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1 	 | 	 INTRODUCTION

In	our	modern,	highly	connected	societies,	work	environ-
ments	impose	increasingly	high	demands	on	our	cognitive	
and	cerebral	resources	 that	allow	us	 to	process	 informa-
tion.	Such	a	high	demand	on	cognitive	resources	exposes	

individuals	 to	 situations	 of	 cognitive	 overload,	 which	
can	 be	 dangerous	 for	 their	 health	 (Klonowicz,  1995)	
and	 can	 lead	 to	 errors	 and	 accidents	 (Zoer	 et	 al.,  2011).	
Electroencephalogram	 (EEG)	 is	 one	 of	 the	 main	 tech-
niques	for	measuring	the	brain	resources	corresponding	to	
cognitive workload	(CWL).	So	far,	several	brain	frequencies	
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Abstract
Cognitive	workload	(CWL)	is	a	fundamental	concept	in	the	assessment	and	moni-
toring	of	human	performance	during	cognitive	tasks.	Numerous	studies	have	at-
tempted	to	objectively	and	continuously	measure	the	CWL	using	neuroimaging	
techniques.	Although	the	electroencephalogram	(EEG)	is	a	widely	used	technique,	
the	impact	of	CWL	on	the	spectral	power	of	brain	frequencies	has	shown	incon-
sistent	 results.	 The	 present	 review	 aimed	 to	 synthesize	 the	 results	 of	 the	 litera-
ture	and	quantitatively	assess	which	brain	frequency	is	the	most	sensitive	to	CWL.	
A	systematic	 literature	search	following	PRISMA	recommendations	highlighted	
three	main	frequency	bands	used	to	measure	CWL:	theta	(4–	8	Hz),	alpha	(8–	12	
Hz),	and	beta	(12–	30	Hz).	Three	meta-	analyses	were	conducted	to	quantitatively	
examine	 the	effect	of	CWL	on	 these	 frequencies.	A	 total	of	45	effect	 sizes	 from	
24	studies	 involving	723	participants	were	computed.	CWL	was	associated	with	
significant	effects	on	theta	(g	=	0.68,	CI	[0.41,	0.95]),	alpha	(g	=	−0.25,	CI	[−0.45,	
0.04]),	and	beta	(g	=	0.50,	CI	[0.21,	0.79])	power.	Our	results	suggests	that	theta,	es-
pecially	the	frontal	theta,	is	the	best	index	of	CWL.	Alpha	and	beta	power	were	also	
significantly	impacted	by	CWL;	however,	their	association	seemed	less	straightfor-
ward.	These	results	are	critically	analyzed	considering	the	literature	on	cerebral	
oscillations.	We	conclude	by	emphasizing	the	need	to	investigate	the	interaction	
between	CWL	and	other	factors	that	may	influence	spectral	power	(e.g.,	emotional	
load),	and	to	combine	this	measure	with	other	methods	of	analysis	of	the	central	
and	peripheral	nervous	system	(e.g.,	functional	connectivity,	heart	rate).
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(mainly	theta	and	alpha)	have	been	candidates	to	reflect	
the	mental	 state	of	 an	 individual	 exposed	 to	high	CWL.	
Despite	a	growing	number	of	studies,	results	do	not	always	
converge.	 One	 recent	 meta-	analysis	 focused	 on	 the	 link	
between	 CWL	 and	 Event-	Related	 Potential	 (ERP,	 Ghani	
et	al., 2020),	while	two	systematic	reviews	examined	the	
main	 sensors	 usually	 used	 to	 measure	 CWL	 (Charles	 &	
Nixon, 2019;	Tao	et	al., 2019).	However,	no	meta-	analysis	
specifically	examined	the	relationships	between	CWL	and	
EEG	spectral	power.	The	present	quantitative	review	thus	
aims	to	synthesize	the	results	of	the	literature,	in	order	to	
evaluate	whether	brain	frequency	spectral	power	is	a	use-
ful	method	for	measuring	CWL.

1.1	 |	 Cognitive workload (CWL) concept

CWL	 is	 a	 fundamental	 concept	 in	 the	 study	 of	 human	
performance	 that	 emerged	 from	 the	 observation	 that	 our	
cognitive	 system	 has	 limited	 capacities	 to	 perform	 a	 cog-
nitive	task	(Broadbent, 1971).	This	upper	limit	of	our	pro-
cessing	 capacity	 led	 authors	 to	 postulate	 the	 existence	 of	
a	 finite	quantity	of	resources,	which	must	be	used	to	per-
form	 a	 cognitive	 operation	 (Kahneman,  1973;	 Norman	
&	 Bobrow,  1975;	 Wickens,  2002).	 The	 limited	 amount	 of	
these	resources	implies	that	the	more	resources	are	needed	
for	a	processing	operation,	the	less	resources	are	available	
for	 other	 cognitive	 operations.	 Although	 the	 concept	 of	
mental	 resources	has	only	a	 limited	explanatory	capacity	
(see	Dehais	et	al., 2020,	 for	a	 review	on	 this	 issue	with	a	
neuroergonomic	approach),	it	remains	useful	for	studying	
and	predicting	human	performance	in	cognitively	demand-
ing	situations	(e.g.,	multi-	tasking).	During	a	cognitive	task,	
these	attentional	and	neural	resources	are	engaged,	among	
other	 things,	 in	processes	of	maintaining	and	manipulat-
ing	 relevant	 information,	 generally	 modeled	 by	 the	 con-
cept	 of	 working	 memory	 (Baddeley,  2012;	 Cowan,  2016).	
Although	 it	 has	 been	 used	 and	 extensively	 studied	 since	
the	1960s,	 the	concept	of	CWL	has	no	single,	consensual	
definition	(Moray, 1979;	Young	et	al., 2015).	Nevertheless,	
it	is	commonly	accepted	that	CWL	is	multidimensional	in	
nature	and	can	interact	with	many	factors	such	as	exper-
tise,	work	environment,	age,	and	other	psychosocial	factors	
(Hart	&	Wickens, 1990;	Xie	&	Salvendy, 2000).	In	the	pre-
sent	review,	CWL	will	be	defined	as	the	amount	of	brain	
resources	required	for	an	individual	to	complete	a	task	(i.e.,	
cognitive	activities	requiring	the	achievement	of	a	particu-
lar	goal).	Thus,	CWL	emerges	from	the	interaction	between	
the	task	to	be	performed	and	the	individual,	who	has	lim-
ited	 resources	 (Young	et	al., 2015).	When	 the	demand	of	
the	task	leaves	sufficient	mental	resources	available	to	the	
individual,	 resource	 models	 consider	 that	 the	 individual	
should	be	able	to	maintain	a	high	level	of	performance	(e.g.,	

