
HAL Id: hal-03556899
https://hal.science/hal-03556899

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SymQEMU: Compilation-based symbolic execution for
binaries

Sebastian Poeplau, Aurélien Francillon

To cite this version:
Sebastian Poeplau, Aurélien Francillon. SymQEMU: Compilation-based symbolic execution for bi-
naries. NDSS 2021, Network and Distributed System Security Symposium, Feb 2021, San Diego
(virtuel), United States. �10.14722/NDSS.2021.24118�. �hal-03556899�

https://hal.science/hal-03556899
https://hal.archives-ouvertes.fr

SymQEMU:
Compilation-based symbolic execution for binaries

Sebastian Poeplau
EURECOM and Code Intelligence

sebastian.poeplau@eurecom.fr

Aurélien Francillon
EURECOM

aurelien.francillon@eurecom.fr

Abstract—Symbolic execution is a powerful technique for
software analysis and bug detection. Compilation-based symbolic
execution is a recently proposed flavor that has been shown
to improve the performance of symbolic execution significantly
when source code is available. We demonstrate a novel technique
to enable compilation-based symbolic execution of binaries (i.e.,
without the need for source code). Our system, SymQEMU, builds
on top of QEMU, modifying the intermediate representation of
the target program before translating it to the host architecture.
This enables SymQEMU to compile symbolic-execution capabil-
ities into binaries and reap the associated performance benefits
while maintaining architecture independence.

We present our approach and implementation, and we show
that it outperforms the state-of-the-art binary symbolic executors
S2E and QSYM with statistical significance; on some bench-
marks, it even achieves better performance than the source-based
SymCC. Moreover, our tool has found a previously unknown
vulnerability in the well-tested libarchive library, demonstrating
its utility in testing real-world software.

I. INTRODUCTION

Symbolic execution is becoming increasingly popular in
program testing. Research over the past few decades has
steadily improved the design and increased the performance of
available implementations [2], [12]. Nowadays, symbolic exe-
cution has a reputation of being a highly effective yet expensive
technique to explore programs. It is often combined with fuzz
testing (so-called hybrid fuzzing), where the fuzzer leverages
heuristics to explore relatively easy-to-reach paths quickly,
while symbolic execution contributes test cases that reach the
more difficult-to-explore parts of the target program [27], [28].

An important characteristic of symbolic execution systems
is whether they require the source code of the program under
test or instead apply to binary-only programs in a black-box
fashion. While source-based testing is sufficient when one is
testing one’s own products or open-source software, many real-
world scenarios require the ability to analyze binaries without
the source code available:

• We are increasingly surrounded by and rely upon em-
bedded devices. Their firmware is typically available

in binary form only. Security audits therefore require
binary-analysis tools [24], [29].

• Even when testing one’s own products, proprietary
library dependencies may not ship with source code,
rendering source-based approaches infeasible.

• Source-based testing may simply be impractical for
large programs under test. With a source-based tool,
one typically needs to build all library dependencies
in a dedicated manner prescribed by the tool, which
may put a large burden on the tester. Moreover, if
the program under test is implemented in a mix
of programming languages, chances are that source-
based tools cannot handle all of them.

When a binary-only symbolic executor is called for, users
often face a dilemma: tools optimize either for performance
or for architecture independence but rarely provide both. For
example, QSYM [28] has shown how to implement very fast
symbolic execution of binaries, but it achieves its high speed
by tying the implementation to the instruction set of x86
processors. Not only does this render the system architecture-
dependent, it also increases its complexity due to the sheer
size of modern processors’ instruction sets; in the authors’
own words, their approach is to “pay for the implementation
complexity to reduce execution overhead”. In contrast, S2E [6]
is an example of a system that is broadly applicable yet suffers
from relatively low execution speed. S2E can conceptually
analyze code for most CPU architectures, including kernel
code. However, its wide applicability is bought with multiple
translations and finally interpretation of the target program
(to be detailed later), which increase the system’s complexity
and ultimately affect performance. In fact, it appears that high
performance in binary-only symbolic analysis is often achieved
with highly specialized implementations—a design choice that
is in conflict with architectural flexibility.

In this paper, we show an alternative that (a) is independent
of the target architecture of the program under test, (b) has
low implementation complexity, yet (c) achieves high perfor-
mance. The key insight of our system, SymQEMU, is that the
CPU emulation of QEMU [3] can be combined with a very
lightweight mechanism for symbolic execution: instead of a
computationally expensive translation of the target program to
an intermediate representation that is subsequently interpreted
symbolically (like in S2E), we hook into QEMU’s binary-
translation mechanism in order to compile symbolic handling
directly into the machine code that the emulator emits and
executes. This approach yields performance superior to state-

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.23118
www.ndss-symposium.org

of-the-art systems while retaining full platform independence.
Currently, we focus on Linux user-mode programs (i.e., ELF
binaries), but it would be possible to extend the concept to full-
system emulation for arbitrary QEMU-supported platforms
(e.g., for firmware analysis). Moreover, we make SymQEMU
publicly available to foster future research in the area.1

Note that the notion of compiling symbolic handling into
target programs is also at the core of our previous work
SymCC [20]. We showed that it outperforms other current
approaches to symbolic execution. However, SymCC is only
applicable when source code is available, and therefore does
not support binary analysis. SymQEMU, in contrast, demon-
strates how to achieve similar performance gains in a binary-
only setting, respecting all the additional constraints inherent to
that scenario (see Section II). For a more detailed comparison
of SymQEMU and SymCC, refer to Section III-D.

We compared SymQEMU to state-of-the-art binary sym-
bolic executors S2E and QSYM, and found that it outperforms
both in terms of coverage reached over time. Moreover, we
show that SymQEMU’s performance is similar to that of
SymCC, even though the latter requires access to source code.
Finally, we submitted SymQEMU to Google FuzzBench, a
comparison framework for fuzzers; even though the test suite
is not targeted at symbolic execution systems, SymQEMU
outperformed all included fuzzers on 3 out of 21 targets.

In summary, we make the following contributions:

• We analyze state-of-the-art implementations of binary-
only symbolic execution and identify the respective
strengths and weaknesses of their designs.

• We present an approach that combines the strengths
of existing systems while avoiding most of their
weaknesses; the core idea is a novel technique to apply
compilation-based symbolic execution to binaries. The
source code of our implementation is freely available.

• We evaluate our system in Google FuzzBench, as
well as on open-source and closed-source real-world
software. The raw results, as well as data and scripts
used in our evaluation, will be published with the
paper.

The remainder of the paper is structured as follows: We first
review symbolic execution in general, as well as the binary-
only flavor in particular, and existing implementations thereof
(Section II). Then we present design and implementation of
SymQEMU (Section III) and evaluate it against the state of
the art (Section IV). Finally, we discuss future work (Sec-
tion V), place our contribution in the context of previous work
(Section VI), and conclude (Section VII).

II. BACKGROUND

In this section, we present symbolic execution in general
before we examine the challenges of binary-only symbolic
execution and review how state-of-the-art implementations
address them. Finally we discuss SymCC, a source-based
symbolic executor that was an important inspiration for our
work.

1http://www.s3.eurecom.fr/tools/symbolic execution/symqemu.html

A. Symbolic execution

The general goal of symbolic execution is to keep track of
how intermediate values are computed during the execution
of a target program. Usually, each intermediate value can
be expressed as a formula in terms of the program input(s).
Then, at any point during execution, the system can leverage
those symbolic expressions to answer questions like “can this
array access run out of bounds,” “is it possible to take this
branch of the program,” or “can this pointer be null when
it is dereferenced?” Moreover, if the answer is affirmative,
symbolic executors typically provide a test case, i.e., a new
program input that triggers the requested behavior. This ability
makes symbolic execution extremely useful for automated
program testing, where the goal is to explore as many corner
cases of a program as possible and find inputs that cause
crashes or otherwise trigger bugs.

In order to trace computations in the target program,
symbolic execution systems need a certain understanding of
the program’s instruction set. Many current implementations
translate the program to an intermediate representation [4],
[6], [25]; typical examples of such representations are LLVM
bitcode [14] and VEX [17]. The intermediate representation is
subsequently executed symbolically; since the executor only
needs to handle the intermediate language (usually consisting
of a rather low number of instructions), the implementation can
be relatively simple. Moreover, we found in previous work that
queries derived from high-level representations of the program
under test are easier to solve than those derived from low-level
instruction sets like machine code [19].

