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Macroscopic models for diusion and heterogeneous reversible reaction of two species in porous media are developed by using coupled homogenization technique and spectral approach. Three representative cases related to the order of magnitude of the macroscopic Damköhler number Da L , namely predominating reaction, diusion-reaction of the same order and dominating diusion, are considered. The concentrations are developed as time series in an eigenfunctions basis associated with periodic spectral problems formulated in the unit-cell, thus forming a new microscopic problem to be homogenized. Such an approach represents a powerful tool to upscale diusion-reaction microscopic problems, especially for high Damköhler number values where classical asymptotic development fails. It enables to capture the physics at very short times, when the characteristic time of reaction involved is much faster than the diusion one. This work allows us to formulate the complex macroscopic laws describing the heterogeneous diusion/reaction problem for two species in high Damköhler number regime.

Introduction

Reactive mass transport in porous media, which is the subject of many studies in scientic and engineering disciplines, is a coupled multiscale and multi-physics process. For example, convection-diusion-reaction of multi-species in a poroelastic tissue, coupling mechanical and reactive mass transfer problem has been recently examined [START_REF] Vilaca | Stability analysis for a new model of multi-species convection-diusion-reaction in poroelastic tissue[END_REF]. Slightly non-isothermal diusion-reaction problem in a catalyst pellet was studied in [START_REF] Golman | Dead-core solutions for slightly non-isothermal diusion-reaction problems with power-law kinetics[END_REF]. To overcome the time and computational resources challenge of pore-scale modeling, the most suitable way is to upscale the local problem and to consider the porous medium as a continuous domain. Several approaches exist to perform such upscaling: method of moments [START_REF] Brenner | Dispersion resulting from ow through spatially periodic porous media[END_REF][START_REF] Edwards | Dispersion and reaction in two dimensional model porous media[END_REF], periodic homogenization technique [START_REF] Auriault | Diusion/adsorption/advection macrotransport in soils[END_REF][START_REF] Sanchez-Palencia | Non homogeneous media and vibration theory[END_REF], homogenization by two-scale convergence [START_REF] Allaire | Homogenization and two-scale convergence[END_REF][START_REF] Gagneux | Homogenization of the Nernst-Planck-Poisson system by two-scale convergence[END_REF], volume averaging technique [START_REF] Whitaker | The method of volume averaging[END_REF]. In this work, the problem of diusion in the uid phase and heterogeneous rstorder chemical reaction at the uid/solid interface is investigated. In the literature, the convection and diusion are frequently considered for the transport problem. However, the main challenge for the upscaling procedures stems from the heterogeneous reaction. Three cases (related to the order of magnitude of the macroscopic Damköhler number Da L ), namely predominating reaction, diusion-reaction of the same order and dominating diusion, can be distinguished. In the linear case with a small Damköhler number, all upscaling techniques give the standard result of a macroscopic diusion-reaction equation characterized by a macroscopic diusion tensor solely depending on the geometry and microscopic diusion coecients, and a reactive source term depending on the specic surface area, reaction rates and concentrations [START_REF] Whitaker | The method of volume averaging[END_REF]. Specic applications of this problem can be found in many elds. For example, in electrochemical systems, the porous bio-electrode proceeds to reduce oxygen indirectly so that heterogeneous reaction and diusion of the two dilute species O 2 and H 2 O 2 are involved [START_REF] Le | Upscaled model for diusion and serial reduction pathways in porous electrodes[END_REF]. The reaction rates depend on the operating potential and can be very large for a low operating potential. The macroscopic equations developed in [START_REF] Le | Upscaled model for diusion and serial reduction pathways in porous electrodes[END_REF] form the basis of a numerical tool for optimizing porous microelectrode thickness [START_REF] Le | Current and optimal dimensions predictions for a porous micro-electrode[END_REF]. However, the authors considered only the low kinetic number regime for the sake of simplicity. The high Damköhler regime remains an open issue. Another eld of application is agronomy with ion uptake (metals, ligands, ligand-complexed metals) by roots. Homogeneous and heterogeneous reactions combined with the diusion mechanism take place in the soil with very variable orders of magnitude of the reaction rates [START_REF] Sterckeman | A modelling study to evaluate the mechanisms of root iron uptake by Noccaea caerulescens[END_REF]. There is a strong motivation to elucidate the upscaling procedure for diusion-reaction problems especially in the case of large Damköhler number. Battiato and Tartakovsky have applied the asymptotic expansion method in the case of diusion-advection coupled to a non linear chemical reaction for small values of Damköhler number considering one species [START_REF] Battiato | Applicability regimes for macroscopic models of reactive transport in porous media[END_REF] and multi-species [START_REF] Boso | Homogenizability conditions for multicomponent reactive transport[END_REF]. However, the standard multiscale expansion fails to derive macroscopic mass conservation equations in the case of a large Damköhler number. In a previous work [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF], we have examined theoretical models for the diusion of two species coupled to a heterogeneous reaction by the classical periodic homogenization procedure. It has been emphasized that the homogenized models obtained for high Damköhler number fail to predict the physics at short times when the chemical equilibrium is not achieved. For the more challenging case of predominating reaction, several attempts have been made to derive macroscopic laws for one species. The rst one goes back to Shapiro and Brenner [START_REF] Shapiro | Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium[END_REF] using the method of moments. Mauri [START_REF] Mauri | Dispersion, convection, and reaction in porous media[END_REF] has used the periodic homogenization method to upscale the diusion-convection problem coupled with linear heterogeneous chemical reaction for dierent orders of magnitude of the Péclet and Damköhler numbers. The homogenized diusion (or dispersion) tensor is aected by the local chemical reaction rate for high values of the Damköhler number. Its determination requires the resolution of a boundary value problem coupled to an auxiliary eigenvalue problem. With the help of the volume averaging approach, Valdés-Parada et al. [START_REF] Valdés-Parada | On diusion, dispersion and reaction in porous media[END_REF][START_REF] Valdés-Parada | Diusion and heterogeneous reaction in porous media: the macroscale model revisited[END_REF] have shown that the eective diusion tensor depends on the reaction rate for high Damköhler number. Multi-species diusion/heterogeneous reaction problem has also been studied by Qiu et al. [START_REF] Qiu | Upscaling multicomponent transport in porous media with a linear reversible heterogeneous reaction[END_REF] using the same approach. Eective diusion and co-diusion tensors depending on the reaction rates are introduced and the authors highlight the inuence of the local variation of the reaction rate on the macroscopic response of the upscaled model. A general framework to study the diusion-advection-reaction problem in the case of large Damköhler number has been introduced by Allaire et al. [START_REF] Allaire | Homogenization of a convectiondiusion model with reaction in a porous medium[END_REF][START_REF] Allaire | Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media[END_REF] combining the asymptotic expansion method with spectral problems at the unit cell level. The authors highlight the inuence of the reaction on the diusion-dispersion tensor. Recently, this technique has been used by Bourbatache et al. [START_REF] Bourbatache | Upscaling diusionreaction in porous media[END_REF] to upscale a diusion-reaction problem for a single species. Municchi and Icardi [START_REF] Municchi | Macroscopic models for ltration and heterogeneous reactions in porous media[END_REF] have solved the same problem including advection. The novel method proposed in this paper to upscale a two species diusion/reaction problem makes use of a change of variable based on a spectral approach coupled with a homogenization procedure. The concentrations are developed in series in the basis of eigenfunctions associated with periodic spectral problems, thus forming a new microscopic problem to be homogenized. The proposed approach leads to consistent homogenized models, even for large Damköhler number values. These models are capable of capturing the physics at very short times, when the characteristic time of reaction is much faster than the diusion one. 