in	 terms	of	 speed	or	accuracy;	Wickens, 2008).	Cognitive	
overload	occurs	when	the	demand	of	the	task	exceeds	the	
resources	available	to	the	individual,	who	is	then	no	longer	
able	 to	correctly	process	 the	 relevant	 information	or	pro-
duce	an	adapted	response.	This	state	reduces	efficiency	and	
drastically	 increases	 the	 probability	 of	 making	 mistakes.	
Detecting	and	preventing	situations	of	cognitive	overload	
is	crucial	when	applied	to	the	study	of	operators	whose	er-
rors	can	cause	serious	harm,	as	is	the	case	in	the	industrial	
(nuclear),	 transportation	 (maritime,	 car,	 aviation),	 mili-
tary	and	medical	fields	(McFadden	et	al., 2004;	Senders	&	
Moray, 2020).	Valid	and	sensitive	methods	for	measuring	
CWL	continuously	and	in	real	time	are	thus	indispensable.

1.2	 |	 Measuring CWL

Historically,	the	first	method	used	to	infer	an	individual’s	
mental	 state	 was	 to	 analyze	 their	 performance	 (e.g.,	 re-
sponse	time,	accuracy,	error	rates)	on	a	task,	which	may	
be	 single	 or	 accompanied	 by	 a	 secondary	 task.	 This	 sec-
ond	 task	has	generally	no	 interest	other	 than	adding	 in-
formation	to	be	processed	in	order	to	observe	the	effect	of	
this	additional	task	on	the	performance	of	the	main	task	
(Wickens, 1991).	However,	this	method	is	not	completely	
satisfactory.	Indeed,	the	level	of	performance	does	not	nec-
essarily	reflect	the	quantity	of	brain	resources	used	by	the	
individual:	An	increase	in	the	demand	of	the	task	can	lead	
to	 a	 strong	 increase	 in	 the	 cognitive	 resources	 invested	
to	 maintain	 an	 equivalent	 level	 of	 performance	 (Young	
et	al., 2015).	Having	to	wait	for	errors	to	appear	makes	the	
use	of	this	method	ineffective	in	operational	environments	
where	errors	can	be	costly	financially	or	humanly.

The	second	group	of	methods	are	subjective	measures,	
which	 refer	 to	 the	 use	 of	 rating	 scales,	 self-	reported	 by	
the	 individual	 after	 completing	 the	 task	 to	 be	 assessed.	
Two	scales	are	usually	used	to	assess	subjective	CWL:	the	
National	Aeronautics	and	Space	Administration	Task	Load	
Index	(NASA-	TLX)	scale	(Hart	&	Staveland, 1988),	and	the	
Subjective	Work-	load	Assessment	Technique	(SWAT)	scale	
(Reid	&	Nygren, 1988).	Besides	the	fact	that	the	assessment	
cannot	be	done	“online”	(i.e.,	when	the	task	is	performed),	
many	 biases	 can	 also	 interfere	 with	 the	 validity	 of	 these	
measurements,	such	as	the	participant’s	understanding	of	
the	 concept	 being	 assessed,	 the	 interaction	 between	 task	
performance	and	subjective	assessment	(e.g.,	poor	perfor-
mance	will	increase	the	subjective	assessment	of	difficulty;	
Moray, 1982),	social	desirability,	interindividual	differences	
in	the	capacity	for	introspection	and	consciousness,	mem-
ory	bias	(e.g.,	peak-	end	effects;	Peterson	&	Kozhokar, 2017).

More	recently,	technical	development	has	enabled	the	
development	 of	 physiological	 measurements	 for	 assess-
ing	CWL.	While	the	previous	measures	allow	an	indirect	
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measurement	of	the	individual’s	mental	state,	physiolog-
ical	 sensors,	 by	 measuring	 certain	 characteristics	 of	 the	
central	 nervous	 system	 (e.g.,	 brain)	 and	 peripheral	 ner-
vous	 system	 (e.g.,	 heart	 rate),	 give	 us	 physiological	 cues	
of	 the	 individual’s	 mental	 state.	 Technological	 progress	
has	enabled	many	laboratories	 to	equip	themselves	with	
physiological	sensors	at	lower	prices,	for	increasingly	pre-
cise	 measurements	 (Marini	 et	 al.,  2019).	 Several	 studies	
have	 demonstrated	 the	 sensitivity	 of	 EEG	 as	 an	 index	
of	CWL	(e.g.,	Gevins	et	al.,  1998;	Lei	&	Roetting,	2011),	
particularly	 in	 the	 field	 of	 adaptive	 automation	 systems	
where	brain	activity	is	used	as	input	to	the	system	(Aricò	
et	al., 2016;	Parasuraman, 1990).	Some	studies	suggest	that	
EEG	is	more	sensitive	than	other	physiological	measures	
(Brookings	et	al., 1996;	Taylor	et	al., 2010),	while	others	
show	 that	 EEG	 can	 measure	 unique	 processes	 that	 are	
not	detected	by	other	physiological	measures	(Hankins	&	
Wilson, 1998;	Matthews	et	al., 2015).	To	select	a	relevant	
instrument	for	CWL	measurement,	it	is	necessary	to	con-
sider	the	sensitivity	of	the	measurement	but	also	the	con-
ditions	under	which	this	technique	can	be	used	effectively.	
Brouwer	et	al. (2014)	found	that	pupil	size	measurement	
was	a	more	sensitive	marker	of	cognitive	effort	than	EEG.	
However,	its	use	is	limited	to	contexts	where	brightness	is	
stable	and	flicker-	free,	which	is	very	difficult	to	obtain	in	
real-	life	situations.	On	the	other	hand,	the	use	of	EEG	in	
real	life	is	made	possible	by	the	refinement	of	algorithms	
for	processing	artifacts	(Onikura	et	al., 2015).	For	instance,	
advances	in	algorithms	have	made	it	possible	to	effectively	
remove	noise	from	the	EEG	signal,	even	when	the	signal	
is	obtained	during	walking	or	running	(Gwin	et	al., 2010).