However, translating programs to intermediate representa-
tions requires computational effort and introduces overhead in
program execution; some implementations therefore choose to
forego any form of translation and work on machine code di-
rectly [22], [28]. Apart from the performance benefits, skipping
program translation helps robustness because concrete machine
code can be executed even when the symbolic executor does
not know how to interpret a given instruction. On the downside,
specializing on the machine code of a particular processor
architecture restricts the symbolic execution system to that
platform. The alternative extreme—working directly on source
code—is less common these days and obviously does not apply
when only a binary is available.

B. Binary-only symbolic execution

Requiring the analysis system to work with just a binary
target adds its own unique set of challenges to the field: In the
absence of source code, translating programs to an intermedi-
ate representation requires reliable disassemblers; due to the
challenges of static disassembly [18], most implementations
perform the translation on demand at run time [6], [25].
Moreover, support for multiple architectures becomes crucial
when source code is not available: without source code, cross-
compiling a program for whichever architecture a symbolic
executor supports is not an option. If a symbolic execution
system cannot handle the target architecture of the program
under test, it simply cannot be used. This is particularly
relevant for the embedded space, where a large variety of
processor architectures is commonplace.

2

http://www.s3.eurecom.fr/tools/symbolic_execution/symqemu.html

Unicorn

angr

Binary

VEX IR

No

Symbolic?
Yes:

libVEX
Symbolic interpretation

in angr

Concrete
execution on
the host CPU

Synchronization

Host
machine

code

TCG ops

Fig. 1. Overview of angr: the target program is lifted to VEX IR and
interpreted symbolically or executed concretely inside the Unicorn CPU
emulator.

S2E
TCG
 lifter

Binary

TCG ops

No:
TCG compiler

Symbolic? LLVM
bitcode

Host
machine

code

Yes:

Custom
translator

Symbolic interpretation
in KLEE

Concrete
execution on
the host CPU

Synchronization

Fig. 2. Overview of S2E: the target program is lifted to TCG ops and
then either translated to host machine code or lifted once more and executed
symbolically in KLEE.

Translation-free symbolic executors thus face portability
challenges in the binary-only scenario, in addition to main-
tainability issues arising from the relatively complex imple-
mentation. Executors that translate the target program to an
intermediate representation fare better, but they still require
a reliable translator for the particular target architecture; sig-
nificant amounts of work have gone into verifying translator
correctness [11]. This is in contrast to source-based symbolic
execution, where intermediate representations can rather easily
be obtained from the program’s source code [4].

In summary, binary-only symbolic execution puts higher
demands on architectural flexibility and the performance of
(run-time) program translation than source-based analysis.

C. State-of-the-art solutions

Having presented the challenges of binary-only symbolic
execution, we now describe three popular state-of-the-art im-
plementations and study the design choices with which they
address those problems.

1) Angr [25]: A “classic” translating symbolic executor. It
reuses VEX, the intermediate language and translator of the
Valgrind framework [17]. The target programs are translated
at run time; the symbolic executor then interprets the VEX
instructions. As an optimization, angr can execute computa-
tions that do not involve symbolic data (i.e., whose results do
not depend on program input) in Unicorn [21], a fast CPU
emulator based on QEMU [3]. Figure 1 illustrates the design.

By virtue of being based on VEX, angr inherits support
for all architectures that VEX knows how to handle. Since the
core of the symbolic executor is written in Python, it is rather
slow [19] but very versatile.

2) S2E [6]: Created from the desire to extend the reach
of the source-based symbolic-execution system KLEE [4] to

QSYM

Binary

Symbolic or concrete
execution on
the host CPU

(based on demand)

Dynamic binary
instrumentation

Fig. 3. Overview of QSYM: the target program is executed directly on the
CPU while QSYM instruments it dynamically.

the target program’s dependencies and the operating-system
kernel. To this end, S2E runs an entire operating system
inside the emulator QEMU [3] and connects it to KLEE in
order to execute relevant code symbolically (see Figure 2).
The resulting system is rather complex, involving multiple
translations of the program under test:

1) QEMU is a binary translator, i.e., in normal operation,
it translates the target program from machine code to
an intermediate representation (called TCG ops), then
recompiles it to machine code for the host CPU.

2) When computations involve symbolic data, the modi-
fied QEMU used by S2E does not recompile the TCG
ops to host code; instead, it translates them to LLVM
bitcode [14], which is subsequently passed to KLEE.

3) KLEE interprets the LLVM bitcode symbolically and
hands the concrete portion of the results back to
QEMU.

This approach results in a very flexible system that can
conceptually handle many different architectures and trace
computations through all layers of the operating system.2
However, the flexibility comes at a cost: S2E is a complicated
system with a large code base. Moreover, the two-step transla-
tion from machine code to TCG ops and from there to LLVM
bitcode hurts its performance [19]. Compared with angr from
a user’s point of view, S2E is more involved to set up and run
but provides a more comprehensive analysis.

3) QSYM [28]: With a strong emphasis on performance,
QSYM does not translate the target program to an intermediate
language. Instead, it instruments x86 machine code at run time
to add symbolic tracing to binaries (see Figure 3). Concretely,
it employs Intel Pin [15], a dynamic binary instrumentation
framework, to insert hooks into the target program. Inside the
hooks, it performs the symbolic equivalent of the machine-
code instructions that the program executes.

This design yields a very fast and robust symbolic executor
for x86 programs. However, the system is inherently restricted
to a single target architecture, and the implementation is te-
dious because it needs to handle each and every x86 instruction
that can be expected to occur in relevant computations. In
previous work, we have found QSYM to be a great tool for
the analysis of x86 binaries, but adding support for another
architecture would be a significant amount of work.

D. SymCC

The recently presented symbolic executor SymCC [20],
proposed by the same authors as the present publication, does

2At the time of writing, only x86 is fully supported (https://github.com/
S2E/s2e-env/issues/268).

3

https://github.com/S2E/s2e-env/issues/268
https://github.com/S2E/s2e-env/issues/268

SymCC

Compiler
frontend

Source
code

Compiler
backend

Pass

LLVM
bitcode

Host
machine

code

Symbolic or concrete
execution on
the host CPU

(based on demand)

Instrumented
LLVM bitcode

Fig. 4. Overview of SymCC: the source code of the target program is
compiled to machine code; symbolic handling is injected at the level of LLVM
bitcode in the compiler.

not work on binaries; however, SymQEMU draws inspiration
from SymCC, so we briefly outline SymCC’s design here. We
refer interested readers to the original publication for details.

Our core observation when building SymCC was that
most modern symbolic execution systems are interpreters. We
proposed a compilation-based approach instead, showing that
it increases execution performance as well as the overall ex-
ploration capability of the resulting system. SymCC hooks into
compilers and instruments target code at compile time, inject-
ing calls to a run-time support library. Symbolic execution thus
becomes an integral part of the compiled program. Moreover,
the analysis code benefits from compiler optimizations, and
instrumentation work is not duplicated at every execution.
Figure 4 illustrates the design.

SymCC’s compilation-based approach fundamentally re-
quires a compiler—it is therefore applicable only when source
code of the program under test is available. Nonetheless, we
considered the approach promising enough to search for a
way to apply it to binary-only symbolic execution. A ma-
jor contribution of the present paper is to demonstrate how
compilation-based symbolic execution can, in fact, be made to
work efficiently on binaries.

III. SYMQEMU

We now present the design and implementation of our
binary-only symbolic executor SymQEMU. It draws from
previous work and combines the advantages of state-of-the-art
systems with novel ideas to create a fast yet flexible analysis
engine.

A. Design

The system has two main goals:

1) Achieve high performance in order to scale to real-
world software.

2) Stay reasonably platform-independent, i.e., adding
support for a processor architecture should not require
a major effort.

Based on the survey in Section II-C, we observe that
popular state-of-the-art systems typically achieve one of those
goals, but not both: among those presented, S2E and angr are
highly flexible yet fall behind in performance [19], whereas
QSYM is very fast but intimately tied to the x86 platform [28].

We have seen that current solutions which are platform-
independent translate the program under test to an intermediate

representation—this way, in order to support a new architec-
ture, only the translator has to be ported. Ideally, one picks
an intermediate language for which translators from many
relevant architectures exist already. Representing programs
in an architecture-independent way for flexibility is a well-
known technique that has been successfully applied in many
other domains, such as compiler design [14] and static binary
analysis [11]. We therefore incorporate it into our design as
well.

