the different formulations they present, there is namely a family of

semidefinite relaxations that we report just after introducing some notation.

Given a vector v ∈ Rn, a matrix B ∈ Rn×n, and a subset T ⊂ {1, 2, . . . , n},

let vT (resp. BT ) denote the subvector of v induced by T (resp. the submatrix

of B induced by T ). The set of symmetric matrices of order n is denoted by

Sn, and the set of positive semidefinite matrices of order n is denoted by Sn+.

Atamtürk and Gómez’s convex relaxation for SSP may then be expressed as

follows where Tr(.) denotes the trace of a square matrix:

(SDP )r



min ‖y‖22 − 2y>Ax+ Tr
(
BA>A

)
s.t.

∑n
i=1 zi ≤ k

0 ≤ wT ≤ min
{

1,
∑
i∈T zi

}
∀T ⊆ {1, 2, . . . , n} : |T | ≤ r

wTBT − xTx>T ∈ S
|T |
+ ∀T ⊆ {1, 2, . . . , n} : |T | ≤ r

B − xx> ∈ Sn+
x ∈ Rn, z ∈ [0, 1]n, B ∈ Rn×n

(2)

for some r ∈ N, r ≤ n. These relaxations provide bounds with increasing

quality for an increasing value of r, but at the expense of a very rapidly increas-

ing computational work to solve them. In particular, the bound from (SDP )1

coincides with the one from other works of Dong et al. (2015), Zhang (2010).

In the computational experiments reported in Atamtürk & Gómez (2019) (see

this reference for further details), whereas the bounds of (SDP )1 may be poor

for some instances, (SDP )2 appears to provide substantial improvements and

offer a good trade-off between computational effort and quality of the bound.

Another line of research was initiated by Moghaddam et al. (2008) who

proved that SSP is in fact equivalent to a rank-1 sparse generalized eigenvalue
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problem. This is made explicit in the following expression of the optimal objec-

tive of SSP derived by Bach et al. (2010):

Z? = ‖y‖22 − ρ?, with ρ? = max
u∈{0,1}n
||u||1≤k

max
‖x‖2=1

ADiag(u)x 6=0

(
y>ADiag(u)x

)2
‖ADiag(u)x‖22

(3)

where Diag(u) is the diagonal matrix whose diagonal is u. Given M ∈ Sn and

a positive integer k, its k sparse maximum eigenvalue, denoted by λkmax(M),

is defined by λkmax(M) = max
‖x‖2=1
‖x‖0≤k

x>Mx. It is shown in Bach et al. (2010) that

condition ρ ≥ ρ? is equivalent to λkmax

(
A>

(
yy> − ρIn

)
A
)
≤ 0. D’Aspremont

et al. (2007) derived the following convex relaxation to get an upper bound on

λkmax(M), for any given M ∈ Sn,

λ̂kmax(M) = max Tr (MX)

s.t. ‖X‖1 ≤ k

Tr(X) = 1

X ∈ Sn+

(4)

where ‖X‖1 denotes the standard L1 norm of a matrix (‖X‖1 =
∑n
i=1

∑p
j=1 |Xij |).

Using duality, Bach et al. (2010) proved that λ̂kmax(M) = minY ∈Sn λmax (M + Y ) + k‖Y ‖∞
where ‖Y ‖∞ = maxi,j |Yij |. This implies that Z? ≥ ‖y‖22 − ρ̂ where



ρ̂ = min ρ

s.t. ρA>A− kµIn + Y −A>yy>A ∈ Sn+
|Yij | ≤ µ,∀i, j

(ρ, µ) ∈ R2, Y ∈ Sn

(5)

and In denotes the identity matrix with order n.

3. Preliminary results

We now introduce a reformulation of SSP from which convex relaxations

can be derived that allow us to draw some connections between the works from

Bach et al. (2010), Atamtürk & Gómez (2019) and ours.
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Let Vk = {xx> : x ∈ IRn, ‖x‖2 = 1, ‖x‖0 ≤ k}. Let conv(Vk) (resp.

cone(Vk)) denote the convex hull (resp. conic hull) of Vk. We obviously have

cone(Vk) = cone({xx> : x ∈ IRn, ‖x‖0 ≤ k}) and V ∈ cone(Vk), if and only if,

V ∈ Tr(V ) · conv(Vk).

Let us first prove that SSP can be formulated as follows.
min ‖y‖22 − Tr(XA>yy>A)

s.t. T r(XA>A) = 1

X ∈ cone(Vk).

(6)

Proposition 1. The formulations (SSP1) and (6) have the same optimal ob-

jective value Z?.

Proof. Observe that

max
X∈cone(Vk) :
Tr(XA>A) 6=0

Tr(XA>yy>A)

Tr(XA>A)
= max

‖x‖0≤k :
Tr(xx>A>A)6=0

Tr(xx>A>yy>A)

Tr(xx>A>A)
(7)

= max
‖x‖0≤k
Ax 6=0

(y>Ax)2

x>A>Ax
(8)

= ρ? (9)

To write (7) we use the fact that the maximum is achieved at extreme rays of

the cone (which is a straightforward consequence of the standard result (a +

b)/(c+ d) ≤ max(a/c, b/d) for positive numbers). It can be easily checked that

(8) is equivalent to (3). Finally, to maximize the ratio Tr(XA>yy>A)
Tr(XA>A)

, one can

impose that Tr(XA>A) = 1 while Tr(XA>yy>A) is maximized.

By considering tractable convex relaxations of cone(Vk), we can compute

lower bounds for Z?. Let us consider the following relaxation.

min ‖y‖22 − Tr(XA>yy>A)

s.t. T r(XA>A) = 1

X ∈ Sn+
‖X‖1 ≤ k · Tr(X).

(10)

The lower bound given by (10) is equal to the bound obtained from (5) (i.e.

‖y‖22 − ρ̂). We will loosely say that (10) is equivalent to (5).
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Proposition 2. Formulation (10) is equivalent to (5).

Proof. Problem (10) (or more precisely, the maximization of Tr(XA>yy>A)

under the same constraints) is a dual of (5) where ρ is the multiplier corre-

sponding to constraint Tr(XA>A) = 1 while µ is the multiplier of constraint

‖X‖1 ≤ k · Tr(X). Strong duality holds since Slater’s conditions are satis-

fied.