1.3	 |	 EEG technique and 
frequency power

The	signal	obtained	by	EEG	comes	from	the	post-	synaptic	
excitatory	 (or	 inhibitory)	 potentials	 produced	 by	 the	 ac-
tion	potentials	moving	through	the	dendrites	of	pyrami-
dal	 neurons	 in	 the	 outer	 layers	 of	 the	 cortex	 (Dickter	 &	
Kieffaber, 2013;	Sanei	&	Chambers, 2013).	The	transition	
from	 the	 activity	 of	 dipole	 sources	 located	 in	 the	 brain	
(i.e.,	neurons)	to	a	measurable	electric	field	on	the	scalp	
is	achieved	by	the	geometry	of	the	neurons	(i.e.,	pyrami-
dal)	and	the	volume	conduction	properties	of	 the	differ-
ent	 layers	 of	 the	 head	 (hair,	 scalp,	 skull,	 brain).	 These	
different	 layers	 attenuate	 and	 distort	 the	 electric	 field,	
making	it	impossible	to	measure	small	groups	of	neurons	
and	making	it	difficult	to	locate	the	dipoles.	However,	the	
synchronized	 activity	 of	 several	 thousands	 of	 synapses	
and	 the	 summation	 of	 these	 electric	 fields	 via	 propaga-
tion	 through	 the	 tissues	 allows	 a	 weak,	 but	 measurable	
signal	 to	 be	 obtained	 at	 the	 surface	 on	 the	 scalp.	 This	

signal	 is	 measured	 by	 electrodes	 (less	 than	 3	 mm	 in	 di-
ameter),	whose	surface	is	usually	composed	of	silver	and	
silver	 chloride	 (Ag/AgCl).	 The	 signal	 recorded	 by	 the	
sensors	is	then	amplified	and	converted	via	an	analog-	to-	
digital	 converter.	 Due	 to	 the	 weakness	 of	 the	 measured	
signal,	 it	 is	 commonly	 accepted	 that	 the	 electrode	 im-
pedance	 must	 be	 less	 than	 5	 kΩ	 to	 avoid	 increasing	 the	
noise	level,	which	would	result	in	a	lower	signal-	to-	noise	
ratio	 (Kappenman	 &	 Luck,  2010).	 Electrode	 placement	
is	 generally	 standardized	 according	 to	 the	 recommen-
dations	 of	 the	 International	 Federation	 of	 Societies	 of	
Electroencephalography	 and	 Clinical	 Neurophysiology,	
known	as	10–	20	placement	(Jasper, 1958).	This	technique	
is	characterized	by	an	excellent	temporal	resolution	(mil-
liseconds),	 making	 it	 possible	 to	 examine	 the	 temporal	
course	 of	 cognitive,	 perceptive,	 and	 sensory	 processes	
with	 great	 precision	 (Cohen,  2011).	 Compared	 to	 other	
neurophysiological	recording	techniques	such	as	positron	
emission	tomography	and	functional	magnetic	resonance	
imaging	(fMRI),	EEG	recording	device	are	small	(e.g.,	pos-
sibly	mobile),	easier	 to	set	up	(e.g.,	with	dry	electrodes),	
and	less	expensive	to	acquire	and	maintain.	These	advan-
tages	have	made	EEG	an	ideal	tool	for	studying	brain	re-
source	allocation	in	laboratories	or	in	the	field.

The	 EEG	 signal	 can	 be	 decomposed	 into	 several	 fre-
quency	 ranges	 (usually	 by	 a	 Fourier	 transform),	 whose	
power	is	determined	by	power	spectral	analysis.	Although	
there	 are	 no	 standardized	 frequency	 ranges	 and	 the	
boundaries	 may	 change	 slightly	 depending	 on	 the	 au-
thor,	 the	 frequency	 ranges	 are	 classically	 defined	 as	 fol-
lows:	 delta	 (0.5–	4	 Hz),	 theta	 (4–	8	 Hz),	 alpha	 (8–	12	 Hz),	
beta	 (12–	30	 Hz),	 and	 gamma	 (30–	50	 Hz).	 Alpha	 and	
beta	 frequencies	 are	 sometimes	 decomposed	 into	 sub-	
bands	 whose	 functional	 differences	 have	 been	 observed	
(Klimesch, 1999;	Staufenbiel	et	al., 2014):	low	alpha	(8–	10	
Hz),	high	alpha	(10–	12	Hz),	or	beta1	(12–	20	Hz)	and	beta2	
(20–	30	Hz).	Numerous	studies	have	focused	on	theta	and	
alpha	frequencies,	which	have	long	been	associated	with	
cognitive	processes	 (Gevins	et	al., 1997;	Klimesch, 1999,	
2012;	Onton	et	al., 2005;	Roux	&	Uhlhaas, 2014).	Roughly	
speaking,	the	theta	frequency	in	the	frontal	cortex	is	pos-
itively	correlated	with	increasing	CWL,	while	conversely,	
the	 alpha	 frequency	 of	 the	 parietal	 cortex	 decreases	 as	
CWL	increases	(Gevins	et	al., 1997;	Lei	&	Roetting, 2011).	
This	dissociation	has	not	always	been	demonstrated	in	the	
literature	(e.g.,	Borghini	et	al., 2014).	An	increase	in	theta,	
particularly	 frontal	 theta,	 is	often	associated	with	an	 in-
crease	in	working	memory	load	(Deiber	et	al., 2007;	Jensen	
&	Tesche, 2002;	Onton	et	al., 2005),	but	some	studies	show	
a	decrease	in	theta	power	associated	with	a	high	load	(e.g.,	
Brzezicka	et	al., 2019).	Alpha,	on	the	other	hand,	yielded	
much	more	inconsistent	results,	with	some	studies	show-
ing	 an	 increase	 in	 alpha	 in	 association	 with	 increased	
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workload	 (Jensen	 et	 al.,  2002;	 Klimesch,  2012),	 while	
other	 studies	 showed	 the	 opposite	 (Michels	 et	 al.,  2010;	
Palva	&	Palva, 2007).	The	studies	examining	the	beta	band	
also	 show	diverging	 results,	with	 increases	 in	 load	 lead-
ing	to	a	power	increase	(Chen	&	Huang, 2016;	Kornblith	
et	al., 2016)	or	decrease	(Proskovec	et	al., 2019).