While translating programs to an intermediate representa-
tion gives us flexibility, we need to be aware of the impact
on performance: translating binary-only programs statically is
challenging because disassembly may not be reliable (espe-
cially in the presence of indirect jumps [18]), and performing
the translation at run time incurs overhead during the analysis.
We believe that this is the core reason why translating symbolic
executors like S2E and angr lag behind non-translating systems
like QSYM in terms of performance. Our goal is to find a way
to build a translating system that still performs well.

First, we note that the speed of both S2E and angr is
affected by non-essential issues that could be fixed with an
engineering effort:

• S2E translates the program under test twice (see Sec-
tion II-C2). The second translation could be avoided
if symbolic execution was implemented on the first
intermediate representation.3

• Angr’s performance suffers from the Python imple-
mentation; porting the core to a faster programming
language would likely result in a noteworthy speedup.

However, our contribution goes beyond just identifying
and avoiding those two problems. This is where a second
observation comes into play: Both S2E and angr, as well as
all other translating binary-only symbolic executors that we
are aware of, interpret the intermediate representation of the
program under test. (This is independent of the modifications
suggested above—interpretation is a core part of their design.)
We conjecture that compiling an instrumented version of the
target program yields much higher performance. SymCC has
recently shown that this is true of source-based symbolic exe-
cution [20], but its compiler-based design inherently requires
source code and therefore doesn’t apply to the binary-only use
case (see Section II-D).

Our approach, inspired by the above observations, is the
following:

1) Translate the target program to an intermediate lan-
guage at run time.

2) Instrument the intermediate representation as neces-
sary for symbolic execution.

3) Compile the intermediate representation to machine
code suitable for the CPU running the analysis and
execute it directly.

By compiling the instrumented target program to machine
code, we compensate for the performance penalty incurred by
translating the binary to an intermediate language in the first

3In fact, the developers of S2E have plans to do just that, documented at
https://github.com/S2E/s2e-env/issues/178.

4

https://github.com/S2E/s2e-env/issues/178

QEMU

TCG
 lifter

Binary

TCG
compiler

TCG ops

Host
machine

code

Concrete
execution on
the host CPU

Fig. 5. Overview of regular QEMU: the target program is translated to TCG
ops, which are subsequently compiled to machine code and executed on the
host CPU.

place: The CPU executes machine code much faster than an
interpreter can run the intermediate representation, such that
we achieve performance comparable to a non-translating sys-
tem while retaining the advantage of architecture independence
that comes with program translation.

B. Implementation

We implemented SymQEMU on top of QEMU [3], as
suggested by the name. We have chosen QEMU because
it is a robust system emulator that supports a plethora of
architectures. Building on it, we are able to achieve our
goal of platform independence. Note that S2E is similarly
based on QEMU, presumably for similar reasons. But there is
another characteristic of QEMU that caters to our needs and
differentiates it from other translators: QEMU does not only
translate binaries to a processor-independent intermediate rep-
resentation, it also has facilities for compiling the intermediate
language down to machine code for the host CPU. We leverage
this mechanism to achieve our second goal: performance.

Note that the Valgrind framework supports a simi-
lar mechanism, which its authors call “disassemble-and-
resynthesize” [17]; the main advantage of QEMU over Val-
grind for our purposes is that QEMU can translate binaries
from a given guest architecture into machine code for a
different host architecture, as well as emulate an entire system,
which makes it a better basis for future extensions supporting
cross-architecture firmware analysis.

Concretely, we extend a component in QEMU called Tiny
Code Generator (TCG). In unmodified QEMU, TCG is re-
sponsible for translating blocks of guest-architecture machine
code to an architecture-independent language called TCG
ops, then compile those TCG ops to machine code for the
host architecture (see Figure 5). The translated blocks are
subsequently cached for performance reasons, so translation
needs to happen only once per execution. SymQEMU inserts
one more step into the process: While the program under test is
being translated to TCG ops, we emit not only the instructions
that emulate the guest CPU but also additional TCG ops to
construct symbolic expressions for the results (see Figure 6).

For example, suppose that a function in a target program
adds the constant 42 to an input integer (using C code for the
example):

int add42(int x) {
return x + 42;

}

With optimization enabled, GCC inlines the function and
translates it to this assembly instruction when compiling for
the x86-64 architecture:

lea esi,[rax+0x2a]

The machine code is all that SymQEMU gets; it does
not have access to the source code (which we display for
illustration purposes only). When we execute the target, TCG
produces the following architecture-independent representation
of the machine code:

movi_i64 tmp12, $0x2a
add_i64 tmp2, rax, tmp12
ext32u_i64 rsi, tmp2

Note that the arguments of TCG ops are ordered like
x86 assembly in Intel syntax, i.e., the destination is the first
argument of any instruction. The instructions above perform
a 64-bit addition and store the result as a 32-bit integer.
Regular QEMU would translate these TCG ops to machine
code for the host architecture. SymQEMU, however, inserts
additional instructions for symbolic computation before the
code is translated to the host architecture:

movi_i64 tmp12_expr, $0x0
movi_i64 tmp12, $0x2a

call sym_add_i64, $0x5, $1, tmp2_expr,
rax, rax_expr, tmp12, tmp12_expr

add_i64 tmp2, rax, tmp12

movi_i64 tmp12, $0x4
call sym_zext, $0x5, $1, rsi_expr,

tmp2_expr, tmp12
ext32u_i64 rsi, tmp2

Each block of code corresponds to one of the TCG ops
produced by QEMU originally; in fact, the last instruction of
every block is identical with the respective original instruction.
In the first block, we set the expression pertaining to the
constant 42 to null (i.e., we declare the value to be concrete). In
the second block, the helper sym_add_i64 creates a symbolic
expression representing the addition of two 64-bit integers
(using rax_expr, the expression corresponding to the function
input). Finally, the last block calls the helper sym_zext with
argument 4 to build an expression that translates the result
of the addition to a 4-byte (i.e., 32-bit) quantity. Crucially,
SymQEMU does not perform any of these calls to the support
library at translation time (as an interpreter would)—it only
emits the corresponding TCG ops and relies on the regular
QEMU mechanisms to translate them to machine code. This
way, symbolic formulas are constructed in native machine code
without incurring the overhead associated with interpreting an
intermediate language.

For the support library that constructs symbolic expressions
and solves queries over them, we reuse code from SymCC,
which is in turn based on QSYM. This has the advantage,
in addition to saving us from having to reimplement what
works well in QSYM, that it eliminates a source of noise
from our evaluation: since SymQEMU and QSYM use the
same logic for building up and simplifying expressions, as
well as for interaction with the solver, we can be sure that

5

SymQEMU
TCG
 lifter

Binary

Custom

instrumenter
TCG ops

Host
machine

code

Symbolic or concrete
execution on
the host CPU

(based on demand)

TCG
compiler

Instrumented
TCG ops

Fig. 6. Overview of SymQEMU: the target program is translated to TCG
ops as in regular QEMU (see Figure 5), but before the compilation to host
machine code we insert instructions to perform symbolic execution at run
time.

observed performance differences do not originate from those
orthogonal design aspects.

We currently use QEMU’s Linux user-mode emulation,
i.e., we emulate only the user space of the guest system.
System calls are translated to fulfill the host architecture’s
requirements, and they are executed against the host kernel
(using normal QEMU mechanics). Consequently, our symbolic
analysis stops at the system-call boundary, similar to QSYM
and angr. Compared to full-system emulation (as performed
by S2E), this saves the effort of preparing OS images for
each target architecture, and increases performance by running
kernel code concretely and without emulation. Note, however,
that SymQEMU could be extended to work with QEMU’s full-
system emulation if necessary (see Section V).

Overall, SymQEMU adds about 2,000 lines of C code
to QEMU. Furthermore, we added a few lines of C++ (less
than 100) to SymCC’s support library in order to support our
approach to memory management (see Section III-E).

C. Platform independence

We stated that support for multiple CPU architectures was
an important goal for SymQEMU from the start. Therefore, we
now examine in detail to which extent our system achieves it.
(SymQEMU’s claim to the second design goal, performance,
is validated experimentally in Section IV.)

First of all, it is important to distinguish between the
architecture of the computer that runs the analysis (typically
called the host) and the architecture that the program under test
is compiled for (the guest in QEMU parlance). Especially in
firmware analysis, it is desirable for host and guest architecture
to be different—the embedded device that a firmware under
test runs on may lack the computing power to perform sym-
bolic analysis at a reasonable pace, so one would typically run
the symbolic executor (and, in general, any firmware tests [9])
on a more powerful machine. SymQEMU is well prepared for
this use case: QEMU runs on all major host architectures.4

But what about guest architectures? SymQEMU lever-
ages QEMU’s TCG translators, which cover a wide range
of processor types—the online documentation5 currently lists
22 platforms including x86, ARM, MIPS and Xtensa, each
comprising numerous processor types. Moreover, our modifi-
cations are almost entirely independent of the target platform:

4Our prototype currently requires a 64-bit host system for implementation
simplicity.