The lower bounds that will be presented in Section 4 are based on relaxations

of (6). Proposition 2 gives the connection with the bound of Bach et al. (2010)

and shows that any relaxation of cone(Vk) that is tighter than the one considered

in (10) can potentially lead to a better lower bound.

Observe that the lower bound obtained from (10) is already exact (i.e, equal to

the optimal solution Z?) when k = 1. This is easy to see from formulation (10)

since ‖X‖1 ≤ Tr(X) is only possible if X is a diagonal matrix implying that

X =
∑
i v
ivi
>

where each vector vi has at most one component (the ith one)

different from 0. In other words, X ∈ cone(V1) and the bound is tight (from

Proposition 1).

Let us now look for a connection with the bounds of Atamtürk & Gómez

(2019). Let Rk be any cone containing Vk (so it is a relaxation of cone(Vk)).

Consider the formulation
min ‖y‖22 − 2y>Ax+ Tr

(
BA>A

)
s.t. B − xx> ∈ Sn+

B ∈ Rk.

(11)

For the case r = 0, formulation (11) corresponds to (2) with Rk = Sn. So, by

considering cones Rk satisfying: cone(Vk) ⊆ Rk ⊂ Sn, (11) can be seen as a

strengthened form of (2) for r = 0. We are going to prove that (11) is equivalent

to the formulation (12) given below whose expression fits with the one of the

new proposed formulation (see (32) introduced later).
min ‖y‖22 − Tr(XA>yy>A)

s.t. T r(XA>A) = 1

X ∈ Sn+ ∩Rk.

(12)
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Proposition 3. Formulation (12) is equivalent to (11).

Proof. Firstly, one can easily check that the result holds if y>A = 0. So in what

follows, we assume y>A 6= 0. Since Rk is a cone, (12) is equivalent to

min
X∈Sn+∩Rk :
Tr(XA>A) 6=0

‖y‖22 −
Tr(XA>yy>A)

Tr(XA>A)
. (13)

Let X∗ be an optimal solution of (13). Let us add to (11) the constraint

B ∈ cone(X∗) and consider an optimal solution (B∗, x∗) of the new restricted

problem  min
B,x

‖y‖22 − 2y>Ax+ Tr
(
BA>A

)
s.t. B − xx> ∈ Sn+, B ∈ cone(X∗).

(14)

Notice that B∗ is also an optimal solution of (13). Multiplying x∗ (resp.

B∗) by λ (resp. λ2) leads to a feasible solution of (14) for any positive λ. This

means that max
λ≥0

2λy>Ax∗ − λ2Tr(B∗A>A) is obtained for λ = 1. Writing that

the derivative is 0 for λ = 1 implies that Tr(B∗A>A) = y>Ax∗. The optimal

objective value in (14) will then be equal to ‖y‖22 − y>Ax∗.

Let us now set B to B∗ in (14) and consider the more restricted problem min
x

‖y‖22 − y>Ax

s.t. B∗ − xx> ∈ Sn+.
(15)

We know that x∗ is an optimal solution of (15). Writing the dual of (15) (see

Appendix for the full derivation), we get
max
Z,γ

‖y‖22 − Tr(ZB∗)− γ

s.t. Z − 1
4γA

>yy>A ∈ Sn+
Z ∈ Sn, γ > 0.

(16)

Note that for any feasible solution (Z, γ) of (16) we have Z = C + 1
4γA

>yy>A

for some C ∈ Sn+. It follows that Tr(ZB∗) = Tr(CB∗) + 1
4γTr

(
B∗A>yy>A

)
Since B∗ ∈ Sn+, we have Tr(CB∗) ≥ 0 and we can deduce that (16) admits an

optimal solution satisfying Z = 1
4γA

>yy>A. Consequently, (16) has the same

optimal objective value as the following problem:

max
γ>0
‖y‖22 −

1

γ
Tr(B∗

1

4
A>yy>A)− γ.

8



The maximum is achieved for γ = 1
2

√
Tr(B∗A>yy>A). Since strong dual-

ity holds here, we can write that y>Ax∗ = Tr(B∗A>A) =
√
Tr(B∗A>yy>A).

Hence, we have Tr(B∗A>yy>A)
Tr(B∗A>A)

= Tr(B∗A>A) = y>Ax∗ = 2y>Ax∗−Tr(B∗A>A).

In other words, starting from an optimal solution of (12) (or equivalently (13)),

we get a feasible solution of (11) having the same objective value.

Let us now consider an optimal solution (B∗, x∗) of (11). The approach

used above to prove that y>Ax∗ = Tr(B∗A>A) still applies here. Using B∗ −

x∗x∗> ∈ Sn+, we get that Tr(B∗A>yy>A) ≥ (y>Ax∗)2. This implies that

Tr(B∗A>yy>A)
Tr(B∗A>A)

≥ y>Ax∗ = 2y>Ax∗ − Tr(B∗A>A). Hence, there is a feasible

solution of (12) whose objective value is less than or equal than the optimal

objective value of (11).

4. New lower bounds

We now give approximations of conv(Vk) that will allow us to compute better

lower bounds. Given any vector b ∈ IRn and any integer number l ≤ n, let fl(b)

denote the square root of the sum of the l largest squares of the components of

b. In other words, we have fl(b) =
√

max
0≤zi≤1,

∑
zi=l

∑n
i=1 zib

2
i . We will also use

b\i to denote the vector obtained from b by setting the ith component of b to

the value zero.

One basic idea underlying the proposed approximations of conv(Vk) is (in

addition to trace and positive semidefiniteness constraints) to try to generalize

the constraint ‖X‖1 ≤ k used in (4). GivenX = xxT belonging to Vk, constraint

‖X‖1 ≤ k is a consequence of constraints
∑n
i=1 |xi| ≤

√
k (just by squaring).

Observe that the last constraint is of type
∑n
i=1 bi|xi| ≤ fk(b) where b is the all-

one vector of size n. Generalizing this idea to different non-negative b vectors,

leads to new formulations.
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Lemma 1. conv(Vk) ⊆ Pk where

Pk =



X ∈ Sn+ such that:

Tr(X) = 1,

∃u ∈ IRn
+, w ∈ IRn

+ :

Xii ≥ u2
i , (ui −Xii)(ui + Xii) ≥ w2

i , ∀i ∈ {1, ..., n},
n∑

i=1

biui ≤ fk(b), ∀b ∈ IRn
+,

∑
j∈{1,...,n}\{i}

bj |Xij | ≤ fk−1(b\i)wi, ∀i ∈ {1, ..., n}, b ∈ IRn
+.