The	primary	aim	of	this	quantitative	review	is,	there-
fore	 to	 synthesize	 and	 combine	 the	 results	 of	 the	 liter-
ature,	 in	 order	 to	 clarify	 the	 relationship	 between	 the	
different	brain	oscillations	spectral	power	and	an	increase	
in	CWL.	Indeed,	extant	reviews	that	focused	on	the	major	
physiological	measures	of	CWL	(Charles	&	Nixon, 2019;	
Lean	&	Shan, 2012;	Tao	et	al., 2019)	did	not	quantitatively	
address	this	issue.

To	 deepen	 the	 analysis,	 several	 moderators	 were	 se-
lected	a	priori	based	on	 the	 literature.	Concerning	brain	
oscillations,	we	were	 interested	 in	 the	 specific	 frequency	
bands	 measured	 across	 the	 different	 EEG	 component	
when	they	contain	several	sub-	bands	that	may	have	differ-
ent	functional	roles	(i.e.,	low	&	high	alpha,	beta1	&	beta2,	
Fink	et	al., 2005;	Klimesch, 1999).	 In	order	 to	 study	 the	
spatial	specificities	of	the	measured	oscillations,	the	brain	
region	of	 interest	was	also	used	as	a	moderator	variable.	
Regarding	individual	characteristics,	we	controlled	for	the	
gender	of	 the	 individuals	 involved	 in	 the	studies,	as	sev-
eral	studies	have	shown	that	gender	can	have	an	impact	
on	CWL	(de	Moura	et	al., 2017;	Hancock	et	al., 1992)	as	
well	as	on	brain	oscillations	(Güntekin	&	Başar, 2007).	We	
also	examined	the	effect	of	expertise,	which	may	generate	
variability	in	the	measurement	of	CWL,	since	with	equal	
task	 load,	 experts	 process	 information	 more	 efficiently	
than	 novices	 (Ward	 et	 al.,  2019).	 This	 processing	 effi-
ciency	is	accompanied	by	changes	in	brain	activity,	with	
a	 reduction	 in	 the	activity	of	 the	prefrontal	and	parietal	
cortex	 (Bilalić	&	Campitelli, 2018).	Moreover,	 the	recent	
development	 of	 low-	cost	 mobile	 EEG	 systems	 (Ayaz	 &	
Dehais,  2018)	 that	 accompanied	 the	 emergence	 of	 neu-
roergonomics,	 has	 made	 the	 study	 of	 brain	 activity	 in	
ecological	conditions	(i.e.,	similar	to	a	real-	world	setting)	
easier.	As	this	type	of	system	naturally	attracts	researchers	
looking	to	evaluate	CWL	online	and	will	certainly	be	in-
creasingly	developed	in	the	future,	we	additionally	wanted	
to	compare	the	EEG	measurements	obtained	according	to	
the	type of system	used	(i.e.,	mobile	EEG	or	not).	We	also	
coded	for	the	number	of	tasks	to	be	performed	by	the	par-
ticipant	(i.e.,	single	or	multiple),	in	order	to	examine	the	
impact	 of	 a	 multitasking	 situation	 on	 brain	 oscillations.	
Performing	several	tasks	“at	the	same	time”	implies	man-
aging	the	prioritization	of	these	tasks	according	to	differ-
ent	 criteria	 (e.g.,	 priority,	 interest,	 difficulty;	 Wickens	 &	
Gutzwiller, 2017).	This	task	management	thus	induces	an	
additional	 demand	 on	 cognitive	 resources	 compared	 to	
the	execution	of	a	single	task	(i.e.,	management	load;	Xie	

&	Salvendy, 2000),	and	can,	 therefore	generate	a	greater	
CWL.	Finally,	we	considered	mental	fatigue,	which	is	an	
intrinsically	related	concept	to	CWL	and	is	also	associated	
with	decreased	performance	(Bendak	&	Rashid, 2020)	and	
can	cause	impairment	in	theta	and	alpha	spectral	power	
(Borghini	et	al., 2014).	To	investigate	this	factor,	we	esti-
mated	the	time- on- task	(i.e.,	duration	of	required	mental	
effort)	 during	 which	 participants’	 EEG	 activity	 was	 re-
corded.	When	the	total	duration	was	not	explicitly	given	
in	the	article,	an	estimate	was	computed.

2 	 | 	 Method

2.1	 |	 Inclusion and exclusion criteria

Only	 studies	 that	 were	 published	 in	 a	 peer-	reviewed	
journal	were	eligible.	Moreover,	they	had	to	meet	the	fol-
lowing	criteria:	(a)	contain	at	least	one	quantitative	EEG	
measure	of	the	usual	frequency	bands	(i.e.,	delta,	 theta,	
alpha,	 beta,	 and	 gamma)	 with	 spectral	 power	 analysis;	
(b)	introduce	a	manipulation	of	the	CWL	in	order	to	op-
pose	low	and	high	load;	(c)	use	a	within-	subject	design	or	
compare	 independent	groups;	 (d)	present	sufficient	sta-
tistical	information	to	calculate	an	effect	size	(e.g.,	mean,	
standard	deviation,	and	sample	size);	(e)	focus	on	healthy	
young	adults;	(f)	present	original	data;	(g)	be	written	in	
English.	 Reviews,	 conference	 papers,	 book	 chapters,	
and	 studies	 using	 overlapping	 data	 were	 excluded.	 To	
restrict	the	scope	of	this	study	and	to	allow	comparison	
between	 the	 effect	 sizes,	 we	 did	 not	 included	 studies	
that	 uses	 alternative	 types	 of	 EEG	 analyses	 (e.g.,	 time-	
frequency	 analysis,	 ERP,	 brain	 networks	 connectivity)	
nor	those	that	compared	classification	algorithms	(Lotte	
et	al., 2007).