5https://wiki.qemu.org/Documentation/Platforms

out of the 2,000 lines of C code that we added to QEMU,
only 10 are specific to the guest architecture (i.e., x86 in our
experiments). In particular, they perform the following tasks:

• 6 lines add space for symbolic expressions to the data
structure describing the registers of the emulated CPU.
Adapting them to other CPU architectures is a simple
copy-paste task.

• The remaining 4 lines of code insert TCG ops on
guest-level call and return instructions. This is op-
tional, but it allows the code borrowed from QSYM
to maintain a shadow call stack (see Section III-G). In
order to support another target architecture, one just
has to identify the architecture’s respective call and
return primitives.

We confirmed the claim to easy adaptability by adding
support for AArch64 to SymQEMU. It required 17 lines of
C code, excluding the optional call and return instrumentation.
Note that the current implementation expects 64-bit guest
architectures (so that host addresses can be passed in guest reg-
isters), but there is no fundamental reason for this limitation—
it could be eliminated with a one-time development effort.

In summary, SymQEMU runs on all relevant host archi-
tectures and supports the analysis of binaries compiled for
any guest architecture that QEMU can handle, with negligible
effort.

D. Comparison with previous designs

We would like to point out how SymQEMU differs from
the state-of-the-art systems presented in Section II.

Like angr and S2E, SymQEMU follows the traditional
approach of implementing symbolic handling at the level of
an intermediate representation, which significantly reduces the
complexity of the implementation. However, in contrast with
those two, SymQEMU performs compilation-based symbolic
execution, allowing it to achieve much higher performance (see
Section IV).

Compared with QSYM, the most important advantage of
SymQEMU’s design is architectural flexibility while maintain-
ing high execution speed. Building on top of QEMU allows it
to benefit from the large number of platforms that the emulator
supports.

SymCC, although unable to analyze binaries, shares the
compilation-based approach with SymQEMU. Both insert
symbolic handling into the target program by modifying its
intermediate representation, and both compile the result down
to machine code that can be executed efficiently. However,
SymCC is inherently designed to work in a compiler, whereas
SymQEMU addresses the different set of challenges encoun-
tered in binary-only symbolic execution (see Section II-B):
where SymCC instruments LLVM bitcode during (source-
based) compilation, SymQEMU instruments TCG ops during
dynamic binary translation. See Section III-F for challenges
that are specific to working on top of a dynamic binary
translator. Moreover, SymQEMU handles mismatches between
target and host architectures, an issue that does not arise in
SymCC’s setting because source code is mostly independent
of the target architecture. In this context, we would like

6

https://wiki.qemu.org/Documentation/Platforms

to emphasize that SymQEMU can support cross-architecture
analysis, i.e., the CPU architecture that the program under test
is compiled for does not need to match the architecture of the
machine performing the analysis.

In summary, we believe that our approach combines the
main advantages of angr and S2E on the one hand (i.e.,
platform independence) and QSYM on the other (i.e., per-
formance), but avoids their respective disadvantages (lower
performance and dependence on a particular architecture,
respectively). Moreover, we found a way to apply SymCC’s
core idea of compilation-based symbolic execution to binaries.

Table I summarizes the comparison. Speed refers to a focus
on execution speed, multiarch means easy portability to various
guest CPU architectures, binary-only refers to support for
analysis without source code, and cross-architecture means the
ability to analyze programs targeting a different architecture
than the host.

We now discuss some of the challenges that we faced when
building SymQEMU.

E. Memory management

As SymQEMU executes the program under analysis, it
builds up symbolic expressions that describe intermediate
results and path constraints. The amount of memory required
for those expressions increases over time, so SymQEMU needs
a way to clean up expressions that are not needed anymore.

Before we describe SymQEMU’s approach to memory
management, let us discuss why managing memory is nec-
essary in the first place. After all, intermediate results in any
reasonable program should either have an impact on control
flow or become part of the final result—in the former case,
the corresponding expressions are added to the set of path
constraints and thus cannot be cleaned up, and in the latter
case the expressions become subexpressions in the description
of the end result. So how can symbolic expressions ever
become unneeded? The key insight is that program output is
conceptually part of a program’s result, but it may be produced
well before the end of execution. Consider the example of an
archive tool which lists the contents of an archive, printing file
names one by one: after each piece of output is produced, the
program can delete the associated string data, and SymQEMU
should clean up the corresponding symbolic expressions. Oth-
erwise, expressions would accumulate and, in the worst case,
consume all available memory.

Ideally, we would delete symbolic expressions precisely
after their last use. QSYM, whose backend we reuse, employs
C++ smart pointers to this end. However, we cannot easily
follow the same approach in our modified version of QEMU:
TCG, the QEMU component at the center of our execution
mechanism, is a dynamic translator—for performance reasons,
it does not conduct any extensive analysis of translated code
(unlike static compilers, which typically collect a significant
amount of information related to variable scope and lifetime).
This makes it difficult to efficiently determine the right place
for inserting cleanup code in the translated program. Moreover,
experience shows that most programs contain relatively little
symbolic data and even less expressions that become garbage
during execution, so we do not want our cleanup scheme to

incur significant overhead in the most common case where all
expressions can reside in memory until the end of program
execution.

We opted for an optimistic cleanup scheme based on
an expression garbage collector: SymQEMU keeps track of
all symbolic expressions obtained from the backend, and if
their number grows too large it triggers a collection. The
core observation is that all live expressions can be found by
scanning (1) the symbolic registers of the emulated CPU and
(2) the shadow regions in memory that store symbolic expres-
sions corresponding to symbolic memory contents; both are
known to the backend. After enumerating all live expressions,
SymQEMU can compare the resulting set with the set of all
expressions ever constructed, and free those that are not live
anymore. In particular, when a program removes the results of
a computation from registers and memory (as in the example
of the archiver above), the corresponding expressions are not
considered live anymore and will thus be freed. We have
connected the expression garbage collector to QSYM’s smart-
pointer based memory management—both mechanisms need
to agree that an expression is unused before it can be freed.

F. Modifying TCG ops

Our approach fundamentally requires the ability to insert
new instructions into the list of TCG ops that represent a
piece of target code. However, TCG was never meant to allow
for such extensive modifications during translation—being a
dynamic translator, it has a strong focus on speed. As a
consequence, there is little support for programmatic editing of
TCG ops. Whereas LLVM, for example, provides an extensive
API for compiler passes to inspect and modify LLVM bitcode,6
TCG simply stores instructions in a flat linked list without any
navigable higher-level structure like basic blocks. Moreover,
control flow is expected to be linear within a translation block
(with very limited exceptions), precluding optimizations such
as SymCC’s embedded concreteness checks [20].

In order to minimize friction with the TCG infrastructure,
our implementation emits symbolic handling for each target
instruction when the instruction itself is generated. While this
prevents issues with TCG’s optimizer and code generator, it
renders advanced static optimizations infeasible because our
view is limited to only a single instruction at a time. In par-
ticular, we have very little opportunity to determine statically
whether a given temporary value is concrete. Similarly, we
cannot emit jumps that directly skip symbolic computations
if all operands turn out to be concrete at run time. Instead,
we settled on a compromise that accounts for the constraints
of TCG’s operating environment (in particular, the need for
fast dynamic translation) while still allowing us to achieve
relatively high execution speed: We perform concreteness
checks in the support library—this way, we can still skip
symbolic computations when the inputs are concrete, but the
check costs an additional library call.

G. Shadow call stack

QSYM introduced the concept of context-sensitive basic-
block pruning [28], a technique that suppresses symbolic

6https://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-
common-operations

7

https://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations
https://llvm.org/docs/ProgrammersManual.html#helpful-hints-for-common-operations

TABLE I. COMPARISON OF SYMQEMU WITH STATE-OF-THE-ART SYMBOLIC EXECUTION SYSTEMS.

Symbolic executor Reference Implementation
language

Intermediate
representation Speed Multiarch Binary-only Cross-architecture

angr [25] Python VEX 7 3 3 3

S2E [6] C/C++ TCG & LLVM 7 3 3 3

QSYM [28] C++ none 3 7 3 7

SymCC [20] C++ LLVM 3 3 7 7

SymQEMU C/C++ TCG 3 3 3 3

analysis if a certain computation is encountered frequently
in the same call-stack context (based on the intuition that
repeating the analysis over and over in the same context will
not lead to new insights). In order to support this optimization,
symbolic executors need to maintain a shadow call stack,
which requires keeping track of call and return instructions.