(17a)

(17b)

(17c)

(17d)

Proof. One can easily check that, for any matrix X ∈ Vk, there exist vectors

(u,w) ∈ Rn+ × Rn+ satisfying (17b): take ui =
√
Xii and wi = 0 for all i ∈

{1, ..., n}. Then let us first prove the validity of inequalities (17c) for any matrix

X = xx> where ‖x‖2 = 1 and ‖x‖0 ≤ k. Note that (17b) implies ui ≤
√
Xii =

|xi|. It follows that for any b ∈ IRn
+, we have b>u ≤

∑n
i=1 bi|xi| which is

bounded by ‖x‖2 · ‖b‖2. Since x has at most k non-zeros components, then at

most k components of b are considered. The upper bound ‖x‖2 · ‖b‖2 can then

be strengthened and replaced by ‖x‖2 · fk(b) = fk(b).

Let us now consider the sum
∑

j∈{1,...,n}\{i}
bj |Xij |. Focusing again on matrices X

written as X = xx>, we get that
∑

j∈{1,...,n}\{i}
bj |Xij | = |xi|

∑
j∈{1,...,n}\{i}

bj |xj |.

Notice that xi = 0 leads to Xii = 0, ui = 0 and
∑

j∈{1,...,n}\{i}
bj |Xij | = 0

showing (17d). Let us then focus on the case xi 6= 0. Observe that x\i will

then have at most k − 1 non-zero components. Using the same argument as

above, we get that
∑

j∈{1,...,n}\{i}
bj |xj | ≤ fk−1(b\i)‖x\i‖2 = fk−1(b\i)

√
1− x2i .

Then,
∑

j∈{1,...,n}\{i}
bj |Xij | ≤ fk−1(b\i)

√
x2i − x4i . By taking ui =

√
Xii and

wi =
√
u2i −X2

ii, the constraints (17b) are satisfied and we get (17d).

Notice that all constraints used to define Pk are convex since they are either

of linear type or of second-order-cone type. Observe that variable ui is supposed

to represent
√
Xii while wi represents

√
Xii −X2

ii when X ∈ Vk. Since this is

non-convex, constraints (17b) are considered to express a relaxed version of

ui =
√
Xii and wi =

√
Xii −X2

ii.

10



Let us consider the constraints ‖X‖1 ≤ k introduced by D’Aspremont et al.

(2007) and recalled in Section 2 to get (4). First observe that they can be

generalized into constraints∑
i,j∈{1,...,n}

bibj |Xij | ≤ (fk (b))
2
,∀b ∈ IRn

+. (18)

The validity of (18) for any matrix X = xx> ∈ Vk is obvious, since then∑
i,j∈{1,...,n} bibj |Xij | = (

∑n
i=1 bi|xi|)

2
. And using the same argument as above,∑n

i=1 bi|xi| ≤ fk(b). Observe that by taking bi = 1 for each i, we get the

constraint ‖X‖1 ≤ k. The next lemma shows that constraints (18) are already

implied by those of Pk.

Lemma 2. Constraints (18) are satisfied for each matrix X belonging to Pk.

Proof. Let us consider inequality
∑

j∈{1,...,n}\{i}
bj |Xij | ≤ fk−1(b\i)wi for some

i ∈ {1, ..., n} and b ∈ IRn
+. Let us first show that this constraint is stronger than

constraint
∑

j∈{1,...,n}
bj |Xij | ≤ fk(b)ui. Using the definition of fk, one can write

that (fk (b))
2−
(
fk−1

(
b\i
))2−(bi)

2 ≥ 0. Multiplying both sides by
(
fk−1

(
b\i
))2

,

we get the following inequality:

(fk (b))
2 (
fk−1

(
b\i
))2 ≥ (fk−1 (b\i))2 [(bi)2 +

(
fk−1

(
b\i
))2]

. Regrouping terms

we obtain
[
(fk(b))2 − (fk−1(b\i))

2
] [

(bi)
2 + (fk−1(b\i))

2
]
≥ (bi)

2(fk(b))2 leading

to

2ui

√
(fk(b))2 − (fk−1(b\i))2Xii

√
(bi)2 + (fk−1(b\i))2 ≥ 2bifk(b)uiXii. (19)

The trivial non-negativity constraint of a squared term:[
ui

√
(fk(b))2 − (fk−1(b\i))2 −Xii

√
(bi)2 + (fk−1(b\i))2

]2
≥ 0

leads to

u2i
[
(fk(b))2 − (fk−1(b\i))

2
]

+X2
ii

[
(bi)

2 + (fk−1(b\i))
2
]

≥ 2ui
√

(fk(b))2 − (fk−1(b\i))2Xii

√
(bi)2 + (fk−1(b\i))2

(20)

With the lower bound on the right-hand side of (20) given by (19), we get

that u2i
[
(fk(b))2 − (fk−1(b\i))

2
]

+ X2
ii

[
(bi)

2 + (fk−1(b\i))
2
]
− 2bifk(b)uiXii ≥

11



0. Reorganizing the terms leads to (fk−1(b\i))
2(u2i − X2

ii) ≤ (fk(b))2u2i +

b2iX
2
ii − 2bifk(b)uiXii. Taking the square roots of both sides implies that

fk−1(b\i)
√
u2i −X2

ii ≤ |fk(b)ui − biXii|. Observe that constraints (17b) im-

ply that ui ≥ Xii, while fk(b) ≥ bi from the definition of fk. Consequently,

|fk(b)ui−biXii| = fk(b)ui−biXii holds. Using wi ≤
√
u2i −X2

ii, we deduce that

fk−1(b\i)wi + biXii ≤ fk(b)ui proving that
∑

j∈{1,...,n}
bj |Xij | ≤ fk(b)ui is dom-

inated by
∑

j∈{1,...,n}\{i}
bj |Xij | ≤ fk−1(b\i)wi. To finish the proof, we multiply

each inequality
∑

j∈{1,...,n}
bj |Xij | ≤ fk(b)ui by bi and we sum up over i leading to∑

i,j∈{1,...,n} bibj |Xij | ≤ fk(b)
∑n
i=1 biui. Now using the constraint

∑n
i=1 biui ≤

fk(b), we get the wanted inequality
∑
i,j∈{1,...,n} bibj |Xij | ≤ (fk(b))2.