A k * 1 k * 2 B at Γ * f s (1) 
where k * 1 and k * 2 are the associated constant reaction rates. It should be noted that the dimensional quantities are indexed by the superscript * . Let c * 1 and c * 2 be the concentrations of A and B respectively. Assuming that the transport is ruled by a Fickian process, the microscopic diusion/reaction equations at the pore-scale are written as

             ∂c * 1 ∂t * -∇ * • (D * 1 ∇ * c * 1 ) = 0 in Ω * f ∂c * 2 ∂t * -∇ * • (D * 2 ∇ * c * 2 ) = 0 in Ω * f -D * 1 ∇ * c * 1 • n f s = k * 1 c * 1 -k * 2 c * 2 at Γ * f s -D * 2 ∇ * c * 2 • n f s = k * 2 c * 2 -k * 1 c * 1 at Γ * f s (2) 
where D * 1 and D * 2 denote the diusion coecients of A and B respectively, n f s the normal unit vector at the solid/uid interface pointing out of the uid phase. The microstructure of Ω * is assumed to be constituted of the repetition of a periodic elementary cell Y * of characteristic length l. The macroscopic and microscopic spatial coordinates are noted x * = (x * 1 , x * 2 , x * 3 ) and y * = (y * 1 , y * 2 , y * 3 ) respectively. The scale separation condition (l L) allows introducing the small parameter ε = l/L, the micro-scale l to the macro-scale L ratio. The elementary cell of the porous medium

Y * = Y * f ∪ Y * s is composed of the uid phase Y *
f and of the solid phase Y * s . The boundary of the uid phase ∂Y * f = ∂Y * f s ∪ ∂Y * f e is constituted of the solid-uid interface ∂Y * f s assumed to be impermeable and of the external interface ∂Y * f e (gure 1). 

Zoom of the microstructure

Associated spectral problem

The initial microscopic model will be transformed into a new problem associated with the following spectral problem dened in the periodic unit cell

Y *        -∇ * • D * 1 ∇ * ψ * 1,n = λ * n ψ * 1,n in Y * f -∇ * • D * 2 ∇ * ψ * 2,n = λ * n ψ * 2,n in Y * f -D * 1 ∇ * ψ * 1,n • n f s = k * 1 ψ * 1,n -k * 2 ψ * 2,n at ∂Y * f s -D * 2 ∇ * ψ * 2,n • n f s = k * 2 ψ * 2,n -k * 1 ψ * 1,n at ∂Y * f s (3) 
where ψ * 1,n (y * ) and ψ * 2,n (y * ) denote the Y -periodic eigenfunctions sharing the same eigenvalues λ * n , with n ∈ N. Three important points must be emphasized. First, the eigenfunctions ψ * 1,n and ψ * 2,n are dened to within a same multiplicative constant. Secondly, it should be noted that λ * 0 = 0 is also an eigenvalue associated with the constant eigenfunctions ψ * 1,0 and ψ * 2,0 satisfying the condition k * 1 ψ * 1,0 -k * 2 ψ * 2,0 = 0. Thirdly, the eigenfunctions (ψ * 1,n , ψ * 2,n ) for n ≥ 1 obey a compatibility equation. Integrating Eqs. (3a) and (3b) over Y * f , using the divergence theorem yields

ψ * 1,n f + ψ * 1,n f = 0 for n ≥ 1 (4) 
where the operator . f denotes the intrinsic average in the uid phase of the unit cell dened in [START_REF] Qiu | Upscaling multicomponent transport in porous media with a linear reversible heterogeneous reaction[END_REF].

The unknowns c * i (i ∈ {1, 2}) are sought in a series development related to the spectral problem as follows1 

c * i (t * , x * , y * ) = ∞ n=0 ψ * i,n (y * ) exp (-λ * n t * ) v * i,n (t * , x * , y * ) (5) 
where v * i,n are new variables depending also on time and position. The decomposition ( 5) is based on the idea of a separation of variables in the unit cell Y . This choice is justied by the orthogonality condition (A.9) for the eigenfunctions ψ * i,n (see Appendix A and reference [START_REF] Mikhailov | Unied analysis and solutions of heat and mass diusion[END_REF]). Generally, the function v * i,n should be constant in the unit cell, i.e. depending only on x * . However, the complex feature of local chemical non-equilibrium at short time requires that v * i,n should depend also on y * and t * in order to describe two separated time scales: a short time related to the chemical reaction in the exponential term and a macroscopic time corresponding to the transport problem. As shown later, at the leading order O( 0 ) corresponding to the macroscale, v * i,n is only function of x * and t * (Eq. ( 24)). Inserting [START_REF] Auriault | Diusion/adsorption/advection macrotransport in soils[END_REF] into the initial problem (2) written on Y * f yields

                                             ∞ n=0 exp(-λ * n t * ) ψ * i,n ∂v * i,n ∂t * -λ * n v * i,n -∇ * • D * i ∇ * ψ * i,n v * i,n = 0 in Y * f - ∞ n=0 exp(-λ * n t * )D * 1 ∇ * (ψ * 1,n v * 1,n ) • n f s = ∞ n=0 exp(-λ * n t * ) k * 1 ψ * 1,n v * 1,n -k * 2 ψ * 2,n v * 2,n at ∂Y * f s - ∞ n=0 exp(-λ * n t * )D * 2 ∇ * (ψ * 2,n v * 2,n ) • n f s = ∞ n=0 exp(-λ * n t * ) k * 2 ψ * 2,n v * 2,n -k * 1 ψ * 1,n v * 1,n at ∂Y * f s . (6) 
When the eigenvalues are well separated, the problem (6) can be solved separately for each value of n, leading to the n-systems of equations for v * i,n

       ψ * i,n ∂ * v * i,n ∂t * -λ n v * i,n = ∇ * • D * i ∇ * ψ * i,n v * i,n in Y * f -D * 1 ∇ * ψ * 1,n v * 1,n • n f s = k * 1 ψ * 1,n v * 1,n -k * 2 ψ * 2,n v * 2,n at ∂Y * f s -D 2 ∇ * ψ * 2,n v * 2,n • n f s = k * 2 ψ * 2,n v * 2,n -k * 1 ψ * 1,n v * 1,n at ∂Y * f s . (7) 
Multiplying (7a) by ψ * i,n gives