Building on top of QEMU, we faced the challenge that
TCG ops are a very low-level representation of the target
program. In particular, calls and returns are not represented
as individual instructions in TCG but instead translate to a
series of TCG ops.7 For example, a function call on x86 results
in TCG ops that push the return address onto the emulated
stack, adjust the guest’s stack pointer, and modify the guest’s
instruction pointer according to the called function. This makes
it nearly impossible to recognize calls and returns reliably and
in a platform-independent manner by just examining the TCG
ops. We chose to optimize for robustness: in the architecture-
specific QEMU code that translates machine code to TCG
ops, we notify the code generator whenever a call or a return
is encountered. (Hence the four architecture-specific lines of
code in the x86 translator mentioned earlier—one line each
for call immediate, call, return immediate, and return.) The
downside is that such notifications have to be inserted into the
translation code for each target architecture; however, the task
is easy and the amount of code very small, so we consider it
well worthwhile.

IV. EVALUATION

In order to evaluate SymQEMU, we performed three dif-
ferent sets of experiments:

1) We compared it to a number of state-of-the art fuzzers
with the help of Google FuzzBench.

2) Since FuzzBench does not include symbolic execu-
tion tools, we ran a comparison with popular binary-
only symbolic executors on a set of real-world pro-
grams.

3) In order to assess the difference in execution speed
between SymQEMU, QSYM and SymCC, we per-
formed a benchmark comparison between those con-
colic executors on fixed inputs.

A. FuzzBench

Google announced FuzzBench in March 2020 as “a fully
automated, open source, free service for evaluating fuzzers”.8
It tests fuzzers in a controlled environment, comparing their

7There is a call instruction in TCG, but it serves a different purpose.
8https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-

as-service.html

TABLE II. SUMMARY OF THE FUZZBENCH RESULTS FOR 21 TARGETS.
SYMQEMU RANKED FIRST ON 3 TARGETS, SECOND ON AVERAGE ACROSS

ALL TARGETS, AND OUTPERFORMED PURE AFL ON 14.

Target Rank Seed corpus Dictionary
SymQEMU Pure AFL

bloaty 7 4 3 7

curl 5 1 3 7

freetype2 2 4 3 7

harfbuzz 2 4 3 7

jsoncpp 4 11 7 3

lcms 1 7 7 3

libjpeg-turbo 1 5 3 7

libpcap 6 10 3 7

libpng 1 7 3 7

libxml2 4 2 3 7

mbedtls 6 4 3 7

openssl 3 6 3 7

openthread 2 6 3 7

php 3 5 3 3

proj4 5 4 7 7

re2 4 6 7 7

sqlite3 5 2 3 3

systemd 3 2 3 7

vorbis 4 5 3 7

woff2 3 5 3 7

zlib 6 8 3 7

performance across a large number of targets taken from
Google OSS-Fuzz, a collection of fuzz targets for open-
source software.9 For each target, the service compares the
edge coverage obtained by the fuzzers. Integrating a new
analysis tool amounts to configuring a Docker container to
set up the environment, build the target programs, and launch
the analysis. We added a combination of SymQEMU and
AFL to the set of analysis tools, and the FuzzBench team
graciously performed a run of the experiments. In total, they
ran SymQEMU and 12 fuzzer configurations on 21 targets for
24 hours, performing 15 trials per fuzzer and target (amounting
to roughly 10 CPU core years).

Figures 7, 8, 9 and 10 exemplify the outcome for two tar-
gets, and Table II summarizes the results; we show the ranking
for all targets in Appendix B and the full report online.10 On
average across all experiments, SymQEMU outperformed all
fuzzers but Honggfuzz, 5 of them with statistical significance,
including the popular industrial-strength tool libfuzzer. On 3
out of 21 targets, SymQEMU achieved the highest coverage
among all tools, and it outperformed pure AFL on 14 targets;

9https://google.github.io/oss-fuzz/
10http://www.s3.eurecom.fr/tools/symbolic execution/symqemu.html

8

https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://google.github.io/oss-fuzz/
http://www.s3.eurecom.fr/tools/symbolic_execution/symqemu.html

Fig. 7. Excerpt from the FuzzBench report: Ranking by median reached
coverage for the FuzzBench target lcms. SymQEMU outperforms all other
tools on this target.

it is worth mentioning, however, that pure AFL consequently
performed better than our hybrid fuzzer on 7 targets. The
specific potential contribution of symbolic execution generally
depends on several factors, including the availability of a seed
corpus or dictionary, and the nature of the analyzed code—for
instance, if the target makes heavy use of hash functions or
other irreversible operations, the utility of symbolic execution
is diminished.

Overall, we take the results as a confirmation of
SymQEMU’s power, especially since we have not optimized
for any of the FuzzBench targets to avoid overfitting. Note also
that SymQEMU achieves this without using the targets’ source
code, and that the overwhelming majority of the targets are
accompanied by good seed corpora and/or dictionaries, where
symbolic execution typically does not contribute as much in
terms of raw coverage as it would if no seeds were available
(see Section IV-B). Finally, our rather crude integration simply
dedicates a fixed share of CPU time to symbolic execution; we
believe that a more sophisticated coordination strategy between
fuzzer and symbolic executor (e.g., in the spirit of the recently
presented Pangolin [10]), could further improve the results (see
Section VI-C).

B. Comparison with other symbolic execution systems

SymQEMU’s primary goal is binary-only symbolic execu-
tion. In this section, we therefore compare it to state-of-the-
art tools in this space. In particular, we evaluate it against
S2E because, like SymQEMU, S2E is based on QEMU (see
Section II-C2), and against QSYM because it is the fastest
binary-only symbolic executor that we are aware of (see
Section II-C3). We omitted angr (Section II-C1) from the
comparison because preliminary experiments showed that its
execution speed is significantly lower than that of the other
tools; angr prioritizes versatility and ease of interactive use
over raw speed [19]. Finally, we added raw AFL as a baseline,
and we compared against SymCC (see Section II-D) because
it introduced the concept of compilation-based symbolic ex-
ecution. Note, however, that SymCC has an advantage over
the other tools because it uses the source code of the program
under test, e.g., it can benefit from high-level code structures

and compiler optimizations. Naturally, we can only evaluate
against SymCC on open-source targets.

For our comparison, we performed hybrid fuzzing of a
number of target programs and measured code coverage over
time. We used AFL’s notion of coverage for the same reason
as in the evaluation of SymCC [20]: it is what drives AFL’s
exploration process. Following the recommendations by Klees
et al. [13], we analyzed each target for 24 hours, and we
repeated each experiment 30 times. In order to check for
statistical significance, we used a two-tailed Mann-Whitney U
test, again as recommended by Klees et al. Our targets were
the open-source programs OpenJPEG, libarchive and tcpdump
on the one hand, and the closed-source program rar on the
other hand. The reason for choosing these programs is that
(a) we have previously used the three open-source tools for
the evaluation of SymCC, so we know that both SymCC and
QSYM work on them, and (b) rar is an easy-to-obtain closed-
source program whose strict requirements on the format of
the input present interesting challenges to symbolic execution,
and whose license does not prohibit this type of analysis. For
OpenJPEG and rar, we provided a seed input of the expected
format; on libarchive and tcpdump, we started with an empty
corpus.

The various systems under comparison were set up as
follows:

• SymQEMU, QSYM and SymCC. We ran those systems
together with AFL, using the same integration as in
QSYM and SymCC publications (i.e., exchanging test
cases via fuzzer queues in AFL’s distributed mode).
We executed one AFL primary instance, one AFL
secondary instance, and one SymQEMU, QSYM or
SymCC instance, each on one CPU core and with
2GB of RAM. AFL was allowed to use the source
code when it was available; otherwise, we ran it in
QEMU mode.

• S2E. For S2E, we created an analysis project per
target, making the test input fully symbolic when there
was one, and providing a symbolic file of all zeros
otherwise. We enabled the FunctionModels plugin and
extended the TestCaseGenerator plugin to produce a
new test case whenever a new execution state was
forked.11 We used the default searcher stack and ran
the experiments in the 64-bit Debian image provided
by the authors of S2E. Since S2E’s parallel mode was
not stable enough in our experiments, we accumulated
the results from three independent analyses (to match
the three CPU cores available to SymQEMU, QSYM
and SymCC); see Appendix A for details. In order to
assess code coverage, we evaluated the test cases with
AFL after the end of the analysis.