The previous lemma implies that the lower bounds that will be proposed in

the rest of the paper are tighter than the bound of Bach et al. (2010) which was

shown to be equivalent to (10) (Proposition 2).

Observe that the separation of inequalities (18) does not seem to be easy

since it is equivalent to maximize a quadratic form under some convex con-

straints. However, inequalities (18) are dominated by those defining Pk which

can be separated in polynomial time as stated in next proposition.

Proposition 4. Inequalities defining Pk can be separated in polynomial time.

Proof. Let us start with the separation of the inequalities
∑n
i=1 biui ≤ fk(b) for

fixed u. Note that these inequalities are satisfied if and only if
∑n
i=1 uibi ≤ 1,

for all b ∈ Rn+ such that fk(b) ≤ 1. While the maximum violation over all the

inequalities
∑n
i=1 biui ≤ fk(b) may be unbounded (if there exists b ∈ Rn+ for

which
∑n
i=1 uibi > 1, then multiplying b by an arbitrarily large value one gets

another violated inequality with an arbitrarily large violation), this observation

shows that the original separation problem is equivalent to the following one with

bounded optimal objective value and solution (due to the bounding constraint

on the right-hand side):  max
∑n
i=1 biui

s.t. fk(b) ≤ 1, b ∈ IRn
+.

(21)

12



So all the inequalities
∑n
i=1 biui ≤ fk(b) are satisfied if and only if the optimal

objective of (21) is less than or equal to one.

Observe that condition fk(b) ≤ 1 is equivalent to (fk (b))
2 ≤ 1. Moreover,

one can express (fk (b))
2

as follows:
(fk (b))

2
= max

∑n
i=1 b

2
i zi

s.t.
∑n
i=1 zi = k

0 ≤ zi ≤ 1,∀i ∈ {1, ..., n}.

(22)

The dual of (22) reads as follows
Z?D1 = min kγ +

∑n
i=1 αi

s.t. γ + αi ≥ b2i ,∀i ∈ {1, ..., n}

γ ∈ R, α ∈ Rn+,

(23)

where variable γ (resp. αi) is associated to inequality
∑n
i=1 zi = k (resp. zi ≤ 1)

in (22). Using the fact that for any optimal solution (γ?, α?) of (23) we have

γ? = maxi∈{1,2,...,n}
(
b2i − α?i

)
, we deduce

Z?D1 = minα∈Rn+

(
k ·maxi∈{1,2,...,n}

(
b2i − αi

)
+
∑n
j=1 αj

)
From the last equation, we deduce that the constraint (fk (b))

2 ≤ 1 can be

expressed by the following set of convex constraints:

kb2i − 1− (k − 1)αi +
∑
j∈{1,...,n}\{i} αj ≤ 0,∀i ∈ {1, ..., n}

αi ≥ 0,∀i ∈ {1, ..., n}.

This immediately implies that separation can be done by solving the convex

problem (in fact a second-order-cone program, abbreviated by SOCP):
max

∑n
i=1 biui

s.t. kb2i − 1− (k − 1)αi +
∑
j∈{1,...,n}\{i} αj ≤ 0, ∀i ∈ {1, ..., n}

αi ≥ 0, bi ∈ IR+, ∀i ∈ {1, ..., n}.

(24)

If the objective value is larger than 1, we get a violated inequality.

Inequalities
∑

j∈{1,...,n}\{i}
bj |Xij | ≤ fk−1(b\i)wi can be separated in a similar way

13



by solving for each i the following problem:
max

∑
j∈{1,...,n}\{i}

bj |Xij |

s.t. (k − 1)b2j − 1− (k − 2)αj +
∑
l∈{1,...,n}\{i,j} αl ≤ 0, ∀j ∈ {1, ..., n} \ {i}

αj ≥ 0, bj ∈ IR+, ∀j ∈ {1, ..., n} \ {i}.
(25)

If the obtained objective value is greater than wi, we get a violated inequality.

The previous result suggests a simple iterative cutting-plane algorithm to get

a lower bound. However, at each iteration, one has to solve SOCP problems. An

implementation of this algorithm has shown that this approach is not efficient.

To avoid adding cuts, we consider the dual problems of (24) and (25). Let

us relax the constraints of (24) in a Lagrangean way. This leads to:

min
φ∈Rn

+
λ∈Rn

+

max
b∈Rn

+
α∈Rn

n∑
i=1

biui −
n∑
i=1

λi

kb2i − 1− (k − 1)αi +
∑

j∈{1,...,n}\{i}

αj

+

n∑
i=1

φiαi.

Reorganizing terms we get

min
φ∈Rn

+
λ∈Rn

+

max
b∈Rn

+
α∈Rn

n∑
i=1

αi

φi + (k − 1)λi −
∑

j∈{1,...,n}\{i}

λj

+

n∑
i=1

biui−k
n∑
i=1

λib
2
i+

n∑
i=1

λi.

Writing that the maximum if finite, we must have φi+(k−1)λi−
∑
j∈{1,...,n}\{i} λj =

0, for all i ∈ {1, ..., n}. So the inner maximization problem reduces to
max

∑n
i=1 biui − k

∑n
i=1 λib

2
i +

∑n
i=1 λi

s.t. (k − 1)λi −
∑
j∈{1,...,n}\{i} λj ≤ 0,∀i ∈ {1, ..., n}

λ ∈ Rn+, b ∈ Rn+.

(26)

Maximizing the quadratic function leads to bi = ui
2kλi

. The dual problem of

(24) becomes:
min

∑n
i=1

(
u2
i

4kλi
+ λi

)
s.t. (k − 1)λi −

∑
j∈{1,...,n}\{i} λj ≤ 0,∀i ∈ {1, ..., n}

λ ∈ IRn
+.

(27)
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Since (24) satisfies Slater’s conditions and is bounded, strong duality holds.