ψ * 2 i,n ∂v * i,n ∂t * -λ * n ψ * 2 i,n v * i,n = ψ * i,n ∇ * • D * i ∇ * ψ * i,n v * i,n = ψ * i,n ∇ * • (D * i ψ * i,n ∇ * v * i,n + D * i v * i,n ∇ * ψ * i,n ) = ψ * 2 i,n ∇ * • (D * i ∇ * v i,n ) + 2D * i ψ * i,n ∇ * ψ * i,n • ∇ * v * i,n + ψ * i,n v * i,n ∇ * • (D * i ∇ * ψ * i,n ) = ∇ * • (D * i ψ * 2 i,n ∇ * v i,n ) + ψ * i,n v * i,n ∇ * • (D * i ∇ * ψ * i,n ). (8) 
Using spectral problem (3a) and (3b), the last terms of the left and right hand sides of (8) cancel out. It yields

ψ * 2 i,n ∂v * i,n ∂t * = ∇ * • (D * 1 ψ * 2 i,n ∇ * v * i,n ). (9) 
On the other hand, multiplying the interface condition (7b) by ψ * 1,n and using the boundary condition (3c), yields

k * 1 ψ * 2 1,n v * 1,n -k * 2 ψ * 1,n ψ * 2,n v * 2,n = -n f s • D * 1 ψ * 1,n ∇ * (ψ * 1,n v * 1,n ) = -n f s • (D * 1 ψ * 2 1,n ∇ * v * 1,n + D * 1 ψ * 1,n v * 1,n ∇ * ψ * 1,n ) = -n f s • (D * 1 ψ * 2 1,n ∇ * v * 1,n ) + ψ * 1,n v * 1,n (k * 1 ψ * 1,n -k * 2 ψ * 2,n ). ( 10 
)
We nally obtain the interface condition for v *

1,n -D * 1 ψ * 2 1,n ∇ * v * 1,n • n f s = k * 2 ψ * 1,n ψ * 2,n (v * 1,n -v * 2,n ) at ∂Y * f s . (11) 
A similar development can be performed to obtain the interface condition for v

* 2,n . Let dene D * 1,n = D * 1 ψ * 2 1,n and D * 2,n = D * 2 ψ * 2 2,n . The microscopic problem of v * 1,n and v * 2,n to be homogenized is now written as                ψ * 2 1,n ∂v * 1,n ∂t * = ∇ * • D * 1,n ∇ * v * 1,n in Y * f ψ * 2 2,n ∂v * 2,n ∂t * = ∇ * • D * 2,n ∇ * v * 2,n -D * 1,n ∇ * v * 1,n • n f s = k * 2 ψ * 1,n ψ * 2,n (v * 1,n -v * 2,n ) at ∂Y * f s -D * 2,n ∇ * v * 2,n • n f s = k * 1 ψ * 1,n ψ * 2,n (v * 2,n -v * 1,n ). (12) 
The initial problem (2) has been transformed into n diusion problems in the unit cell with a spatially periodic diusion coecient. The main dierence is in the form of the boundary condition at the interface ∂Y * f s , which will allow the homogenization of the problem.

Periodic homogenization procedure

Our aim now is to upscale the microscopic model ( 12) for v * i,n in order to construct the average mass conservation equations at the macroscale. This task is accomplished through the formal homogenization procedure.

Dimensional analysis

A dimensional analysis of the equations is rst performed. Let c r , D r , k r , ψ r , v r be the reference quantities of concentrations, diusion coecients, reaction rates, eigenfunctions ψ * i,n and unknown functions v * i,n . Dening the dimensionless quantity as f = f * /f r , where f r is the reference quantity of the variable f * , we have

x = x * L , y = y * l , c i,n = c * i,n c r , D i = D * i D r , k i = k * i k r , ψ i,n = ψ * i,n ψ r , v i,n = v * i,n v r . (13) 
It must be quoted that ψ * i,n are dimensionless variables so that ψ r = 1 and v * i,n has the dimension of concentration (noting that v * i,n is solution of a diusion equation ( 12)).

The reference length scale is chosen as the macroscopic length L so that we have:

∇ * = ∇ L , ∇ * • = ∇• L (14) 
Finally, the reference time is chosen as the macroscopic diusive time

t r = L 2 D r (15) 
Using ( 13), ( 14) and ( 15), from [START_REF] Sterckeman | A modelling study to evaluate the mechanisms of root iron uptake by Noccaea caerulescens[END_REF] the dimensionless microscopic problem for v 1,n and v 2,n can be written as

             ψ 2 1,n ∂v 1,n ∂t = ∇ • D 1,n ∇v 1,n in Y f ψ 2 2,n ∂v 2,n ∂t = ∇ • D 2,n ∇v 2,n -D 1,n ∇v 1,n • n f s = Da L k 2 ψ 1,n ψ 2,n (v 1,n -v 2,n ) at ∂Y f s -D 2,n ∇v 2,n • n f s = Da L k 1 ψ 1,n ψ 2,n (v 2,n -v 1,n ) (16) 
where Da L represents the macroscopic Damköhler number dened as the ratio of the macroscopic diusion time to the reaction one

Da L = k r L D r (17) 

Reduction to a one-scale problem

To proceed within the periodic homogenization framework, the above problem needs to be reduced to a one-scale problem in considering three dierent scenarios related to the order of magnitude of the Damköhler number:

• Case 1: predominating reaction rates when

Da L = O(ε -1 )
• Case 2: diusion and reaction of the same order when Da L = O(ε 0 )

• Case 3: dominant diusion when Da L = O(ε)
where ε = l/L denotes the scale ratio and ε p , p ∈ Z the reference scale of comparison to reduce the problem to a one-scale problem.

The results of the upscaling procedures for the three dierent orders of magnitude of the Damköhler number are summarized in Result 1, Result 2 and Result 3 at the end of each section.

Asymptotic expansion

To perform the asymptotic expansion, the perturbation parameter ε = l/L is assumed to be small. Thus, we postulate the ansatz

f (ε) (x, y, t) = ∞ k=0 ε k f (k) (x, y, t) (18) 
where the functions f (k) = f (k) (x, y, t) (k = 0, 1, 2...) are y-periodic. The dierential operators are given by

∇f (ε) (x, y, t) = ∇ x f (ε) (x, y, t) + ε -1 ∇ y f (ε) (x, y, t) ∇ • f (ε) (x, y, t) = ∇ x • f (ε) (x, y, t) + ε -1 ∇ y • f (ε) (x, y, t). (19) 
Finally, the average, intrinsic average and area average operators in the unit cell are dened as

f = 1 | Y | Y f dV ; f f = 1 | Y f | Y f f dV ; f f s = 1 | ∂Y f s | ∂Y f s f dS.(20)

Case 1: homogenized model for predominant reaction

The predominant reaction with Da L = O(ε -1 ) is the most interesting case in which the classical homogenization procedure fails to predict the macroscopic conservation laws for short time as discussed in [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF] and in section 4.3.