2.2	 |	 Information sources

We	conducted	a	systematic	search	of	the	literature,	in	ac-
cordance	 with	 the	 guidelines	 of	 the	 Preferred	 Reporting	
Items	for	Systematic	Reviews	and	Meta-	Analyses	(Moher	
et	al., 2009).	The	search	covered	a	period	up	to	September	
2019	 in	 the	 following	 databases:	 arXiv	 (19),	 Cochrane	
Library	(48),	Embase	(925),	IEEE	Xplore	(425),	PsycINFO	
(643),	 PubPsych	 (190),	 PubMed	 (684),	 Science	 Direct	
(3759),	 SpringerLink	 (4302),	 Taylor	 &	 Francis	 Online	
(783),	Web	of	Science	(1220).	A	combination	of	the	follow-
ing	 keywords	 was	 used:	 “EEG	 or	 electroencephalogra*”	
and	“cognitive	load”;	“EEG	or	electroencephalogra*”	and	
“cognitive	 workload”;	 “EEG	 or	 electroencephalogra*”	
and	 “mental	 load”,	 “EEG	 or	 electroencephalogra*”	 and	
“mental	 workload”.	 Moreover,	 we	 manually	 performed	
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a	 search	 in	 the	 major	 reviews	 of	 the	 field	 (Borghini	
et	al., 2014;	Charles	&	Nixon,	2019;	Kramer, 1991;	Lean	
&	Shan, 2012;	Tao	et	al., 2019;	Young	et	al., 2015)	and	in	
the	reference	lists	of	included	articles	(K = 23).	For	studies	
that	met	 the	 inclusion	criteria	but	 in	which	information	
was	 missing,	 we	 contacted	 the	 corresponding	 author	 of	
the	paper	(K = 7,	only	one	author	responded,	for	whom	
the	data	were	no	longer	accessible).	References	were	man-
aged	using	Excel	spreadsheets.

2.3	 |	 Study selection

Eligibility	assessment	was	performed	by	two	authors.	After	
having	removed	the	duplicates,	studies	were	screened	by	
their	 title,	 following	 the	 flowchart	 sequence	 (Figure  1).	
Then,	 abstracts	 were	 screened	 and	 studies	 that	 did	 not	
meet	the	inclusion	criteria	were	excluded.	When	the	ab-
stract	 did	 not	 provide	 enough	 information	 (e.g.,	 type	 of	

EEG	analysis),	the	study	was	eligible	for	full-	text	screen-
ing.	Finally,	full	texts	were	screened	and	studies	meeting	
all	inclusion	criteria	were	included	for	the	meta-	analysis	
(K = 24).

2.4	 |	 Data collection

When	 reported,	 we	 extracted	 the	 following	 information	
from	each	study:	(1)	sample	size,	(2)	mean	age	(and	stand-
ard	deviation)	and	gender	of	participants,	(3)	research	do-
main,	(4)	study	design	(within-		or	between-	participants),	
(5)	frequency	band(s),	(6)	electrode	position,	(7)	number	
of	 tasks	and	method	used	to	 increase	the	CWL,	(8)	time	
on	task,	(9)	method	used	to	estimate	spectral	power,	and	
(10)	statistical	data	used	to	calculate	effect	sizes.	Datafiles	
and	the	R	script	for	the	meta-	analysis	can	be	found	on	the	
Open	 Science	 Framework	 (OSF)	 through	 the	 following	
link:	https://osf.io/xrb4z/.

F I G U R E  1  PRISMA	flow	diagram	of	the	systematic	search
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2.5	 |	 Summary measures

Statistical	 analyses	 were	 conducted	 in	 RStudio	 (RStudio	
Team, 2020,	version	1.3.1093)	using	R	(R	Core	Team, 2013,	
version	4.0.1).	We	used	the	esc	package	in	order	to	compute	
the	effect	sizes	(Lüdecke, 2018),	and	the	meta	(Schwarzer,	
2007),	 metafor	 (Viechtbauer,  2010),	 and	 dmetar	 (Harrer	
et	 al.,  2019)	 packages	 to	 conduct	 the	 meta-	analyses	 and	
meta-	regression.

We	computed	a	Hedges’s	g	statistic	for	the	standardized	
mean	 difference	 in	 bandwidth	 power	 between	 high	 and	
low	 workload	 conditions.	 If	 the	 experimental	 compari-
son	 involved	more	 than	two	 load	 levels,	 the	standardized	
mean	 difference	 was	 between	 the	 harder	 and	 the	 easier	
condition.	Since	most	 studies	evaluated	 this	difference	 in	
the	same	individual	(within-	subject	design),	we	calculated	
repeated-	measures	effect	sizes.	Hedges’s	g	statistic	was	pre-
ferred	to	Cohen’s	d	because	it	adjusts	for	the	small	sample	
bias	(Hedges, 1981).	A	positive	effect	size	indicates	an	in-
crease	 in	average	bandwidth	power	 in	the	high	workload	
condition.

Effect	sizes	were	calculated	based	on	the	means	and	
standard	 deviations,	 following	 Morris	 and	 DeShon’s	
correction	 for	 within-	subject	 designs	 (Morris	 &	
DeShon, 2002).	As	none	of	the	studies	reported	the	cor-
relation	values	between	the	low	and	high	load	measure,	
we	used	a	correlation	value	of	r = 0.50	(which	is	consid-
ered	as	relatively	conservative;	Balk	et	al., 2012).	Studies	
that	reported	F,	t	or	Cohen’s	d	values	were	converted	to	
g	(Lakens, 2013).