• Pure AFL. We executed AFL in distributed mode,
running one primary and two secondary instances,
each on one CPU core with 2GB of RAM. Like for
SymQEMU, QSYM and SymCC, we gave AFL access
to the target’s source code when it was available and
used QEMU mode otherwise.

11https://github.com/S2E/s2e/pull/20

9

https://github.com/S2E/s2e/pull/20

Fig. 8. Excerpt from the FuzzBench report: Mean coverage growth over time (and 95% confidence intervals) for the FuzzBench target lcms. SymQEMU
outperforms all other tools on this target.

Fig. 9. Excerpt from the FuzzBench report: Ranking by median reached
coverage for the FuzzBench target woff2. SymQEMU reaches 3rd rank on
this target.

The experiments were conducted on an Intel Xeon Plat-
inum 8260 CPU. We spent a total of roughly 5 CPU core years
(4 target programs, 5 systems under comparison, 3 cores per
experiment, 30 iterations, 24 hours).

Figure 11 shows the results for the open-source targets.
We obtained coverage data for AFL and the hybrid fuzzers
from the logs written by afl-fuzz, using the same set of
AFL-instrumented binaries to evaluate each tool; for S2E, we
ran the generated program inputs through afl-showmap
(again, using the same binaries) in order to compute an
equivalent coverage metric. Moreover, recall that we used
identical strategies to integrate AFL with QSYM, SymCC and
SymQEMU. We see that SymQEMU achieves significantly
more coverage over time than both QSYM and S2E, thus
outperforming those state-of-the-art binary symbolic executors.
It also covers more code than pure AFL, showing the value of
symbolic execution in exploring the target programs. Finally,
SymQEMU somewhat surprisingly reaches a coverage level
that is comparable with SymCC’s results, even though SymCC
has access to the targets’ source code and therefore more
potential for optimization. Manual investigation shows that
SymCC does not use this potential to the maximum extent

possible; for example, it does not trigger another memory-to-
register optimization pass after inserting its instrumentation
(resulting in unnecessary memory operations in the target
program), nor does it use link-time optimization to inline calls
to the support library. We believe that this is the main reason
why a binary-only symbolic executor like SymQEMU can keep
up with a source-based tool like SymCC. In summary, the
results confirm that SymQEMU is more efficient than the other
binary-only symbolic execution systems in our comparison.

In our analysis of libarchive, SymQEMU found an input
that leads to a use-after-free error on the heap. The bug can be
triggered, for example, by making a user list the contents of
a manipulated archive with the bsdtar utility, and we consider
it likely to be exploitable. We have reported the issue to the
developers of libarchive; at the time of writing, we have not
received a reply.

Figure 12 displays the results for the closed-source rar
program. SymQEMU, QSYM and AFL all converge towards
the same level of coverage, but SymQEMU reaches saturation
as fast as the less architecturally flexible QSYM and faster
than AFL. Note further that SymQEMU and QSYM quickly
discover paths that pure AFL (i.e., without symbolic execution)
needs more time to find. S2E cannot analyze as much code as
the other tools but arguably covers more of the data space on
the discovered paths.12 This experiment shows that SymQEMU
can work with closed-source targets, like other binary-only
symbolic executors, but with the additional advantage of easily
supporting a large number of target architectures.

It is interesting to note that symbolic execution generally
contributes the most in terms of code coverage when no
seed inputs are available, as demonstrated by our analysis of
libarchive and tcpdump. On OpenJPEG and rar, in contrast,
the seed files give AFL sufficient information to also achieve
a good coverage level in relatively little time.

Finally, Figure 13 shows the execution times of the sym-
bolic execution engines in our experiments, providing evidence
that SymQEMU is consistently faster than QSYM and at least
on par with the source-based SymCC. We omitted S2E from

12https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-
symbolic.html

10

https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html
https://ccadar.blogspot.com/2020/07/measuring-coverage-achieved-by-symbolic.html

Fig. 10. Excerpt from the FuzzBench report: Mean coverage growth over time (and 95% confidence intervals) for the FuzzBench target woff2. SymQEMU
reaches 3rd rank on this target.

3

4

5

6

7

8

9

10

11

0h 5h 10h 15h 20h 25h

0

2

4

6

8

10

12

0h 5h 10h 15h 20h 25h

0
2
4
6
8

10
12
14
16
18
20

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

ity
(%

)

OpenJPEG libarchive tcpdump

SymQEMU

SymCC

QSYM

AFL

S2E

Fig. 11. Coverage over time on the open-source targets, expressed via the density of AFL’s coverage map, showing median and 95% confidence corridor.
SymQEMU achieves higher coverage than all other systems with statistical significance (Mann-Whitney U, p < 0.005 two-tailed), except on libarchive, where
there is no statistically significant difference with SymCC. Note, however, that SymCC requires the source code of the program under test.

2
2.5
3

3.5
4

4.5
5

5.5
6

6.5

0h 5h 10h 15h 20h 25h

A
FL

m
ap

de
ns

ity
(%

)

rar

SymQEMU

QSYM

AFL

S2E

Fig. 12. Coverage over time on the closed-source rar program, expressed
via the density of AFL’s coverage map, showing median and 95% confidence
corridor. All tools except S2E converge towards the same coverage level, but
SymQEMU reaches it faster than AFL and therefore requires less computing
power per coverage. Moreover, its speed is similar to QSYM’s, but QSYM
cannot be easily ported from x86 to other targets.

the figure because there is no equivalent notion of execution
time for its approach: while we could measure how long
each execution state exists, this would ignore the fact that
S2E performs many checks that the other systems delegate
to fuzzer and sanitizers, and hence would put S2E at an unfair
disadvantage in the comparison.

0

10

20

30

40

50

60

OpenJPEG libarchive tcpdump rar

Ti
m

e
(s

)

QSYM
SymQEMU

SymCC

Fig. 13. Target execution times per symbolic executor and target program.
Note that SymQEMU is faster than QSYM and at least as fast as the source-
based SymCC. The notion of execution time is not applicable to S2E; SymCC
cannot analyze rar because the source code is not available.

C. Benchmark comparison

We have seen that SymQEMU outperforms state-of-the-art
binary-only symbolic executors in real-world hybrid fuzzing.
Let us now check our hypothesis that those results are indeed
due to SymQEMU’s high execution speed. To this end, we
performed a third set of experiments with the goal of assessing
precisely how fast SymQEMU executes code in comparison
with the other two concolic executors in our comparison,
SymCC and QSYM.

The core idea of this experiment is to run concolic execu-
tion on a fixed set of inputs, therefore making all systems in the
comparison follow the same paths on the same target programs.

11

TABLE III. RESULTS OF OUR BENCHMARK COMPARISON ON FIXED
INPUTS, VISUALIZED IN FIGURE 14.

QSYM SymQEMU SymCC

Exec 8.5h 35.1% 4.0h 17.2% 0.5h 2.3%
OpenJPEG SMT 15.8h 64.9% 19.2h 82.8% 21.0h 97.7%

Total 24.3h 23.2h 21.5h

Exec 6.8h 47.3% 1.7h 25.1% 0.7h 82.6%
libarchive SMT 7.6h 52.7% 5.0h 74.9% 0.1h 17.4%

Total 14.3h 6.7h 0.8h

Exec 8.2h 32.7% 5.2h 56.5% 1.2h 59.3%
tcpdump SMT 16.9h 67.3% 4.0h 43.5% 0.8h 40.7%

Total 25.1h 9.1h 2.0h

In other words, we remove one variable from the comparison:
the choice of paths to follow. Concretely, for each of the three
open-source targets used in Section IV-B we combined the
test cases found by SymQEMU, SymCC and QSYM during
the 24-hour hybrid-fuzzing session; then we selected 1000 test
cases per target at random. We performed concolic execution
on the selected inputs, measuring the time spent in execution
and SMT solving, respectively.

Figure 14 and Table III show the observed time split
per target and symbolic executor. We see that, on all three
targets, SymQEMU spends less time in execution than QSYM;
this provides evidence that SymQEMU’s higher performance
in hybrid fuzzing (see Figure 11) is indeed due to higher
execution speed. The source-based SymCC spends even less
time in execution than both SymQEMU and QSYM because,
unlike the binary-only symbolic executors, SymCC does not
incur the overhead of dynamic binary translation or dynamic
binary instrumentation.