Requiring that the optimal objective value in (24) is upper bounded by 1 is

of course equivalent to saying that (27) has a feasible solution whose objective

value is less than 1. So (17c) is equivalent to the following system of constraints:



∑n
i=1

(
βi
4k + λi

)
≤ 1

(k − 1)λi −
∑
j∈{1,...,n}\{i} λj ≤ 0, ∀i ∈ {1, ..., n}

βi ≥ u2
i

λi
, ∀i ∈ {1, ..., n}

λ ∈ IRn
+, β ∈ Rn+.

(28)

where we introduced the variable βi to represent any value larger than or equal

to
u2
i

λi
(and linearize in this way the objective in (27)).

Proceeding in a similar way using formulation (25), we get that (17d) is

equivalent to the following system of constraints:

∑
j∈{1,...,n}\{i}

(
βij
4 + (k − 1)λij

)
≤ (k − 1)wi, ∀i ∈ {1, ..., n}

(k − 2)λij −
∑

l∈{1,...,n}\{i,j}
λil ≤ 0, ∀i, j ∈ {1, ..., n}, j 6= i

βij ≥
X2
ij

λij
∀i, j ∈ {1, ..., n}, j 6= i

λi ∈ IRn
+, β

i ∈ Rn+.

(29)

where λij are the dual variables associated with the first set of inequalities in

(25) and βij represents any value larger than or equal to
X2
ij

λij
(so as to make the

first inequality linear).
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Gathering the results just obtained leads to another way of expressing Pk.

Pk =



X ∈ Sn+ such that:

Tr(X) = 1

∃u ∈ IRn
+, w ∈ IRn

+, λ ∈ IRn
+, β ∈ IRn

+, λ
i ∈ IRn−1

+ , βi ∈ IRn−1
+ ∀i ∈ {1, ..., n}

u2i ≤ Xii, w
2
i ≤ (ui −Xii)(ui +Xii) ∀i ∈ {1, ..., n}

u2i ≤ λiβi ∀i ∈ {1, ..., n}∑n
i=1

(
βi
4k + λi

)
≤ 1

(k − 1)λi −
∑

j∈{1,...,n}\{i}
λj ≤ 0 ∀i ∈ {1, ..., n}

X2
ij ≤ λijβij ∀i, j ∈ {1, ..., n}, j 6= i∑

j∈{1,...,n}\{i}

(
βij
4 + (k − 1)λij

)
≤ (k − 1)wi ∀i ∈ {1, ..., n}

(k − 2)λij −
∑

l∈{1,...,n}\{i,j}
λil ≤ 0 ∀i, j ∈ {1, ..., n}, j 6= i.

(30)

We now introduce some inequalities that may be added to strengthen this

relaxation. The main idea is to try to use again the fact that for any X ∈ Vk,

by taking ui =
√
Xii and wi =

√
Xii −X2

ii, there exists a set of values for

vectors λ, β, λi and βi leading to a feasible solution of Pk.

We will prove later that the following constraints can be added in (30) to

get a stronger relaxation of conv (Vk):
∑

i∈{1,...,n}
λi = 1/2,

∑n
i=1

βi
4k = 1/2,∑

j∈{1,...,n}\{i}
λij = wi/2,

∑
j∈{1,...,n}\{i}

βij = 2(k− 1)wi, in addition to inequalities

2kλiXii ≥ u2i . To ease presentation we will replace variables λi by zi = 2kλi.
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This leads to the formulation (31) defining the set P̃k.

P̃k =



X ∈ Sn+ such that:

Tr(X) = 1

∃u ∈ IRn
+, w ∈ IRn

+, z ∈ IRn
+, λ

i ∈ IRn−1
+ , βi ∈ IRn−1

+ ∀i ∈ {1, ..., n}

u2i ≤ ziXii ∀i ∈ {1, ..., n}

w2
i ≤ (ui −Xii)(ui +Xii) ∀i ∈ {1, ..., n}∑n
i=1 zi = k

zi ≤ 1 ∀i ∈ {1, ..., n}

X2
ij ≤ λijβij ∀i, j ∈ {1, ..., n}, j 6= i∑

j∈{1,...,n}\{i}
λij = wi

2 ∀i ∈ {1, ..., n}∑
j∈{1,...,n}\{i}

βij = 2(k − 1)wi ∀i ∈ {1, ..., n}

2(k − 1)λij ≤ wi ∀i, j ∈ {1, ..., n}, j 6= i.

(31)

Proposition 5. conv(Vk) ⊂ P̃k ⊂ Pk.

Proof. Since some constraints have been added to (30) to get (31), P̃k ⊂ Pk
obviously holds. Let us then focus on the other inclusion.

Firstly, note that from the way the formulation (28) was obtained, for

any X ∈ Vk there exists (u, λ, β) ∈ IRn
+ × IRn

+ × IRn
+ such that βi =

u2
i

λi
,∑n

i=1

(
u2
i

4kλi
+ λi

)
≤ 1, and (k − 1)λi −

∑
j∈{1,...,n}\{i}

λj ≤ 0,∀i ∈ {1, 2, ..., n}.

The last inequality implies that λi ≤
∑
j∈{1,...,n} λj

k . And using the latter with∑n
i=1

(
u2
i

4kλi
+ λi

)
≤ 1 leads to

∑n
i=1

(
u2
i

4
∑
j∈{1,...,n} λj

+ λi

)
≤ 1, which is equiv-

alent to 1
4
∑
j∈{1,...,n} λj

∑n
i=1 u

2
i +

∑
j∈{1,...,n} λj ≤ 1.

For each matrix X = xx> with ‖x‖2 = 1 and ‖x‖0 ≤ k, it is enough to

impose feasibility of Pk when ui =
√
Xii and wi =

√
Xii −X2

ii. This implies

that
∑n
i=1 u

2
i = 1. Then we get 1

4
∑
j∈{1,...,n} λj

+
∑
j∈{1,...,n} λj ≤ 1, which

is however possible only if
∑
j∈{1,...,n} λj = 1/2, and consequently

∑n
i=1 βi =

2k. The equation
∑
j∈{1,...,n} λj = 1/2 together with the inequality λi ≤∑

j∈{1,...,n} λj

k also imply that we can assume that λi ≤ 1
2k . In fact, considering
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how we get 1
4
∑
j∈{1,...,n} λj

+
∑
j∈{1,...,n} λj ≤ 1, the only way to get equality is

to impose that βi = 2ku2i = 2kXii for all i, λi = 1
2k when Xii 6= 0. Constraints

u2i ≤ λiβi can then be replaced by u2i ≤ 2kλiXii. By eliminating variables

βi and replacing λi by zi = 2kλi, the set of constraints u2i ≤ Xii, u
2
i ≤ λiβi,∑n

i=1

(
βi
4k + λi

)
≤ 1, (k− 1)λi −

∑
j∈{1,...,n}\{i}

λj ≤ 0 can be simply replaced by

u2i ≤ ziXii,
∑n
i=1 zi = k and 0 ≤ zi ≤ 1. Using the fact that

∑
j∈{1,...,n}\{i}

X2
ij =

w2
i , the same kind of arguments allows to prove the validity of

∑
j∈{1,...,n}\{i}

λij =

wi
2 ,

∑
j∈{1,...,n}\{i}

βij = 2(k − 1)wi and 2(k − 1)λij ≤ wi.

