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ABSTRACT: Single crystals built-up from octahedral Mo6 

cluster units, with appropriate geometry and size, constitute Fab-

ry-Pérot type optical microcavities with well-defined resonances. 

Such resonances appear in the VIS-NIR range when performing 

optical transmittance (OT) or photoluminescence (PL) measure-

ments. They strongly depend on the crystal thickness and on the 

optical constants of the material, specifically the real and the 

imaginary parts of the refractive index. In this work, the accurate 

measurement of the crystal thickness is used for the determination 

of the optical constants by means of a fitting process, and the 

preferred orientation of the crystals was determined by X-ray 

diffraction. KEYWORDS: cluster; molybdenum; single crystal; 

optical cavities; resonance modes 

In the last decades, octahedral molybdenum clusters have at-

tracted increasing attention from the scientific community due to 

their intrinsic photophysical and redox properties. These clusters 

are found in complexes with general formula [Mo6Xi
8La

6]n (-2 ≤ n 

≤ 4), where Xi are inner halide ligands and La correspond to or-

ganic or inorganic apical (or terminal) ligands. These clusters 

have outstanding optical properties such as absorption of light in 

the UV-visible range, bright emission in the red/near IR region 

with high quantum yields and PL lifetimes up to several hundreds 

of microseconds.1–4 It is also well-known that these clusters act as 

efficient photosensitizers in processes related to the generation of 

singlet oxygen. These properties make these inorganic compounds 

particularly attractive in design of functional hybrid nanomaterials 

with potential applications in nanoarchitectonics,5,6 optoelectron-

ics,7–20 lighting,21 hydrogen storage,22 biomedicine,4,23–32 and 

catalysis.33–44 Surprisingly, only scarce studies about the optical 

and electronic properties of octahedral molybdenum cluster-based 

materials at the single crystal level and at the micrometer scale are 

reported, and those are limited to Cs2[Mo6Xi
8Xa

6] (X = Cl, Br, I) 

compounds.45–51  

Getting single crystals at the micrometer and nanometer scales 

is advantageous for device manufacturing in the development of 

high-efficiency solar cells, photonic and optoelectronic devices, 

sensors and photocatalysts. The difficulties of growing bigger 

crystals are avoided and a low defect density and interferences 

from the grain boundaries are expected. One area of great interest 

for applications in optics and sensing is the use of single crystal 

materials as Fabry-Pérot microresonators. Fabry–Pérot cavities 

are fundamental and ubiquitous optical elements frequently used 

in many important devices, such as lasers or narrowband wave-

length filters in spectrometers.52–57 In this sense, it is crucial to 

study deeply the intrinsic optical properties of molybdenum clus-

ter-based materials at the single crystal level. While the molyb-

denum cluster composition determines the refractive index, the 

shape of crystals provides the type of attainable optical modes. 

Both, a high refractive index and a geometry with parallel facets 

are expected to favor the appearance of Fabry-Pérot resonances. 

As far as we know, the refractive index of octahedral-based clus-

ter materials was only reported twice: first, for immobilized 

[Mo6Ii
8]4+ cluster cores onto p- and n-doped Si(111) surfaces 

through complexation by a pyridine-terminated organic monolay-

er previously covalently bound to hydrogen-terminated Si(111).58 

In that study, an increase of the real part of the refractive index (n) 

of the pyridine-terminated Si(111) monolayer was observed after 

the molybdenum cluster immobilization (from 1.67  0.03 to 1.79 

 0.02, respectively). The Brewster angle technique was also used 

to determine the real part of the refractive index at 650 nm of a 

polydimethylsiloxane (PDMS) doped with 2 wt% of 

[Mo6I8(OCOC2F5)6]2- cluster anion and 0.5 wt% of a blue green 

emissive organic luminophore.9 In this case, the increase of n 

from 1.42 up to 1.48 upon doping allows waveguiding propaga-

tion under perpendicular or longitudinal excitation of the emitted 

white light in a silica microfiber containing the doped polymer. 