Knowing	 that	 all	 effect	 sizes	 should	 be	 indepen-
dent	 in	 a	 meta-	analysis—	to	 avoid	 under-	estimated	
standard	errors	of	the	average	effects—	we	conducted	
three	 separate	 meta-	analyses	 on	 the	 three	 main	 fre-
quency	bands	measured	 in	 the	 included	studies	 (i.e.,	
theta,	alpha,	and	beta).	Studies	measuring	other	bands	
were	too	few	to	be	meta-	analyzed	(e.g.,	delta,	gamma,	
theta/alpha	 ratio).	 When	 a	 study	 provided	 different	
measurements	of	the	same	frequency	within	the	same	
participant	(e.g.,	one	measure	of	theta	per	electrode),	
data	 were	 averaged	 together	 to	 compute	 one	 effect	
size	(Cooper	et	al., 2019).	An	exception	was	made	for	
alpha	 and	 beta	 spectral	 power	 analyses,	 for	 which	
some	studies	(alpha:	K = 3;	beta:	K = 2)	reported	low	
and	 high	 alpha	 and	 beta1	 and	 beta2	 measurements,	
respectively.	Although	this	lack	of	independence	may	
lead	 to	 an	 underestimation	 of	 the	 standard	 error,	
the	 small	 number	 of	 studies	 concerned	 precludes	
the	 use	 of	 multivariate	 or	 three-	level	 meta-	analyses	
(Cheung, 2019).	On	the	other	hand,	this	small	number	
of	 studies	 reduces	 the	 risk	 of	 obtaining	 Type	 I	 error	
rates	(Song	et	al., 2020).

2.6	 |	 Synthesis of results

Given	the	diversity	of	protocols	included,	we	expected	
high	heterogeneity	between	the	studies,	and	therefore	
applied	a	random	effects	model	to	combine	and	weight	
effect	sizes	across	studies	using	inverse	variance	meth-
ods.	We	also	included	an	analysis	of	the	data	by	a	fixed	
effects	 model	 (see	 Supplementary	 data),	 since	 there	
is	 a	 risk	 of	 overestimating	 effect	 sizes	 when	 a	 ran-
dom	 effects	 model	 is	 used	 in	 the	 presence	 of	 strong	
publication	 bias	 (Cooper	 et	 al.,  2019).	 We	 quantified	
heterogeneity	 using	 the	 effect	 sizes’	 percentage	 of	
variability	 (i.e.,	 the	 I2	 statistic).	 A	 value	 of	 75%	 and	
above	indicates	high	heterogeneity,	a	value	of	50%	in-
dicates	 moderate	 heterogeneity,	 a	 value	 of	 25%	 indi-
cates	low	heterogeneity	and	a	value	of	0%	indicates	no	
heterogeneity	 (Higgins	 et	 al.,  2019).	 Despite	 its	 ease	
of	 interpretation,	 the	I2	statistic	depends	on	the	sam-
pling	 error	 and	 number	 of	 studies	 included.	 To	 have	
an	indicator	independent	of	the	number	of	studies,	we	
also	 calculated	 the	 between-	study-	variance	 estimator	
τ2,	using	the	Hartung–	Knapp–	Sidik–	Jonkman	method	
(IntHout	et	al., 2014).	Although	the	DerSimonian	and	
Laird	method	is	widely	used	for	random	effects	meta-	
analysis,	this	method	has	been	shown	to	be	biased	to-
ward	 type	1	error,	producing	 false	positives	 (IntHout	
et	al., 2014).	It	has	been	recently	established	that	this	
method	 is	 outperformed	 by	 the	 Hartung–	Knapp–	
Sidik–	Jonkman	method,	especially	when	 the	number	
of	studies	is	small	(IntHout	et	al., 2014).	Heterogeneity	
was	 also	 statistically	 assessed	 by	 the	 Chi-	square	 test	
(Cochran’s	Q-	statistic).	Since	Cochran’s	Q	test	may	be	
under-	powered	when	few	studies	have	been	included	
(West	 et	 al.,  2010),	 it	 is	 recommended	 to	 choose	 a	 p	
value	 higher	 than	 the	 classical	 threshold	 of	 signifi-
cance	(i.e.,	p < .05).	We,	therefore	set	the	significance	
threshold	at	p < .10.

A	 sensitivity	 analysis	 was	 performed	 when	 heteroge-
neity	was	significant	and	greater	 than	50%.	We	used	the	
“leave-	one-	out”	 function	 to	 assess	 the	 influence	 of	 each	
study	 on	 the	 results	 and	 heterogeneity.	 This	 method	
consists	in	removing	one	study	at	a	time	from	the	meta-	
analysis	and	repeating	the	operation	until	each	study	had	
been	 removed	 once	 to	 verify	 that	 our	 conclusions	 were	
not	 influenced	 by	 a	 single	 study	 (Viechtbauer,  2010).	
Influence	analyses	were	then	carried	out	by	visual	inspec-
tion	of	Baujat	et	al. (2002)	and	Viechtbauer	and	Cheung	
graphs	(Viechtbauer	&	Cheung, 2010).	Lastly,	studies	for	
which	 the	 95%	 confidence	 interval	 was	 outside	 the	 95%	
confidence	interval	of	the	pooled	studies	were	considered	
outliers	(Viechtbauer	&	Cheung, 2010)	and	were	excluded	
from	the	meta-	analysis	and	meta-	regression.

 14698986, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14009 by U

niversité D
e T

oulouse 3, W
iley O

nline L
ibrary on [20/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



   | 7 of 24CHIKHI et al.

Sensitivity	analyses	were	pre-	specified	to	assess	the	impact	
of	our	subgroups	on	the	overall	effect	size.	Subgroup	analy-
ses	were	performed	on	categorical	moderator	variables	using	
a	mixed-	effects	model	(i.e.,	random	effects	within	and	fixed	
effects	 between,	 Borenstein	 &	 Higgins,  2013).	 The	 purpose	
of	the	subgroup	analyses	was	twofold:	to	conduct	sensitivity	
analyses	to	explain	the	presence	of	heterogeneity,	and	to	inves-
tigate	relevant	theoretical	points	related	to	the	coded	categor-
ical	moderator	variables,	following	the	recommendations	of	
Richardson	et	al. (2019).	Subgroups	with	less	than	three	stud-
ies	were	not	reported	(Higgins	et	al., 2019).	Meta-	regression	
was	used	for	continuous	moderator	variables	to	test	whether	
those	variables	had	a	significant	impact	on	the	average	effect	
size	(time- on- task,	year	of	publication,	and	sample	size).