Let us now give a formulation to determine a lower bound using the re-

laxation (12) where Rk is equal to cone(P̃k). Remember that requiring X ∈

cone(P̃k) is equivalent to impose that X ∈ Tr(X) · P̃k. Using (31) instead of

X ∈ Sn+ ∩Rk in formulation (12) leads to (32).



min ||y||22 − Tr(XA>yy>A)

s.t. X ∈ Sn+
Tr(XA>A) = 1

u2i ≤ ziXii ∀i ∈ {1, ..., n}

w2
i ≤ (ui −Xii)(ui +Xii) ∀i ∈ {1, ..., n}∑n
i=1 zi = k · Tr(X)

zi ≤ Tr(X) ∀i ∈ {1, ..., n}

X2
ij ≤ λijβij ∀i, j ∈ {1, ..., n}, j 6= i∑

j∈{1,...,n}\{i}
λij = wi

2 ∀i ∈ {1, ..., n}∑
j∈{1,...,n}\{i}

βij = 2(k − 1)wi ∀i ∈ {1, ..., n}

2(k − 1)λij ≤ wi ∀i, j ∈ {1, ..., n}, j 6= i

u ∈ IRn
+, w ∈ IRn

+, z ∈ IRn
+, λ

i ∈ IRn−1
+ , βi ∈ IRn−1

+ ∀i ∈ {1, ..., n}.
(32)

To close this section, we show that by adding constraints zi
Tr(X) ∈ {0, 1} to

(32), we get Z? as an optimal objective value (i.e., the optimal objective value

of SSP).
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Proposition 6. Imposing constraints zi
Tr(X) ∈ {0, 1} in (32) leads to an optimal

solution of SSP.

Proof. From
∑n
i=1 zi = k ·Tr(X) and zi

Tr(X) ∈ {0, 1} we get that n−k variables

among the zi are equal to 0. If zi = 0, then from u2i ≤ ziXii we get that ui = 0.

As a consequence, from constraint w2
i ≤ (ui − Xii)(ui + Xii) we deduce that

wi = 0. Equality
∑

j∈{1,...,n}\{i}
λij = wi

2 implies that all λij are equal to 0. Using

X2
ij ≤ λijβ

i
j we get that Xij = 0 for any j. In other words, the matrix X will

have n−k zero columns. X can then be written as a sum of at most k rank-one

matrices: X =
∑k
i=1 vivi

>. Since there are at most k non-zero terms on the

diagonal of X, each vector vi in the decomposition of X will also have at most

k non-zero components.

Let us now remember that an optimal solution of (32) is an optimal solution

of (13) whenRk = cone(P̃k). Using that
Tr(XA>yy>A)
Tr(XA>A)

≤ maxi
Tr(vivi>A>yy>A)
Tr(vivi>A>A)

and vivi
> ∈ cone(Vk), we deduce that there exists an index i such that

Tr(XA>yy>A)
Tr(XA>A)

=

Tr(vivi>A>yy>A)
Tr(vivi>A>A)

and ‖vi‖0 ≤ k ending the proof.

5. Upper bounds

Starting from (32), a simple upper bound can be obtained as follows. Given

a solution of (32), we compute the boolean vector x ∈ {0, 1}n having k non-zero

components minimizing the distance with z/Tr(X) (i.e., ‖x−z/Tr(X)‖2). This

can be done in a greedy way by sorting the components of z in descending order

according to zi. Then we just compute the objective value of the orthogonal

projection of y on the vector space spanned by the set of columns Ai for which

xi = 1.

When (10) is solved, we can also get an upper bound using the greedy

approach. We consider the vector whose components are Xii/Tr(X) and then

we compute the closest boolean vector x having k non-zero components. Then

we project y on the vector space spanned by the set of columns Ai for which

xi = 1, and we compute the objective value of the obtained vector to get an

upper bound.
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6. Numerical experiments

All formulations have been solved with MOSEK 8.1 solver. Computations

are done on a laptop having a 2.3 GHz Intel Core i5 processor and 16 GB of

RAM. Notice that in all conducted experiments, the columns of A and the vector

y are normalized (i.e., ||Ai||2 = 1 and ||y||2 = 1). This assumption seems to

reduce numerical difficulties. We also tried other solvers (COSMO and SCS).

Some preliminary experiments have shown that the results given by MOSEK

(in a comparable time) are more robust than those obtained by COSMO and

SCS. Furthermore, in addition to the new formulation (32), we also implemented

a dual formulation and checked that both formulations give the same bound.

However, the computing time presented in the paper will only integrate the

solution of the primal problem (32).

6.1. Normally-distributed data

We start reporting the results obtained on randomly generated ‘gaussian

instances’, where both y and the columns of A are normally distributed. The

new bounds are compared with those of Bach et al. (2010) and Atamtürk &

Gómez (2019) since the latter already compare favorably with previous bounds

(see Atamtürk & Gómez (2019); Bach et al. (2010) for details).

To compare our lower bounds with the bounds (2) and (10), we show on

Table 1 the lower bounds obtained using (10), (32) and (2) (for r = 1, 2, 3). We

also give the cpu time in each case. Notice that the cpu times shown in the tables

include the total time needed to load the problem, transform it into the right

conic model and solve it. The values reported in each row of Table 1 correspond

to averaged results over 20 instances. One can see that the bound from (32)

seems to be higher than the one obtained from (2) (with r = 2). However, this

does not hold for all instances. Observe that the computing times related to

(32) is comparable to the one related to (2) (with r = 2). The bounds obtained

when r = 3 can be slightly better than the new bound for large values of k.