Asymptotic expansion

Considering Da L = O(ε -1 ), the ε-microscopic model of Eqs. ( 16) is written as

                 ψ 2 1,n ∂v (ε) 1,n ∂t = ∇ • D 1,n ∇v (ε) 1,n in Y f ψ 2 2,n ∂v (ε) 2,n ∂t = ∇ • D 2,n ∇v (ε) 2,n -D 1,n ∇v (ε) 1,n • n f s = ε -1 k 2 ψ 1,n ψ 2,n (v (ε) 1,n -v (ε) 2,n ) at ∂Y f s -D 2,n ∇v (ε) 2,n • n f s = ε -1 k 1 ψ 1,n ψ 2,n (v (ε) 2,n -v (ε) 1,n ). (21) 
In particular, for n = 0 corresponding to the eigenvalue λ 0 = 0, the eigenfunctions dened to within one multiplicative constant are given by:

ψ 1,0 = k 2 k 1 and ψ 2,0 = k 1 k 2 . ( 22 
)
This expression satises the normalization condition (31) that will be imposed later.

Using the asymptotic expansion [START_REF] Valdés-Parada | On diusion, dispersion and reaction in porous media[END_REF] for the unknowns v

(ε) 1,n and v (ε)
2,n and the expression [START_REF] Valdés-Parada | Diusion and heterogeneous reaction in porous media: the macroscale model revisited[END_REF] for the dierential operators, the successive powers of ε in Eqs. ( 21) are now collected.

• Order O(ε -2 )
At order O(ε -2 ) in the volume and O(ε -1 ) at the interface, Eqs. [START_REF] Allaire | Homogenization of a convectiondiusion model with reaction in a porous medium[END_REF] become

           ∇ y • D 1,n ∇ y v (0) 1,n = 0 in Y f ∇ y • D 2,n ∇ y v (0) 2,n = 0 -D 1,n ∇ y v (0) 1,n • n f s = k 2 ψ 1,n ψ 2,n (v (0) 1,n -v (0) 2,n ) at ∂Y f s -D 2,n ∇ y v (0) 2,n • n f s = k 1 ψ 1,n ψ 2,n (v (0) 2,n -v (0) 1,n ). ( 23 
)
It is obvious that

v (0) 1,n (t, x, y) = v (0) 2,n (t, x, y) = v (0) n (t, x) (24) 
is solution of the problem [START_REF] Bourbatache | Upscaling diusionreaction in porous media[END_REF]. The uniqueness of the solution can easily be proved for n = 0 when the eigenfunctions ψ 1,0 and ψ 2,0 are constant and positive 2 . However, for n > 0 it is not straightforward and will not be proved in this work. Henceforth, we consider [START_REF] Municchi | Macroscopic models for ltration and heterogeneous reactions in porous media[END_REF] as the solution of [START_REF] Bourbatache | Upscaling diusionreaction in porous media[END_REF].

• Order O(ε -1 )
At order O(ε -1 ) in the volume and O(ε 0 ) at the interface, we have

               ∇ y • D 1,n ∇ x v (0) n + ∇ y v (1) 1,n = 0 in Y f ∇ y • D 2,n ∇ x v (0) n + ∇ y v (1) 2,n = 0 -D 1,n ∇ x v (0) n + ∇ y v (1) 1,n • n f s = k 2 ψ 1,n ψ 2,n (v (1) 1,n -v (1) 2,n ) at ∂Y f s -D 2,n ∇ x v (0) n + ∇ y v (1) 2,n • n f s = k 1 ψ 1,n ψ 2,n (v (1) 2,n -v (1) 1,n ). ( 25 
)
By linearity, the solution for v 

1,n = χ 1,n • ∇ x v (0) n + v (1) n (t, x) v (1) 2,n = χ 2,n • ∇ x v (0) n + v (1) n (t, x) (26) 
where the vectors χ 1,n and χ 2,n satisfy the following coupled problem

           0 = ∇ y • D 1,n I + ∇ y χ 1,n T in Y f 0 = ∇ y • D 2,n I + ∇ y χ 2,n T -D 1,n I + ∇ y χ 1,n • n f s = k 2 ψ 1,n ψ 2,n χ 1,n -χ 2,n at ∂Y f s -D 2,n I + ∇ y χ 2,n • n f s = k 1 ψ 1,n ψ 2,n χ 2,n -χ 1,n . (27) 
where the superscript T denotes a matrix transpose.

• Order O(ε 0 ) 2 Indeed, setting U = v (0) 2,0 -v (0)
1,0 , using [START_REF] Allaire | Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media[END_REF], Eqs. ( 23) can be transformed to a Laplace equation for U with homogeneous Robin-Fourier boundary conditions similar to (35) that admits a unique solution U = 0 and therefore v (0)

2,0 = v (0) 1,0 .
At the leading order O(1) in the volume and O(ε -1 ) at the interface, the timedependent problem for v (0)

n is written as                                ψ 2 1,n ∂v (0) n ∂t = ∇ y • D 1,n ∇ y v (2) 1,n + ∇ x v (1) 1,n + ∇ x • D 1,n ∇ y v (1) 1,n + ∇ x v (0) n in Y f ψ 2 2,n ∂v (0) n ∂t = ∇ y • D 2,n ∇ y v (2) 2,n + ∇ x v (1) 2,n + ∇ x • D 2,n ∇ y v (1) 2,n + ∇ x v (0) n -D 1,n ∇ y v (2) 1,n + ∇ x v (1) 1,n • n f s = k 2 ψ 1,n ψ 2,n v (2) 1,n -v (2) 2,n at ∂Y f s -D 2,n ∇ y v (2) 2,n + ∇ x v (1) 2,n • n f s = k 1 ψ 1,n ψ 2,n v (2) 2,n -v (2) 1,n . ( 28 
)
Averaging Eqs. (28a) and (28b) over the uid phase of the unit cell, taking into account the interface conditions (28c) and (28d) and considering the solution (26) for v

i,n , we get

                         ψ 2 1,n f ∂v (0) n ∂t = ∇ x • D 1,n I + ∇ y χ 1,n T f ∇ x v (0) n - |∂Y f s | |Y f | k 2 ψ 1,n ψ 2,n v (2) 1,n -v (2) 2,n f s ψ 2 2,n f ∂v (0) n ∂t = ∇ x • D 2,n I + ∇ y χ 2,n T f ∇ x v (0) n + |∂Y f s | |Y f | k 1 ψ 1,n ψ 2,n v (2) 1,n -v (2) 2,n f s . ( 29 
)
By adding these two above averaged equations previously multiplied by k 1 and k 2 respectively, we obtain

k 1 ψ 2 1,n f + k 2 ψ 2 2,n f ∂v (0) n ∂t = ∇ x • k 1 D 1,n I + ∇ y χ 1,n T f + k 2 D 2,n I + ∇ y χ 2,n T f • ∇ x v (0) n . ( 30 
)
To ensure uniqueness of the spectral problem, the eigenfunctions are normalized by imposing

k 1 ψ 2 1,n f + k 2 ψ 2 2,n f = k 1 + k 2 (31)
which leads to the macroscopic equation for v