Potential	publication	bias	was	investigated	by	visual	in-
spection	of	contour-	enhanced	funnel	plots	and	tested	sta-
tistically	 by	 Egger’s	 linear	 regression	 (Egger	 et	 al.,  1997).	
The	contour-	enhanced	funnel	plot	is	an	improved	version	
of	the	funnel	plot,	which	has	often	been	criticized	because	
of	its	subjective	interpretation	(Peters	et	al., 2008).	Contour	
lines	 that	 are	 superimposed	 on	 the	 funnel	 correspond	
to	 perceived	 “milestones”	 of	 statistical	 significance	 (p	 =	
.01,		.025,	.05).	These	different	contours	help	to	distinguish	
an	 asymmetry	 caused	 by	 the	 nonreporting	 of	 nonsignifi-
cant	studies	(publication	bias)	from	an	asymmetry	caused	
by	other	factors	(e.g.,	poor	methodological	quality,	linguis-
tic	bias,	chance;	Egger	et	al., 1997).	An	asymmetry	caused	
by	the	absence	of	studies	with	a	statistically	non-	significant	
effect	size	is	an	indication	of	publication	bias.	Conversely,	
if	the	asymmetry	is	caused	by	studies	that	should	have	had	
statistically	significant	effect	sizes,	factors	other	than	pub-
lication	 bias	 should	 be	 considered	 (Higgins	 et	 al.,  2019).	
When	the	distribution	was	significantly	asymmetrical	ac-
cording	to	Egger’s	regression,	suggesting	a	publication	bias,	
we	used	the	trim-	and-	fill	method	(Duval	&	Tweedie, 2000)	
to	compute	a	bias-	corrected	estimate	of	the	average	effect.

3 	 | 	 Results

3.1	 |	 Study selection

After	duplicates	had	been	removed,	5	716	unique	records	
were	identified	in	searches	through	the	database	and	ref-
erence	 list.	 4	 916	 records	 were	 then	 excluded	 from	 the	
preliminary	screening	of	titles.	Among	the	remaining	800	
records,	570	were	excluded	after	screening	of	abstracts	be-
cause	they	did	not	manipulate	CWL	(69),	they	did	not	in-
clude	any	EEG	measure	with	spectral	power	analysis	(74),	
they	 were	 a	 book	 chapter	 (89),	 conference	 paper	 (205),	
review	article	(39),	dissertation	(7),	inaccessible	(4),	tech-
nical	report	or	article	using	classification	algorithms	(67),	
not	in	English	(10)	or	focused	on	a	clinical	population	(6).	

Two	 hundred	 and	 thirty	 reports	 were	 retrieved	 for	 de-
tailed	evaluation	of	the	full-	text	and	a	total	of	24	records	
met	the	inclusion	criteria	and	were	included	in	the	quan-
titative	review	(see	Figure 1).

3.2	 |	 Study characteristics

The	 included	 studies,	 published	 between	 1984	 and	 2019	
(mean:	2014,	median:	2017),	involved	a	total	of	723	partici-
pants	(mean	age	of	24.4	±	3.42,	33.3%	female)	for	which	45	
effect	sizes	were	computed.	Of	these	effect	sizes,	16	were	
from	a	difference	in	the	mean	power	of	the	theta	band,	17	
from	the	alpha	band	and	12	from	the	beta	band.	Four	stud-
ies	examined	expertise	(k = 7,	Fallahi	et	al., 2016;	Jaquess	
et	al., 2017;	Morales	et	al., 2019;	Orlandi	&	Brooks, 2018),	
five	 studies	 used	 a	 portable	 EEG	 system	 (k  =  9,	 Castro-	
Meneses	 et	 al.,  2020;	 Fallahi	 et	 al.,  2016;	 Matthews	
et	al., 2015;	Morales	et	al., 2019;	Orlandi	&	Brooks, 2018).	
Four	studies	used	multiple	 tasks	 to	 induce	CWL	(k = 9,	
Fallahi	et	al., 2016;	Gong	et	al., 2019;	Matthews	et	al., 2015;	
Puma	et	al., 2018)	and	the	N- Back	task	was	the	most	fre-
quently	used	method	for	increasing	CWL	(k = 12,	Brouwer	
et	al., 2014;	Grissmann	et	al., 2017;	Hsu	et	al., 2015;	Murata,	
2005;	Pergher	et	al., 2019;	Rietschel	et	al., 2012).	Twelve	
studies	used	Fast-	Fourier	Transformation	(k = 26,	Fallahi	
et	al., 2016;	Gentili	et	al., 2018;	Hsu	et	al., 2015;	Jaquess	
et	al., 2017;	Kakizaki,	1984;	Matthews	et	al., 2015;	Morales	
et	al., 2019;	Murata	et	al.	2005;	Pavlov	&	Kotchoubey, 2017;	
Pergher	et	al., 2019;	Puma	et	al., 2018;	Sammer	et	al., 2007),	
two	 studies	 used	 Short-	Time	 Fourier	 Transformation	
(k = 3,	Dasari	et	al., 2017;	Zhang	et	al., 2016),	one	study	
used	 Continuous-	Fourier	 Transformation	 (k  =  1,	 Hsu	
et	 al.,  2017),	 three	 studies	 used	 Welch’s	 method	 (k  =  5,	
Gong	et	al., 2019;	Grissmann	et	al., 2017;	Zakrzewska	&	
Brzezicka, 2014),	and	six	studies	did	not	report	the	method	
used	to	estimate	the	EEG	spectral	power	(k = 10,	Brouwer	
et	al., 2014;	Castro-	Meneses	et	al., 2020;	Lee, 2014;	Orlandi	
&	Brooks, 2018;	Rietschel	et	al., 2012;	Shaw	et	al., 2018).	
The	 individual	 studies,	 sample	 characteristics,	 encoded	
moderator	 variables,	 and	 effect	 sizes	 with	 standard	 er-
rors	are	presented	in	Table 1.	Method	used	to	manipulate	
CWL,	estimate	spectral	power,	electrode	placement,	and	
the	estimation	of	time-	on-	task	are	presented	in	Table S1.

3.3	 |	 Meta- analysis of outcome measures

3.3.1	 |	 Theta

Individual	study	(k = 16)	and	aggregate	effect	size	for	stud-
ies	measuring	the	theta	band	are	presented	in	Figure 2	(see	
Figure S1	for	the	fixed	effects	model).	Overall,	CWL	had	
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a	 large	effect	on	the	theta	band,	g	=	0.68,	95%	CI	[0.41–	
0.95],	 p  <  .01,	 indicating	 that	 theta	 power	 during	 high	
workload	tasks	was	significantly	greater	than	theta	power	
in	 low	workload	conditions.	Nevertheless,	heterogeneity	
was	pronounced	and	highly	significant,	Q = 42,	df = 15,	
p < .01,	tau2 = 0.19,	I2 = 64.3%.