Solving (2) with r = 3 is however much more time consuming.

20



Sizes (10) (32) (2): r = 1 (2): r = 2 (2): r = 3

m n k Low Time(s) Low Time(s) Low Time(s) Low Time(s) Low Time(s)

100 40 5 0.7900 0.40 0.8026 1.05 0.7733 0.45 0.7992 1.33 0.8012 29.22

100 40 15 0.6403 0.45 0.6582 1.21 0.6503 0.43 0.6587 1.32 0.6593 27.58

100 40 25 0.5830 0.47 0.5951 1.22 0.5946 0.43 0.5960 1.36 0.5961 29.23

100 60 5 0.7383 1.59 0.7551 4.49 0.6542 1.86 0.7291 5.31 0.7471 144.23

100 60 15 0.5570 2.27 0.5750 4.23 0.5248 1.75 0.5664 4.98 0.5731 143.42

100 60 25 0.4569 2.35 0.4744 4.44 0.4645 1.73 0.4792 5.34 0.4813 150.10

100 80 5 0.7228 5.97 0.7375 15.72 0.4886 7.09 0.6317 17.95 0.6873 510.85

100 80 15 0.4723 8.18 0.4857 13.53 0.3508 6.69 0.4339 17.19 0.4600 482.22

100 80 25 0.2856 7.98 0.2977 15.40 0.2558 6.51 0.3003 17.21 0.3089 486.19

Table 1: Normally-distributed data: n ∈ {40, 60, 80}

Larger values of n are considered in Table 2. The r = 3 variant is not

considered in Table 2 since its computing time becomes quite large (as already

shown in Table 1). Table 2 contains also the upper bounds obtained as described

in Section 5. The upper bounds related to (2) are obtained by the procedure

described in Atamtürk & Gómez (2019). Each row in Table 2 gives the values

of the parameters m, n and k, and the values (averaged over 20 instances) for

the lower and upper bounds from the solution of (32), (10), and (2) the gap

defined by 100·(upper bound - lower bound)/(lower bound) and the cpu time

(in seconds). For the case when for some fixed triplet (m,n, k), lower bounds

less than < 10−4 have been obtained for some of the instances, we indicate in

parentheses in the field ’Gap’ the number of instances for which the lower bound

was > 10−4. The given gap is the average of the gaps on this set of instances.

Observe again that the computing time mainly depends on n. Problems

with n = 150 are solved in around 6 minutes.

The gaps generally decrease when the ratio m/n increases. The gaps related

to the new bounds (from (32)) are sensitively smaller than those provided by

(10) and also tend to improve over (2) for r = 1, 2.

To better understand the dependence of the gap on k and m/n, we show in

Figures 1 and 2 the average values of the gap (related to the new bound (32))

for n = 50 and n = 30 (over 100 random gaussian instances). Different values

of m are considered: 75, 100, 200 and 300. Figures 1 and 2 clearly confirm that

the gap decreases when m/n increases. We also see that the gap seems to be
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larger for k between n
4 and 3n

4 than on the rest of the interval [1, n]. This does

not hurt intuition since there is some combinatorial explosion between n
4 and

3n
4 .

Figure 1: Optimality gap related to bound (32) (average values over 100 instances) as a

function of k for a fixed value of n = 50 and different values of m: 75, 100, 200 and 300

Figure 2: Optimality gap related to bound (32) (average values over 100 instances) as a

function of k for a fixed value of n = 30 and different values of m: 75, 100, 200 and 300

6.2. Further random instances

We consider here two types of random instances: “Gamma-distributed

instances” where each component of y and A is distributed according to Gamma

distribution Γ(1, 1), and “Uniform instances” where components are uniformly

distributed in [−1, 1]. In all cases the vector y is normalized such that ‖y‖2 = 1.

To better understand the behavior of the 4 lower bounds : (10), (32) and (2)
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with r ∈ {1, 2, 3}, Figures 3-5 illustrate the results obtained for the two types

of instances described above (Gamma-distributed, and Uniform). The number

of columns n is set to 40 while three values of m are considered: a relatively

high value (m = 80), a value close to n (m = 45) and a value smaller than n

(m = 35). Computing times are about 0.45 seconds for (10) and also for the

r = 1 variant of (2), 1.2 seconds for (32), 1.3 seconds for the r = 2 case, and

30 seconds for r = 3. Several observations can be made here. First, even if the

values of the lower bounds depend on the instance type, the curves seem to be

quite similar (for a given value of n and m). Second, for the large values of m,

we see that the bounds (2): r = 2 and r = 3 are very close to the bound (32).

When m is close to n (m = 45) and k is small, (32) becomes much better than

relaxation (2) with r = 2 and also better than (2) with r = 3. Observe however,

that for larger values of k, (2) for r = 2 and r = 3 are still slightly better than

(32). The situation for m = 35 is more clear, the bounds (2) obtained for r = 2

or r = 3 are not efficient since they are equal to 0 while (32) still gives non-zero

bounds for small values of k but also fails for larger values.
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Figure 3: Comparing lower bounds for Gamma-distributed instances and uniformly-

distributed instances (average values over 100 instances) for n = 40, m = 80.

6.3. Some real instances

Four real datasets are considered here. They are chosen in such a way

that it is still possible to solve the relaxation (2) with r = 3 in a reasonable
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Figure 4: Comparing lower bounds for Gamma-distributed instances and uniformly-

distributed instances (average values over 100 instances) for n = 40, m = 45.
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Figure 5: Comparing lower bounds for Gamma-distributed instances and uniformly-

distributed instances (average values over 100 instances) for n = 40, m = 35.
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Instance Number of rows (m) Number of columns (n)

Auto MPG 392 25

Forest Fires 517 29

Residential Building 100 70

Appliances Energy prediction 500 26

Table 3: Characteristics of real instances

time. “Auto MPG” is used in Miyashiro & Takano (2015) and several other

articles. Instance “Forest Fires” comes from Cortez & Morais (2007) and was

also used in Miyashiro & Takano (2015). The “Residential Building” instance

was defined in Rafiei & Adeli (2016) (we considered the first 100 rows of their

file). Finally, the “Appliances Energy Prediction” instance is extracted from

Candanedo et al. (2017) by considering the first 500 rows. The four datasets

are available on request.