(0) n ∂v (0) n ∂t = ∇ x • D v,n • ∇ x v (0) n . ( 32 
)
The eective diusion tensor D v,n is dened by

D v,n = k 1 k 1 + k 2 D 1,n I + ∇ y χ 1,n T f + k 2 k 1 + k 2 D 2,n I + ∇ y χ 2,n T f .( 33 
)
In particular for n = 0, the local problem (27) reduces to

           ∇ y • D 1 I + ∇ y χ 1,0 T = 0 in Y f ∇ y • D 2 I + ∇ y χ 2,0 T = 0 -D 1 I + ∇ y χ 1,0 • n f s = k 1 χ 1,0 -χ 2,0 at ∂Y f s -D 2 I + ∇ y χ 2,0 • n f s = k 2 χ 2,0 -χ 1,0 (34) 
where the expression ( 22) is used for ψ 1,0 and ψ 2,0 . Setting Θ = χ 1,0 -χ 2,0 , it can be easily proven that Θ is solution of a Laplace equation with homogeneous Robin-Fourier boundary conditions

∆ y Θ = 0 in Y f ∇ y Θ • n f s + βΘ = 0 at ∂Y f s (35) with β = k 1 D 1 + k 2 D 2
> 0, leading to Θ = 0 and therefore to χ 1,0 = χ 2,0 ≡ χ.

In this case, the expression D v,0 reduces to the simple expression

D v,0 = k 1 D eff 2 + k 2 D eff 1 k 1 + k 2 (36) 
where the eective coecients are dened as

D eff 1 = D 1 I + (∇ y χ) T f D eff 2 = D 2 I + (∇ y χ) T f ( 37 
)
and χ is solution of the classical tortuosity problem

   ∆ y χ = 0 in Y f (I + ∇ y χ) • n f s = 0 at ∂Y f s χ f = 0 . (38) 

Back to concentrations

In the development (5) of the concentrations c * i , when the eigenvalues are well separated, it is legitimate to consider only the two rst eigenvalues λ * 0 = 0 and λ * 1 with their corresponding eigenfunctions. At the leading order, we have3 

c * (0) 1 = ψ * 1,0 v * (0) 0 + ψ * 1,1 exp(-λ * 1 t * )v + ψ * 2,1 exp(-λ * 1 t * )v * (0) 1 . (39) 
In the sequel, to simplify the notations, the superscript (0) is henceforth omitted.

It should be noted that the concentrations c * 1 and c * 2 at the order O(ε 0 ) are y *dependent variables since ψ * 1,1 and ψ * 2,1 depend on y * . Averaging (39) over the uid phase of the unit cell gives

c * 1 f = ψ * 1,0 v 0 * + ψ * 1,1 f exp(-λ * 1 t * )v * 1 c * 2 f = ψ * 2,0 v 0 * + ψ * 2,1 f exp(-λ * 1 t * )v * 1 . (40) 
On the other hand, going back to dimensional variables from (32), we easily get

∂v * n ∂t * = ∇ * x * • D * v,n • ∇ * x * v * n (41) 
where from (33) and (36) the dimensional eective coecients D * v,0 and D * v,1 are given by

D * v,0 = k * 1 D * 2 + k * 2 D * 1 k * 1 + k * 2 I + ∇ * y * χ * T f (42) D * v,1 = k * 1 k * 1 + k * 2 D * 1,1 I+ ∇ * y * χ * 1,1 T f + k * 2 k * 1 + k * 2 D * 2,1 I+ ∇ * y * χ * 2,1 T f (43) 
The vectors χ * 1,1 and χ * 2,1 are solutions of the local problem

           ∇ * y * • D * 1,1 I + ∇ * y * χ * 1,1 T = 0 in Y * f ∇ * y * • D * 2,1 I + ∇ * y * χ * 2,1 T = 0 -D * 1,1 I + ∇ * y * χ * 1,1 • n f s = k * 2 ψ * 1,1 ψ * 2,1 χ * 1,1 -χ * 2,1 at ∂Y * f s -D * 2,1 I + ∇ * y * χ * 2,1 • n f s = k * 1 ψ * 1,1 ψ * 2,1 χ * 2,1 -χ * 1,1 . (44) 
For n = 0, χ * = χ * 1,0 = χ * 2,0 is solution of the problem (38) in dimensional form with constant eigenfunctions corresponding to the eigenvalue λ * 0 = 0 given by

ψ * 1,0 = k * 2 k * 1 , ψ * 2,0 = k * 1 k * 2 . ( 45 
)
Using (41) for n = 0 and n = 1, the time derivative of Eq. (40a) yields

∂ c * 1 f ∂t * -∇ * x * • D * v,1 • ∇ * x * c * 1 f + λ * 1 c * 1 f = ψ * 1,0 ∇ * x * • D * v,0 -D * v,1 • ∇ * x * v * 0 + λ * 1 ψ * 1,0 v 0 * . (46) A similar development for c * 2 gives ∂ c * 2 f ∂t * -∇ * x * • D * v,1 • ∇ * x * c * 2 f + λ * 1 c * 2 f = ψ * 2,0 ∇ * x * • D * v,0 -D * v,1 • ∇ * x * v * 0 + λ * 1 ψ * 2,0 v 0 * . ( 47 
)
Using the compatibility condition ψ * 1,1

f + ψ * 2,1
f = 0 of the spectral problem (3), we obtain from (40)

v * 0 = c * 1 f + c * 2 f ψ * 1,0 + ψ * 2,0 . (48) 
To nish, inserting (48) into (46) and (47) leads to the following result of the average mass conservation equations.

Result 1. For a predominant reaction corresponding to Da L = O(ε -1 ), the concentrations at the leading order are solutions of the homogenized coupled diusionreaction problem

∂ c * 1 f ∂t * -∇ * x * • k * 1 D * v,1 + k * 2 D * v,0 k * 1 + k * 2 • ∇ * x * c * 1 f -∇ * x * • k * 2 (D * v,0 -D * v,1 ) k * 1 + k * 2 • ∇ * x * c * 2 f + λ * 1 k * 1 c * 1 f -k * 2 c * 2 f k * 1 + k * 2 = 0 ∂ c * 2 f ∂t * -∇ * x * • k * 1 (D * v,0 -D * v,1 ) k * 1 + k * 2 • ∇ * x * c * 1 f -∇ * x * • k * 2 D * v,1 + k * 1 D * v,0 k * 1 + k * 2 • ∇ * x * c * 2 f -λ * 1 k * 1 c * 1 f -k * 2 c * 2 f k * 1 + k * 2 = 0 (49)
where the homogenized diusion tensors D * v,0 and D * v,1 are dened by ( 42) and (43).