It is also interesting to note that the three systems invest
different amounts of time in SMT solving. Since the program
paths are fixed and the symbolic executors use the same
backend to interact with the solver, we conclude that there is a
difference in the difficulty of SMT queries. Manual inspection
confirms that SymCC’s queries are shorter and less nested than
those generated by the other systems (except on the OpenJPEG
target, where we see a lot of arithmetic and bit-level operations
in all systems’ queries, which we attribute to the compression
algorithm of the JPEG format). The difference in difficulty
is likely due to the different intermediate representations that
the analyses are based on. In particular, our observation that
SymCC often generates simpler queries and consequently
spends less time in the SMT solver than the other two systems
provides evidence for our earlier hypothesis [19] that high-level
intermediate representations lead to simpler SMT queries.

In summary, we have shown that SymQEMU outperforms
state-of-the-art binary-only symbolic executors in real-world
hybrid fuzzing, and that the reason for its higher performance
is its fast execution component. In comparison with QSYM,
SymQEMU achieves 19% higher coverage on average after
24 hours (Figures 11 and 12, geometric mean) and 58% faster
execution in the benchmark experiment (Figure 14, geometric
mean).

V. FUTURE WORK

We have several ideas for future work based on
SymQEMU, which we document in this section.

A. Full-system emulation

SymQEMU currently performs symbolic execution of
Linux user-mode binaries. It would be interesting to extend
it to full-system analysis. Especially in the embedded space, it
is common for firmware to run on custom operating systems
or even directly on hardware [16]; analyzing such programs
would require support for full-system emulation.

We believe that it is possible to implement such a system
on top of SymQEMU. The basic process of lifting the target to
TCG ops, instrumenting those, and compiling the result down
to host machine code would stay the same. One would have
to add a mechanism to introduce symbolic data into the guest
system (e.g., inspired by S2E’s fake-instruction technique),
and the shadow-memory system would have to account for
the virtual MMU when mapping between guest memory and
symbolic expressions. The result would be a symbolic executor
that could reason about kernel code in addition to user-space
programs. Moreover, the extended system would be able to
analyze code for non-Linux operating systems, as well as bare-
metal firmware.

B. Caching across executions

Hybrid fuzzing is characterized by a large number of
successive executions of the same program. Being a dynamic
translator, QEMU (and hence, SymQEMU) translates the target
program on demand, at run time. And although the results of
the translation are cached for the duration of a single execution,
they are discarded when the target program terminates. We
conjecture that the overall performance of hybrid fuzzing
with SymQEMU could be improved by caching translation
results across executions. The main challenges would be to
ensure that the target is loaded deterministically, and special
handling would need to be put in place for self-modifying
code. Therefore, the potential benefit of this optimization
depends heavily on the characteristics of the program under
test.

C. Symbolic QEMU helpers

QEMU represents target machine code with TCG ops.
However, some target instructions are too complex to be
efficiently expressed in TCG, especially on CISC architectures
(e.g., Intel’s SSE extensions). In such cases, QEMU uses
helpers: built-in compiled functions that can be called from
TCG, emulating single complex instructions of the target
architecture. Since helpers operate outside the regular TCG
framework, SymQEMU’s instrumentation at the TCG level
cannot insert symbolic handling into them. The result is im-
plicit concretization, yielding a loss of precision in the analysis
of targets that make heavy use of complex instructions.

We see two ways to implement symbolic handling of
QEMU helpers when the need arises:

1) One approach is to hand-craft symbolic equivalents
for each required helper, much like the function
summaries used for common libc functions in some
symbolic executors.13 This approach is easy to imple-
ment but does not scale to large numbers of helpers.

13E.g., http://s2e.systems/docs/Plugins/Linux/FunctionModels.html.

12

http://s2e.systems/docs/Plugins/Linux/FunctionModels.html

0

0.2

0.4

0.6

0.8

1

QSYM
SymQEM

U

SymCC

0

0.2

0.4

0.6

0.8

1

QSYM
SymQEM

U

SymCC

0

0.2

0.4

0.6

0.8

1

QSYM
SymQEM

U

SymCC

Ti
m

e
(n

or
m

al
iz

ed
)

OpenJPEG

Ti
m

e
(n

or
m

al
iz

ed
)

libarchive

Ti
m

e
(n

or
m

al
iz

ed
)

tcpdump

Execution

Solving

Fig. 14. Time spent in execution and SMT solving, respectively, averaged across concolic execution of a fixed set of test cases (1000 cases per target, chosen
at random and analyzed in each of the three symbolic executors). Times are normalized to the total execution time of the slowest engine per target to show the
differences in the overall amount of time required to complete the benchmark.

2) An alternative is to build symbolic versions of the
helpers automatically. To this end, SymCC could be
used to compile symbolic tracing into the helpers,
whose source code is available as part of QEMU.
The resulting binaries would be compatible with
SymQEMU because SymCC uses the same backend
for symbolic reasoning. S2E follows a similar ap-
proach when compiling the helpers to LLVM bitcode
for interpretation in KLEE.

Since such improvements would provide benefit mainly
for very specific targets that make heavy use of complex
instructions, we leave them to future work.

VI. RELATED WORK

We now place SymQEMU in the context of previous work.

A. Binary-only symbolic execution

Angr [25], S2E [6], QSYM [28] and SymCC [20] have
all been described in Section II, and we have compared
them to SymQEMU in Section III-D. Mayhem [5] is a high-
performance interpreter-based implementation of symbolic ex-
ecution that won the DARPA CGC competition; unfortunately,
it is not publicly available for comparison. Triton [22] has
a symbolic execution component that can operate in two
different modes: one uses binary translation (like QSYM),
the other works with CPU emulation (like S2E and angr).
Eclipser [7] covers some middle ground between fuzzing
and symbolic execution by assuming linear relations between
branch conditions and input data; the constraint simplification
increases the system’s performance at the cost of reasoning
power, so that Eclipser cannot find all the paths that conven-
tional symbolic execution can. In a similar vein, Redqueen [1]
searches for correspondence between branch conditions and
input bytes using a number of heuristics. SymQEMU, in
contrast, implements “full” symbolic execution.

B. Run-time bug detection

Hybrid fuzzing relies on the fuzzer and sanitizers to detect
bugs. Address sanitizer [23] is a very popular sanitizer that
checks for certain memory errors. Since it requires source
code to produce instrumented target programs, Fioraldi et al.
have recently proposed QASan [8], a QEMU-based system that
implements similar checks for binaries. There is a plethora

of other sanitizers, often requiring source code [26]. We
conjecture that it would be possible to use many of them
on binaries via emulation in the spirit of QASan. They could
complement hybrid fuzzing with SymQEMU, but such work
is orthogonal to what we present here.

C. Hybrid fuzzing

Driller [27] is a hybrid fuzzer based on angr, similar in
concept to QSYM but slower because of its Python implemen-
tation and interpreter-based approach [19], [28]. In comparison
with QSYM and SymQEMU, it uses a more elaborate strategy
to coordinate fuzzer and symbolic executor: it monitors the
fuzzer’s progress and switches to symbolic execution when-
ever the fuzzer appears to encounter obstacles that it cannot
overcome on its own. In a similar spirit, the recently proposed
Pangolin [10] enhances the fuzzer’s benefit from symbolic
execution by providing the fuzzer not only with new test
cases but also with an abstraction of the symbolic constraints,
along with a fast sampling method; using those, the fuzzer can
generate new inputs that have a high probability of fulfilling
the path constraints determined by symbolic execution.

We believe that more sophisticated coordination strategies
between fuzzer and symbolic executor can greatly enhance the
performance of hybrid fuzzing. However, since such improve-
ments are orthogonal to the speed of the symbolic executor
(which is the main concern of SymQEMU), they are outside
the scope of this paper.

VII. CONCLUSION

We have presented SymQEMU, a novel approach to ap-
ply compilation-based symbolic execution to binaries. Our
evaluation shows that SymQEMU significantly outperforms
state-of-the-art binary symbolic executors and even keeps up
with source-based techniques. Moreover, SymQEMU is easy
to extend to many target architectures, requiring just a handful
lines of code to support any architecture that QEMU can
handle. Finally, we have demonstrated SymQEMU’s real-
world use by discovering a previously unknown memory error
in the heavily tested libarchive library.