We have previously reported the synthesis of 

(H3O)2[Mo6Bri
8(OH)a

6]·10H2O (MC) single crystals by hydroly-

sis of the (TBA)2[Mo6Bri
8Fa

6] (TBA = tetrabutylammonium) 

precursor.42 The chemical composition was confirmed by XPS 

and EDX-SEM analyses. The Raman spectrum showed the char-

acteristic band shifts of the Mo6 cluster based unit. The structure 

of MC was determined by single crystal X-ray diffraction. It 

crystallizes in the R-3m space group (N°166) with the following 

unit cell parameters: a = 15.2455(8) Å, c = 11.1440(8). Schemati-

cally, the structure can be depicted as the stacking of 

[Mo6Bri
8(OH)a

6]2- cluster units according to a A-B-C-A mode. 

Water molecules are ordered and located within the voids gener-

ated by the cluster units stacking. It is worth noting that a strong 

hydrogen-bond network develops between the clusters and the 

water molecules.15 The latter is magnified by the presence of 

protons that counter balance the charge of the cluster unit. They 

are statistically shared by apical hydroxyl groups between adja-

cent clusters leading to protonic conductivity. This crystalline 

material remains, till nowadays, as the highest ac-
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Figure 1. Optical microscopy of several crystals of MC deposited on a glass substrate (a), FESEM images of the top view (b) and cross-

sectional view (c) of two crystals, and experimental and fitted OT spectra (d) of the selected crystal in (a) measured in the direction indi-

cated by the arrow in (c). Scale bars in a): 100 m; in b) and c): 1 m. 

tive catalyst in the light-driven water reduction to molecular 

hydrogen among the Mo6-cluster based materials tested, achieving 

productions up to 4298 mol gr-1 catalyst of H2 after 5 hours of 

illumination.42 The optical studies of these cluster single crystals 

are limited to PL, showing the characteristic cluster emission in 

the red region of the spectrum. 

Herein, we controlled the growth and isolated single crystals of 

MC with different crystal sizes. It is shown herein the possibility 

to use these crystals as optical cavities for potential applications in 

photonic technologies. This molybdenum cluster-based material 

was studied with an home-made optical system, and the crystals 

emission and transmittance spectra were analyzed in order to 

extract the optical constants of the material.59  

The preparation of single crystals with composition MC was 

optimized by cautious control of the crystallization conditions to 

obtain the targeted size.42 Single crystals of MC were obtained 

with regular shapes, parallel faces and with low density of defects 

with a yield around 90%. The remaining material was associated 

to some agglomerates and irregular particles. Small sized (less 

than 30 m) crystals were selected and their morphology was 

studied. Figure 1a and S1 (see Supporting Information) show the 

optical microscopy images of several crystals supported on a glass 

substrate. The top view and cross section field-emission scanning 

electron microscopy (FESEM) images for the collected single 

crystals (Figure 1b and c, respectively) reveal a rhombohedral 

crystal habit with average crystal faces with angles of 107.4 and 

71.9 for crystals with sizes between ca. 15 and 5 m. At this 

degree of magnification, some defects and small-attached parti-

cles were detected from the chosen specimen. 

Aiming to study the orientation of the deposited single crystals, 

the X-ray pattern of few single crystals dispersed onto a Si(911) 

substrate was recorded. Five diffraction peaks are identified in the 

diffractogram (Figure S2, Supporting Information) and corre-

spond to the family of planes in the {-111} direction, with an 

interplanar distance between peaks of 8.516 Å, in the basis of the 

symmetry of the single crystals. This unique disposition of the {-

111} facets confirms a preferential orientation of the single crys-

tals, resting on their flat surfaces upon deposition onto a surface. 

The X-ray patterns acquired after optical studies remained unal-

tered (Figure 2) which confirms the single crystals stability under 

light irradiation with standard measurement conditions.  

 

Figure 2. X ray patterns of a set of single crystals of MC before 

(a) and after optical studies (b). 
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Figure 3. Fitted real (a) and imaginary (b) parts of the refractive index for the crystal selected in Figure 1(a). 

The thermogravimetric/differential thermal analysis (TG/DTA) 

registered for the crystalline samples of MC also probe their 

thermal stability under operational conditions. The TG/DTA 

curves (Figure S3, Supporting Information) obtained under dry 

atmosphere show that the crystals remain stable up to 63 C. This 

thermal stability confirms their potential applications as optical 

microcavities. At higher temperatures (63-81 C), the sample 

displays a weight loss of 14% that we associate to water mole-

cules, and this could be responsible of a structural reorganization 

of the crystals. 