The above equations represent the macroscopic mass conservation law for the averaged concentrations with coupled diusion terms and with an exchange term due to reaction depending on the rst non-zero eigenvalue λ * 1 of the associated spectral problem.

Comparison with the classical periodic homogenization

The objective of this subsection is to compare the result obtained by the current approach with that reported in [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF] using a classical homogenization procedure. Let consider only the rst eigenvalue value λ * 0 = 0. Going back to dimensional concentrations and omitting the superscript (0) , we have from (39)

c * 1 = ψ * 1,0 v * 0 c * 2 = ψ * 2,0 v * 0 . (50) 
Therefore, the homogenization problem (32) for n = 0 leads obviously to

∂c * i ∂t = ∇ * x * • D * v,0 • ∇ * x * c * i ( 51 
)
for i = 1, 2, where the homogenized diusion tensor D * v,0 is given by ( 42). The concentrations are related by the constraint

k * 1 c * 1 -k * 2 c * 2 = 0 (52)
according to (50) and the expressions (45) of ψ * 1,0 and ψ * 2,0 . This result is also obtained by the classical homogenization approach as reported in [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF]. It is important to notice that considering solely the rst eigenvalue λ * 0 is only valid for long diusion times and cannot handle boundary and initial conditions that does not verify the equilibrium condition4 (52). This point has been analyzed in [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF]. The correction with the rst non-zero eigenvalue λ * 1 enables to overcome this diculty, which is the main interest of the approach proposed in this work leading to Result 1. According to expression (B.8) of Appendix B, it is clear that the gap with the equilibrium condition is described by the non-zero eigenvalues. Moreover, as the eigenvalues increase with n, the main information is contained in the rst non-zero eigenvalue λ * 1 . Due to the exponential decay, the contribution of the other eigenvalues becomes rapidly negligible with time.

Homogenized model for diusion-reaction of the same order

The intermediate case corresponds to diusion and reaction characteristic times of the same order at the macroscale, i.e satisfying Da L = O(ε 0 ).

Asymptotic expansion

Considering Da L = O(ε 0 ), Eqs.( 16) reduce to

                 ψ 2 1,n ∂v (ε) 1,n ∂t = ∇ • D 1,n ∇v (ε) 1,n in Y f ψ 2 2,n ∂v (ε) 2,n ∂t = ∇ • D 2,n ∇v (ε) 2,n -D 1,n ∇v (ε) 1,n • n f s = k 2 ψ 1,n ψ 2,n (v (ε) 1,n -v (ε) 2,n ) at ∂Y f s -D 2,n ∇v (ε) 2,n • n f s = k 1 ψ 1,n ψ 2,n (v (ε) 2,n -v (ε) 1,n ). ( 53 
)
In a similar fashion with the rst case, the successive powers of ε are collected.

• Order O(ε -2 )
At order O(ε -2 ) in the volume and O(ε -1 ) on the interface ∂Y f s , we get

           ∇ y • D 1,n ∇ y v (0) 1,n = 0 in Y f ∇ y • D 2,n ∇ y v (0) 2,n = 0 -D 1,n ∇ y v (0) 1,n • n f s = 0 at ∂Y f s -D 2,n ∇ y v (0) 2,n • n f s = 0 (54) leading straightforwardly to v (0) 1,n (t, x, y) = v (0) 1,n (t, x) and v (0) 2,n (t, x, y) = v (0) 2,n (t, x). • Order O(ε -1 )
At order O(ε -1 ) in the volume and O(ε 0 ) on the interface, it yields

               ∇ y • D 1,n ∇ x v (0) 1,n + ∇ y v (1) 1,n = 0 in Y f ∇ y • D 2,n ∇ x v (0) 2,n + ∇ y v (1) 2,n = 0 -D 1,n ∇ x v (0) 1,n + ∇ y v (1) 1,n • n f s = k 2 ψ 1,n ψ 2,n (v (0) 1,n -v (0) 2,n ) at ∂Y f s -D 2,n ∇ x v (0) 2,n + ∇ y v (1) 2,n • n f s = k 1 ψ 1,n ψ 2,n (v (0) 2,n -v (0) 1,n ). (55) 
Averaging Eq. (55a) over the unit cell and using the divergence theorem together with the interface condition Eq. (55c), result in v

(0) 1,n -v (0) 2,n ψ 1,n ψ 2,n f s = 0 as v (0) 1,n and v (0)
2,n are y-independent variables. The solution is

(0) 1,n (t, x) = v (0) 2,n (t, x) ≡ v (0) n (t, x).
Coming back to problem (55), by linearity the solution for v

(1) i,n is sought in the form v (1) 1,n = χ 1,n • ∇ x v (0) n + v (1) 1,n (t, x) (56) v (1) 2 
,n = χ 2,n • ∇ x v (0) n + v (1) 2,n (t, x) (57) 
where v

2,n are two additive constants depending on t and x for the unit cell problem. χ 1,n and χ 2,n are solutions of the following cell problems

           ∇ y • D 1,n I + ∇ y χ 1,n T = 0 in Y f ∇ y • D 2,n I + ∇ y χ 2,n T = 0 -D 1,n I + ∇ y χ 1,n • n f s = 0 at ∂Y f s -D 2,n I + ∇ y χ 2,n • n f s = 0. (58) 
It can be noticed that unlike case 1, the problems of χ 1,n and χ 2,n are independent and decoupled here. To ensure the uniqueness of the solution of χ 1,n and χ 2,n , the supplementary condition of zero average in Y f is added. This condition has no inuence on the homogenized diusion tensor, as only the gradient of χ 1,n and χ 2,n is involved. For n = 0, the problem (58) reduces to the classical tortuosity problem (38).

• Order O(ε 0 ) Finally, at order O(ε 0 ) in the volume and O(ε -1 ) on the interface, we obtain

                               ψ 2 1,n ∂v (0) n ∂t = ∇ y • D 1,n ∇ y v (2) 1,n + ∇ x v (1) 1,n 
+ ∇ x • D 1,n ∇ y v (1) 1,n + ∇ x v (0) n in Y f ψ 2 2,n ∂v (0) n ∂t = ∇ y • D 2,n ∇ y v (2) 2,n + ∇ x v (1) 2,n + ∇ x • D 2,n ∇ y v (1) 2,n + ∇ x v (0) n -D 1,n ∇ y v (2) 1,n + ∇ x v (1) 1,n • n f s = k 2 ψ 1,n ψ 2,n v (1) 1,n -v (1) 2,n at ∂Y f s -D 2,n ∇ y v (2) 2,n + ∇ x v (1) 2,n • n f s = k 1 ψ 1,n ψ 2,n v (1) 2,n -v (1) 1,n . (59) 
A development similar to case 1 can be carried to obtain the same macroscopic equation for v

(0) n k 1 ψ 2 1,n f + k 2 ψ 2 2,n f ∂v (0) n ∂t = ∇ x • k 1 D 1,n I + ∇ y χ 1,n T f + k 2 D 2,n I + ∇ y χ 2,n T f • ∇ x v (0) n . (60) 
Considering the normalization condition (31), we obtain Eq. ( 32). The dierence between these two cases only comes from the closure problem for χ 1,n and χ 2,n as discussed previously, except for n = 0 where both cases share the same local problem for χ.