The five lower bounds are given in addition to the upper bound obtained

after solving (32). As in our other computations, the columns of A and the

vector y are normalized. We can see that the new lower bound is better than

the other bounds for small values of k. When k becomes bigger, then the

situation depends on the instance. For example, in the “Energy” instance,

the new bound stays close to the bound obtained from (2) with r = 3. The

situation is different for the three other instances where the bound related to

r = 3 becomes significantly better than the new bound when k increases. Of

course, this comes at the cost of a higher computational effort as already shown

on Table 1.

6.4. Synthetic instances

Using a similar setup as in (Atamtürk & Gómez, 2019, Section 5.2) (see also

Bertsimas et al. (2016); Hastie et al. (2020)) we generate instances as follows.

For given dimensions m,n, sparsity s, predictor autocorrelation ρ, and signal-

to-noise ratio SNR:

� The rows of the predictor matrix A ∈ Rm×n are drawn from i.i.d. distri-

butions Np(0,Σ), where Σ ∈ Rn×n such that Σi,j = ρ|i−j|.
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Figure 6: Comparing bounds on the instance ‘auto MPG’
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Figure 7: Comparing bounds on the instance ‘Forest Fires’
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Figure 8: Comparing bounds on the instance ‘Residential Building’
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Figure 9: Comparing bounds on the instance ‘Appliances Energy Prediction’
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� The “right” vector y is equal to Aβ0 where β0 is a vector of size n whose

first s components are equal to one and the rest is equal to zero.

� The response vector y is drawn from Np
(
Aβ0, σ2I

)
, where I stands for

the identity matrix and σ2 =
(
β0
)>

Σβ0/SNR.

In our experiments, we used m = 300, n = 50, SNR∈ {0.01, 1, 100}. ρ varies

from 0.1 to 0.9 and s = k with k ∈ {5, 10}. The vector y is normalized.

The computing time for (32) and the r = 2 variant of (2) is approximately equal

to 2 seconds.

The results are displayed in Figure 10 for s = k = 5 and in Figure 11 for

s = k = 10.
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Figure 10: Results on synthetic instances with with s = k = 5

The obtained results clearly show that the bound is competitive with other

bounds from the literature for this family of instances. In both cases (i.e. s =
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Figure 11: Results on synthetic instances with s = k = 10
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k = 5 and s = k = 10) it is interesting to observe that for a low value of the

SNR and large value of ρ (≥ 0.6) the proposed bound seems to provide larger

improvements over other formulations.

In addition to comparing the values of the bounds stemming from the dif-

ferent formulations, we also considered studying the proportion of correctly

identified variables, i.e. the number of nonzero entries in the solution found by

the algorithm described in Section 4 and that were used to build y, divided by

k. This ratio is called the support reconstruction ratio in what follows. In our

experiments we set ρ = 0.5, n = 50 and s ∈ {5, 10}. The results (averaged over

50 instances) are displayed as a function of the SNR for m ∈ {50, 100, 150} in

Figure 12. As expected, the reconstruction ratio tends to 1 when the SNR in-

creases and the greater m, the easier the reconstruction is. Also, we see that for

a low SNR the reconstruction ratio is about 0.1, which comes down to choosing

uniformly randomly 5 columns among 50. The convergence of the ratio to the

value 1 seems to be more rapid when s = 5.
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Figure 12: Support reconstruction ratio

7. Conclusion and further research directions

The new proposed bounds are tighter than those of Bach et al. (2010) but

more difficult to compute. They are generally tighter than or very close to the

second-order bounds of Atamtürk & Gómez (2019) (r = 2). When the number
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of columns is not too large, the third-order formulation of Atamtürk & Gómez

(2019) can be solved leading to a bound that is generally higher than the new

bound for large values of k. However, this requires a much greater computational

effort.

For large values of the ratio m/n, the obtained gaps are almost equal to 0.

When m/n is less than or equal to 1, even if the new bounds seem to be better

than previous bounds, they are still not good for large values of k.

Finally, the bounds proposed in this paper are mainly based on an approxi-

mation of the cone C = cone({xx> : x ∈ IRn, ‖x‖0 ≤ k}). We can easily establish

that the dual cone C? of C is the set of symmetric matrices whose principal sub-

matrices of size k are positive semidefinite. This may suggest other approaches

for approximating C by making use of inequalities of the form Tr(X · Y ) ≥ 0,

which are valid for C, for all Y ∈ C?. Future work will be dedicated to this other

line of research.
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Appendix A. Justification for the formulation of the dual problem

(16)

Problem (15) can be expressed as follows.

min ‖y‖22 + Tr




0 − 1

2y
>A

− 1
2A
>y 0n




1 x>

x Q




s.t.

Q−B∗ = 0n


1 x>

x Q

 ∈ S
n
+, x ∈ Rn, Q ∈ Sn

(A.1)

where 0n represents the n× n matrix with zero entries only.

Let us now associate a matrix dual variable W ∈ Rn×n to the first constraint

Q−B∗ = 0n and the following matrix dual variable
γ u>

u Z


to the positive semidefiniteness constraint, where γ ∈ R, u ∈ Rn and Z ∈ Sn.

Then, the conic Lagrangian of (A.1) has the following expression.

L(x,Q,W, γ, u, Z) = ‖y‖2 −
(
y>A+ 2u>

)
x+ Tr (W (Q−B∗))− Tr(ZQ)− γ.

The corresponding dual function is

g(W,γ, u, Z) = minx∈Rn,Q∈Sn L(x,Q,W, γ, u, Z)

=

 ‖y‖22 − Tr (ZB∗)− γ if W = Z and u = − 1
2A
>y

−∞ otherwise.
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The dual problem then writes

max ‖y‖22 − Tr (ZB∗)− γ

s.t. 
γ − 1

2y
>A

− 1
2A
>y Z

 ∈ S
n
+, Z ∈ Sn, γ ∈ R.

(A.2)

Recall that we assume y>A 6= 0 (see beginning of the proof of Proposition

3). Together with the positive semidefiniteness constraint in (A.2), this implies

γ > 0, which in turn implies
γ − 1

2y
>A

− 1
2A
>y Z

 ∈ S
n
+ ⇐⇒ Z − 1

4γ
A>yy>A ∈ Sn+.

This directly leads to the formulation (16).
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