AVAILABILITY

The source code for SymQEMU is publicly avail-
able at http://www.s3.eurecom.fr/tools/symbolic execution/

13

http://www.s3.eurecom.fr/tools/symbolic_execution/symqemu.html

symqemu.html. At the same location, we also provide detailed
instructions to reproduce our experiments, and we share the
raw results of our own evaluation.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful
feedback and suggestions which helped us to increase the
quality of the paper. This work has been supported partly
by the DAPCODS/IOTics ANR 2016 project (ANR-16-CE25-
0015) and partly by the Defense Advanced Research Projects
Agency (DARPA) under agreement number FA875019C0003.

REFERENCES

[1] C. Aschermann, S. Schumilo, T. Blazytko, R. Gawlik, and T. Holz,
“Redqueen: Fuzzing with input-to-state correspondence.” in Network
and Distributed System Security Symposium (NDSS), vol. 19, 2019, pp.
1–15.

[2] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, p. 50, 2018.

[3] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX
Annual Technical Conference, FREENIX Track, vol. 41, 2005, p. 46.

[4] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI, vol. 8, 2008, pp. 209–224.

[5] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on binary code,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 380–394.

[6] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in ACM SIGARCH
Computer Architecture News, vol. 39, no. 1. ACM, 2011, pp. 265–
278.

[7] J. Choi, J. Jang, C. Han, and S. K. Cha, “Grey-box concolic testing
on binary code,” in 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 2019, pp. 736–747.

[8] A. Fioraldi, D. C. D’Elia, and L. Querzoni, “Fuzzing binaries
for memory safety errors with QASan.” [Online]. Available: https:
//andreafioraldi.github.io/assets/qasan-secdev20.pdf

[9] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel,
and G. Vigna, “Toward the analysis of embedded firmware
through automated re-hosting,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2019).
Chaoyang District, Beijing: USENIX Association, Sep. 2019, pp. 135–
150. [Online]. Available: https://www.usenix.org/conference/raid2019/
presentation/gustafson

[10] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin:
Incremental hybrid fuzzing with polyhedral path abstraction,” in
2020 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, May 2020, pp. 1613–
1627. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SP40000.2020.00063

[11] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2017, pp. 353–364.

[12] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[13] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, 2018, pp. 2123–2138.

[14] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization: Feedback-Directed
and Runtime Optimization. IEEE Computer Society, 2004, p. 75.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Acm sigplan
notices, vol. 40, no. 6. ACM, 2005, pp. 190–200.

[16] M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti,
“What you corrupt is not what you crash: Challenges in fuzzing embed-
ded devices,” in Network and Distributed System Security Symposium
(NDSS), 2018.

[17] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation (PLDI 2007),
vol. 42, no. 6. ACM, 2007, pp. 89–100.

[18] C. Pang, R. Yu, Y. Chen, E. Koskinen, G. Portokalidis, B. Mao, and
J. Xu, “SoK: All you ever wanted to know about x86/x64 binary
disassembly but were afraid to ask,” arXiv preprint arXiv:2007.14266,
2020.

[19] S. Poeplau and A. Francillon, “Systematic comparison of symbolic
execution systems: Intermediate representation and its generation,”
in Proceedings of the 35th Annual Computer Security Applications
Conference. ACM, 2019, pp. 163–176.

[20] ——, “Symbolic execution with SymCC: Don’t interpret, compile!”
in 29th USENIX Security Symposium (USENIX Security 20).
Boston, MA: USENIX Association, 2020. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/poeplau

[21] N. A. Quynh and D. H. Vu, “Unicorn – the ultimate CPU emulator,”
https://www.unicorn-engine.org/, 2015.

[22] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution frame-
work,” in Symposium sur la sécurité des technologies de l’information
et des communications, SSTIC, Rennes, France, June 3-5 2015. SSTIC,
2015, pp. 31–54.

[23] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in USENIX Annual Technical
Conference (USENIX ATC 12), 2012, pp. 309–318.

[24] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,
“Firmalice – automatic detection of authentication bypass vulnerabili-
ties in binary firmware,” in Network and Distributed System Security
Symposium (NDSS), 2015.

[25] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:
(state of) the art of war: Offensive techniques in binary analysis,” in
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp.
138–157.

[26] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for security,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 2019, pp. 1275–1295.

[27] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang, J. Corbetta,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Driller: Augmenting
fuzzing through selective symbolic execution,” in Network and Dis-
tributed System Security Symposium (NDSS), vol. 16, 2016, pp. 1–16.

[28] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “QSYM: A practical
concolic execution engine tailored for hybrid fuzzing,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018, pp. 745–761.

[29] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “AVATAR: A
framework to support dynamic security analysis of embedded systems’
firmwares.” in Network and Distributed System Security Symposium
(NDSS), vol. 14, 2014, pp. 1–16.

APPENDIX A
S2E RESOURCE CONSUMPTION

We encountered a few challenges related to resource
consumption when setting up S2E for our experiments (see
Section IV-B). While they are not essential to the discussion,
we still think they are interesting to document.

A. Parallel S2E

S2E has a parallel mode, in which it starts multiple
processes and assigns each a dedicated portion of the state

14

http://www.s3.eurecom.fr/tools/symbolic_execution/symqemu.html
https://andreafioraldi.github.io/assets/qasan-secdev20.pdf
https://andreafioraldi.github.io/assets/qasan-secdev20.pdf
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://www.usenix.org/conference/raid2019/presentation/gustafson
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00063
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.usenix.org/conference/usenixsecurity20/presentation/poeplau
https://www.unicorn-engine.org/

tree.14 Initially, we tried to use this mode to compensate for
the fact that the other symbolic executors in our comparison
each use 3 CPU cores. However, in our setup, parallel mode
was prone to deadlocks and crashes that turned out to be hard
to debug. As a workaround, we started 3 independent S2E
instances, relying on randomization of the search strategy to
prevent them from exploring the same paths. This is not ideal
but seemed the fairest approach given the circumstances.

B. Memory limits

Like the other systems in the comparison, we attempted
to execute S2E with 2GB of RAM per CPU core (i.e., per
S2E process). Setting a hard limit via cgroups, as we did
for the other systems, turned out impossible because S2E
runs the entire analysis in a single long-running process—if
the operating system terminates that process due to excessive
memory consumption, the analysis fails. (In contrast, AFL,
SymQEMU, QSYM and SymCC create many short-lived anal-
ysis processes; if one of them fails, the analysis just continues
with the next one.)

S2E provides the ResourceMonitor plugin for such cases.15

Its task is to monitor memory consumption (with the limit
defined via a cgroup) and prevent further forking or termi-
nate execution states as consumption approaches the limit.
Unfortunately, in our experiments, the plugin did not reduce
memory consumption aggressively enough—while the anal-
ysis ran slightly longer, it would still eventually exceed the
memory limit and trigger the operating system’s OOM killer.
We experimented with adjusting the plugin’s threshold (e.g.,
trigger earlier than the default threshold of 95% memory
consumption) but could not find a configuration that would
permit the analysis to run for 24 hours.

Finally, we resorted to the following strategy: instead of
enforcing 2GB per S2E instance, we only imposed a total limit
on the cumulative memory consumption of all S2E processes.
As a result, some processes were terminated by the operating
system whereas others were allowed to consume significantly
more than 2GB of RAM and thus analyze the target for
24 hours. The reason that this strategy did not result in higher
variance of the results for S2E (see Figure 11) is that most
execution states were forked in the first few minutes of the
analysis, i.e., before any process hit the memory limit.

APPENDIX B
FUZZBENCH REPORT

The figures below show the respective ranking of the
fuzzers and our SymQEMU/AFL hybrid fuzzer on the 21
FuzzBench targets (see Section IV-A). We cannot include the
full report for space reasons, but you can find the report
rendered on our website;16 in addition to the mere rankings, it
shows coverage over time, statistical significance and coverage
distribution across the different trials for each target.

According to the authors of the FuzzBench suite, the low
performance of all but five fuzzers on the libpcap target is due
to a deficiency in AFL’s code instrumentation, which all the

14http://s2e.systems/docs/Howtos/Parallel.html
15http://s2e.systems/docs/FAQ.html#how-to-keep-memory-usage-low
16http://www.s3.eurecom.fr/tools/symbolic execution/symqemu.html

low-performing fuzzers are based on. Similarly, SymQEMU
depends on the fuzzer to identify promising test cases, so
when the fuzzer’s instrumentation fails it cannot make progress
either.

15

http://s2e.systems/docs/Howtos/Parallel.html
http://s2e.systems/docs/FAQ.html#how-to-keep-memory-usage-low
http://www.s3.eurecom.fr/tools/symbolic_execution/symqemu.html

16

17

18