Back to concentrations

Going back to dimensional variables in order to obtain the macroscopic diusion equations at the leading order for the concentrations c * 1 f and c * 2 f and proceeding in the same manner as in 4.2, the following result is obtained.

Result 2. For a diusion and reaction of the same order corresponding to Da L = O(ε 0 ), the concentrations at the leading order are solutions of the homogenized coupled diusion-reaction problem (49) similar to case 1. The only dierence stems from the decoupled closure problem (58).

Comparison with the classical periodic homogenization

As for case 1, considering only the rst eigenvalue value λ * 0 = 0 and omitting the superscript (0) lead to

c * 1 = ψ * 1,0 v * 0 c * 2 = ψ * 2,0 v * 0 . (61) 
Therefore, the homogenized problem (32) for v * n is written as

∂c * i ∂t -∇ * x * • k * 1 D * eff 2 + k * 2 D * eff 1 k * 1 + k * 2 • ∇ * x * c * i = 0 (62) 
for i = 1, 2 with the constraint:

k * 1 c * 1 -k * 2 c * 2 = 0. (63) 
The homogenized tensors D * eff 1 and D * eff 2 are given by:

D * eff 1 = D * 1 I + ∇ * y * χ * T f D * eff 2 = D * 2 I + ∇ * y * χ * T f (64) 
where χ * is solution of the local problem (38).

Considering only the rst eigenvalue λ * 0 = 0 in expression ( 5), the result of case 1 with predominant reaction is recovered. In addition, these homogenized equations can be obtained by a classical homogenization procedure (see [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF]). Again, such a homogenized result is only valid for long diusion times and must be corrected by an additional term corresponding to the rst non-zero eigenvalue λ * 1 leading to Result 2 in order to capture the complex behavior of the diusion/reaction processes at short times.

Dominant diusion

The last case corresponds to a predominant diusion for which Da L = O(ε).

Asymptotic expansion of equations

For Da L = O(ε), the ε-model reads as

                 ψ 2 1,n ∂v (ε) 1,n ∂t = ∇ • D 1,n ∇v (ε) 1,n in Y f ψ 2 2,n ∂v (ε) 2,n ∂t = ∇ • D 2,n ∇v (ε) 2,n -D 1,n ∇v (ε) 1,n • n f s = εk 2 ψ 1,n ψ 2,n (v (ε) 1,n -v (ε) 2,n ) at ∂Y f s -D 2,n ∇v (ε) 2,n • n f s = εk 1 ψ 1,n ψ 2,n (v (ε) 2,n -v (ε) 1,n ). (65) • Order O(ε -2 )
At order O(ε -2 ) in the volume and O(ε -1 ) on the interface, the problem reads as

           0 = ∇ y • D 1,n ∇ y v (0) 1,n in Y f 0 = ∇ y • D 2,n ∇ y v (0) 2,n 0 = -D 1,n ∇ y v (0) 1,n • n f s at ∂Y f s 0 = -D 2,n ∇ y v (0) 2,n • n f s (66) whose solutions are v (0) 1,n (t, x, y) = v (0) 1,n (t, x) and v (0) 2,n (t, x, y) = v (0) 2,n (t, x). • Order O(ε -1 )
At order O(ε -1 ) in the volume and O(ε 0 ) on the interface, it yields

               0 = ∇ y • D 1,n ∇ x v (0) 1,n + ∇ y v (1) 1,n in Y f 0 = ∇ y • D 2,n ∇ x v (0) 2,n + ∇ y v (1) 2,n 0 = -D 1,n ∇ x v (0) 1,n + ∇ y v (1) 1,n • n f s at ∂Y f s 0 = -D 2,n ∇ x v (0) 2,n + ∇ y v (1) 2,n • n f s (67)
where the problems for v (1)

1,n = χ 1,n • ∇ x v (0) 1,n + v (1) 1,n (t, x) v (1) 2,n = χ 2,n • ∇ x v (0) 2,n + v (1)
2,n (t, x) where χ 1,n and χ 2,n satisfy the local problems

           0 = ∇ y • D 1,n I + ∇ y χ 1,n T in Y f 0 = ∇ y • D 2,n I + ∇ y χ 2,n T 0 = -D 1,n I + ∇ y χ 1,n • n f s at ∂Y f s 0 = -D 2,n I + ∇ y χ 2,n • n f s . (68) • Order O(ε 0 )
At the leading order, the problem is written as

                               ψ 2 1,n ∂v (0) 1,n ∂t = ∇ y • D 1,n ∇ y v (2) 1,n + ∇ x v (1) 1,n + ∇ x • D 1,n ∇ y v (1) 1,n + ∇ x v (0) 1,n in Y f ψ 2 2,n ∂v (0) 2,n ∂t = ∇ y • D 2,n ∇ y v (2) 2,n + ∇ x v (1) 2,n + ∇ x • D 2,n ∇ y v (1) 2,n + ∇ x v (0) 2,n -D 1,n ∇ y v (2) 1,n + ∇ x v (1) 1,n • n f s = k 2 ψ 1,n ψ 2,n v (0) 1,n -v (0) 2,n at ∂Y f s -D 2,n ∇ y v (2) 2,n + ∇ x v (1) 2,n • n f s = k 1 ψ 1,n ψ 2,n v (0) 2,n -v (0) 1,n . ( 69 
)
Averaging Eqs. (69a-b) over the uid phase of the unit cell and taking into account the interface conditions (69c-d) lead to

                               ψ 2 1,n f ∂v (0) 1,n ∂t = ∇ x • D 1,n I + ∇ y χ 1,n T f • ∇ x v (0) 1,n - k 2 v (0) 1,n -v (0) 2,n |Y f | ∂Y f s ψ 1,n ψ 2,n dA ψ 2 2,n f ∂v (0) 2,n ∂t = ∇ x • D 2,n I + ∇ y χ 2,n T f • ∇ x v (0) 2,n - k 1 v (0) 2,n -v (0) 1,n |Y f | ∂Y f s ψ 1,n ψ 2,n dA.
(70)