Flat and clean facets are convenient for observing optical reso-

nances. A clear resonance phenomenon was observed in most of 

the crystals analyzed, in spite of the fact that some of them had 

defects and, eventually, other smaller attached particles. Figure 

1d shows the OT spectrum measured in the direction perpendicu-

lar to the supporting substrate of the single crystal selected in 

Figure 1a. The spectrum consists of two different regions. One 

region at shorter wavelengths (from 425 to ca. 550 nm) is charac-

terized by an abrupt transition from vanishing to high transmit-

tance. The strong absorption of the material observed in the dif-

fuse reflectance spectrum in this wavelength range (Figure S3, 

Supporting Information) prevents the optical resonance phenome-

non to occur. The second region, displayed in the range from ca. 

550 nm to longer wavelengths, shows a low absorption and clear 

interference fringes, which indicate that the crystal behaves as an 

optical microcavity. Such fringes depend basically on two param-

eters: refractive index and crystal thickness.60 Thus, for a given 

refractive index dispersion, the thinner is the crystal, the more 

separated are the fringes.61 Such parameters can be deduced by 

fitting the transmittance spectrum to an appropriate model (see 

Supporting Information). However, it is convenient to determine 

the crystal thickness by other means firstly in order to avoid spu-

rious solutions. Figure 1d illustrates the fitted spectrum to a 

reported model59 for a crystal thickness, determined by optical 

profilometry of (13650 ± 50) nm. Figure 3a and b show the re-

spective fitted real (n) and imaginary (k) parts of the refractive 

index. The real part of the refractive index is comparable to those 

reported for other molybdenum materials, such as molybdenum 

oxide films, that usually appear in the range of 1.7−2.3.62–66 The 

error in the measurement of the thickness yields, in the case of n, 

a confidence interval indicated by the grey area (Figure 3a). 

Regarding k, the fitted values should be considered cautiously 

because OT measurements include most probably optical scatter-

ing, which cannot be distinguished from optical absorption, and it 

was not considered in the fitting model. As another example, 

Figure S4 (see Supporting Information) shows the OT  

 
Figure 4. OT (black) and PL (red) spectra of the crystal shown in 

the inset.  

measurement of a crystal of (15800 ± 50) nm in thick and the fit 

to the same model.59 Figure S5a and b (see Supporting Infor-

mation) show the corresponding fitted real and imaginary parts 

respectively of the refractive index (red curves). For comparison, 

the fitted values for the sample of Figure 1 are plotted in black in 

Figure S5 (Supporting Information). While the values almost 

coincide in the case of the real part, large discrepancies arise for 

the imaginary part, especially in the short wavelengths region. 

This is not surprising and it is attributed to imponderable optical 

scattering, which depends on the crystal size, the light spot size 

and its position on the crystal. 

Single crystals of MC yielded PL when they were excited in 

the absorption region (Figure S6, Supporting Information) and 

the emission properties have been previously reported (em = 670 

nm, exc = 390 to 430 nm).42 Such PL can couple to the optical 

resonance modes of the cavity and produces interference fringes 

as well. However, because of the envelope curve, they are more 

difficult to observe than in the case of the OT signal. Figure 4 

shows a crystal (see inset) of (10500 ± 50) nm in thick where 

both, OT and PL, were measured. It is important to stress that the 

spectral position of the resonances is the same for both spectra. 

In summary, high-quality single crystals of MC deposited with 

a preferred orientation onto a flat surface showed well-defined 

resonances in the VIS-NIR range when OT or PL measurements 

were done in a perpendicular direction to the surface. We have 

proven that selected Mo6 cluster-based crystals constitute Fabry-
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Pérot type optical microcavities with potential applications in 

photonic devices. 
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Supporting Information is available free of charge on the ACS 

Publications website. Experimental details including the prepara-

tion of single crystals, the instrumentation and the fitting model 

used for the optical transmittance and supplementary figures 

(PDF). 
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Octahedral molybdenum cluster-based single crystals as Fabry-Pérot microresonators  

Elena Segura-Sanchis, Roberto Fenollosa,* Isabelle Rodriguez, Yann Molard, Stéphane Cordier, Marta 

Feliz,* Pedro Atienzar*  

 

High-quality (H3O)2[Mo6Bri
8(OH)a

6]·10H2O microcrystals are prepared by controlled growth in solu-

tion. Optical transmittance and photoluminescence measurements performed on single crystals demon-

strate they behave as photonic micro-resonators in the VIS-NIR range. In addition, their refractive index 

dispersion is deduced. 
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