Back to concentrations

When the chemical reaction is slow, the series development ( 5) can be limited to the rst term corresponding to n = 0 and λ * 0 = 0, ψ * 1,0 and ψ * 2,0 being dened in (45). Since v 1,0 and v 2,0 are independent variables, it is legitimate to impose the initial conditions for the concentrations by using the initial conditions of v 1,0 and v 2,0 . As a consequence, for n ≥ 1 the initial conditions for v 1,n and v 2,n are null and the functions vanish. The macroscopic mass conservation laws in dimensional space for the concentrations c * 1 and c * 2 at the leading order are obtained as follows Result 3. For dominant diusion corresponding to Da L = O(ε), the concentrations at the leading order are solutions of the homogenized coupled diusionreaction problem

         ∂c * 1 ∂t * = ∇ * x * • D * 1 I + ∇ * y * χ * f • ∇ * x * c * 1 - |∂Y * f s | |Y * f | (k * 1 c * 1 -k * 2 c * 2 ) ∂c * 2 ∂t * = ∇ * x * • D * 2 I + ∇ * y * χ * f • ∇ * x * c * 2 - |∂Y * f s | |Y * f | (k * 2 c * 2 -k * 1 c * 1 ) (71) 
where χ * is the solution of the classical local problem for diusion (38).

It should be noted that such a result can also be obtained from a classical homogenization procedure [START_REF] Bourbatache | Limits of classical homogenization procedure for coupled diusion-heterogeneous reaction processes in porous media[END_REF].

Conclusions

A multiscale procedure has been developed to model the diusion/reaction processes of two species in a periodic porous medium based on a spectral approach. The initial pore-scale problem is transformed into an auxiliary problem by expanding the concentrations in a series of eigenfunctions related to the spectral problem dened on the unit cell. The homogenization technique is then used to upscale the local problem to obtain the macroscopic laws. Three dierent cases, predominant reaction, reaction and diusion of the same order of magnitude and dominant diusion are studied.

For predominant reaction with a Damköhler number of order O(ε -1 ), the macroscopic equations exhibit a complex behavior characterized by a source term depending on the reaction rates introduced through the rst non-zero eigenvalue and by coupled diusion terms. If only the rst null eigenvalue λ 0 = 0 is considered, the result of the classical homogenization procedure is recovered but the chemical equilibrium is then imposed everywhere in the uid phase. Therefore, the classical homogenization procedure fails to predict the diusion/reaction behavior at short reaction times. The correction induced by taking into account the non-zero eigenvalues allows us to overcome this diculty. The proposed model is able to capture complex phenomena at short times when the chemical equilibrium is not established.

When the reaction time is of the same order as the diusion time, i.e. Da L = O(ε 0 ), macroscopic mass conservation laws are similar to the preceding rst case (Da L = O(ε -1 )). The only slight dierence comes from the closure problems for the diusivities where no coupled term between both species at the interface is present.

When the reaction is slow and the diusion dominates, the spectral approach and the classical homogenization procedure give the same result. The macroscopic laws have a source term depending only on the specic area, reaction rates and average concentrations. The eective diusion coecients are independent of the reaction rates. In future work, numerical simulations will be performed to show the potential of the current multiscale approach. Moreover, the convection problem will also be considered in the extension of this work.

Appendix A. On the orthogonality of the eigenfunctions Let us consider again the spectral problem (3) without superscript to simplify the notation

       -∇ • (D 1 ∇ψ 1,m ) = λ m ψ 1,m in Y f -∇ • (D 2 ∇ψ 2,m ) = λ m ψ 2,m in Y f -D 1 ∇ψ 1,m • n f s = k 1 ψ 1,m -k 2 ψ 2,m at ∂Y f s -D 2 ∇ψ 2,m • n f s = k 2 ψ 2,m -k 1 ψ 1,m at ∂Y f s . (A.1)
We consider two eigenvalues λ m et λ n and the corresponding eigenfunctions ψ 1,m and ψ 1,n for the rst species associated with the concentration c 1 . For the sake of simplicity, assume that the diusion coecients are constant5 on Y f . We have

D 1 ∇ 2 ψ 1,m = -λ m ψ 1,m D 1 ∇ 2 ψ 1,n = -λ n ψ 1,n . (A.2)
By multiplying the rst equation by -ψ 1,n and the second one by ψ 1,m , integrating over the uid phase of the unit cell and summing the two equations, we get for n = m If the initial conditions c 1 (0, x, y) ≡ c ini 1 (x) and c 2 (0, x, y) ≡ c ini 2 (x) are uniform in each cell (the initial distribution of the concentrations does not depend on y), we have using the compatibility condition (B.3)

v n (0, x) = k 1 c ini 1 (x) -k 2 c ini 2 (x) k 1 + k 2 ψ 1,n f . (B.6)
Finally, it is important to note that, due to the relation (B.3), the total concentration of the two chemical species is only given by the rst term of the development (B.1)

c 1 f + c 2 f = k 2 k 1 + k 1 k 2 v 0 (t, x) (B.7)
whereas the deviation from the chemical equilibrium is given by

k 1 c 1 f -k 2 c 2 f = ∞ n=1 k 1 ψ 1,n f -k 2 ψ 2,n f exp (-λ n t) v n (t, x) = ∞ n=1 (k 1 + k 2 ) ψ 1,n f exp (-λ n t) v n (t, x). (B.8)
It clearly appears from (B.8) that deviation from chemical equilibrium at the main order is given by the rst non-zero eigenvalue λ * 1 , which is the smaller one, due to the fast exponential decay for the larger ones. That is the reason why in Results 1 and 2 only the rst non-zero eigenvalue λ * 1 has been considered. Moreover, expression (B.8) reveals that if only the rst zero eigenvalue λ * 0 = 0 is considered in the homogenized models, the chemical equilibrium is instantaneously imposed as the right hand side of (B.8) vanishes. That is in contradiction with the physics at (very) short times.
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 1 Figure 1: Schematic representation of a porous medium with periodic microstructure. a) Macroscopic scale. b) Elementary reference cell.
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  Consider a porous medium occupying a macroscopic domain Ω * of characteristic length L, composed of an immobile uid phase Ω * f and of a rigid solid phase Ω * s ; the solid-uid interface is denoted Γ * f s . We consider a diusion problem of two species A and B in the uid phase Ω *

	2. Pore-scale model
	2.1. Initial problem

f . At the solid/uid interface Γ * f s , a reversible chemical reaction occurs as follows

A priori the unknowns c * i depend on the macroscopic and microscopic space variables x * and y * assumed to be independent.[START_REF] Sanchez-Palencia | Non homogeneous media and vibration theory[END_REF] 

This choice discussed later is also explained by Eqs. (B.7) and (B.8) of Appendix B.

In that case, we have a boundary layer problem that will be studied in a further work.

A generalization to non-uniform diusion coecients does not present any diculty.

Results 1 and 2 have been obtained for moderate and high values of Damköhler number. For low values of Damköhler number, v (0)1,n and v (0) 2,n depend on y as well (Result 3) and this analysis is not valid.
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