3.3.1.1 | Sensitivity analyses
An	 influence	 analysis	 by	 the	 leave-	one-	out	 method	 and	
identification	of	the	studies	whose	95%	confidence	inter-
val	was	outside	the	95%	confidence	interval	of	the	pooled	
studies	revealed	 that	 two	studies	could	be	considered	as	
outliers	(Matthews	et	al., 2015;	Zhang	et	al., 2016).	After	
removing	 these	 studies	 (k  =  14),	 the	 overall	 effect	 size	
remained	 stable	 and	 heterogeneity	 was	 no	 longer	 sig-
nificant,	g	=	0.62,	95%	CI	[0.41–	0.83],	p < .01,	Q = 17.14,	
df = 13,	p > .10,	tau2 = 0.07,	I2 = 24.2%.

3.3.1.2 | Subgroup analysis of categorical moderator 
variables (Table S2)
The	 test	 for	 subgroup	 differences	 between	 EEG systems	
suggested	 that	 there	 was	 a	 statistically	 significant	 sub-
group	effect	 (p <  .001),	meaning	 that	 the	effect	of	CWL	
on	the	theta	band	was	significantly	different	depending	on	
the	EEG	system	used.	The	effect	of	CWL	on	the	theta	band	
was	greater	for	the	non-	portable	EEG	system	subgroup	(g	
=	 0.81,	 p  <  .01)	 than	 for	 the	 portable	 EEG	 system	 sub-
group	(g	=	0.22,	p < .01).	However,	there	is	an	insufficient	
number	of	studies	in	the	portable	EEG	subgroup	(k = 3)	
and	a	substantial	unexplained	heterogeneity	between	the	
studies	within	the	non-	portable	subgroup	(I2 = 55%),	thus	

the	validity	of	the	CWL	effect	estimates	for	each	subgroup	
is	 uncertain.	 The	 test	 for	 subgroup	 differences	 between	
single	 and	 multiple tasks	 indicated	 that	 there	 was	 a	 sta-
tistically	significant	subgroup	effect	(p < .05),	suggesting	
that	 the	 theta	 band	 was	 more	 impacted	 by	 CWL	 during	
single	task	(g	=	0.81,	p < .01)	than	during	multiple	tasks	
(g	=	0.28,	p < .01).	However,	a	smaller	number	of	studies	
and	 participants	 contributed	 to	 the	 multi-	task	 subgroup	
(k = 4,	N = 225)	than	to	the	single-	task	subgroup	(k = 12,	
N = 306),	meaning	that	the	covariate	distribution	is	prob-
lematic	 for	 this	 subgroup	 analysis.	 There	 is	 substantial	
unexplained	heterogeneity	between	 the	 trials	within	 the	
single-	task	subgroup	(I2 = 62%).	Therefore,	the	validity	of	
the	CWL	effect	estimates	for	each	subgroup	is	uncertain.	
The	 test	 for	 subgroup	 differences	 between	 brain	 regions	
indicated	 that	 there	 was	 a	 statistically	 significant	 sub-
group	 effect	 (p  =  .04),	 suggesting	 that	 the	 brain	 regions	
measured	were	affected	differently	by	 the	effect	of	CWL	
on	the	theta	band.	The	pooled	effect	estimate	for	the	fron-
tal	 region	 was	 large	 and	 significant	 (g	 =	 0.66,	 p  <  .01).	
Central,	 occipital,	 and	 multiple	 region	 subgroups	 were	
not	reported	because	of	an	insufficient	number	of	studies	
(k < 3).	Subgroup	meta-	analyses	using	gender	and	exper-
tise	 as	 predictor	 variables	 were	 not	 done	 because	 of	 the	
insufficient	number	of	studies	per	subgroup	(k = 1	within	
expert	and	female	subgroup).

3.3.1.3 | Meta- regression of continuous moderator 
variables
Meta-	regression	analysis	did	not	reveal	any	effect	of	year	
of	publication,	sample	size,	nor	time-	on-	task.

F I G U R E  2  Forest	plot	of	standardized	effect	sizes	(g)	of	theta	power	in	high	versus	low	workload	conditions.	Total	standardized	mean	
difference	with	95%	confidence	and	prediction	interval,	weight,	and	heterogeneity	are	reported
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3.3.1.4 | Publication bias
Visual	inspection	of	the	funnel	plot	asymmetry	(Figure 3)	
and	Egger’s	linear	regression	revealed	a	publication	bias,	
B = 3.13,	95%	CI	[1.87–	4.39],	p <  .05.	The	trim-	and-	fill	
procedure	 suggested	 that	 seven	 studies	 could	 be	 added	
(k  =  23),	 resulting	 in	 a	 decrease	 in	 the	 effect	 size	 (g	 =	
0.35,	 95%	 CI	 [0.01–	0.69],	 p  <  .05)	 and	 an	 increase	 in	
heterogeneity	(Q	=	87.45,	df = 22,	p < .01,	tau2 = 0.52,	
I2 = 74.8%).

3.3.2	 |	 Alpha

A	 random	 effects	 model	 applied	 to	 the	 studies	 which	
measured	the	alpha	band	(k = 17)	resulted	in	a	significant	
effect	 size	 with	 moderate	 heterogeneity,	 g	 =	 −0.25,	 95%	
CI	[−0.45	–		−0.04],	p < .05,	Q = 29.76,	df = 16,	p < .01,	
tau2 = 0.11,	I2 = 46.2%,	indicating	that	alpha	power	dur-
ing	 high	 workload	 tasks	 was	 significantly	 lower	 than	
alpha	 power	 during	 low	 workload	 conditions	 (Figure  4,	
see	Figure S2	for	the	fixed	effects	model).

3.3.2.1 | Sensitivity analyses
An	 influence	 analysis	 by	 the	 leave-	one-	out	 method	 and	
identification	of	the	studies	whose	95%	confidence	inter-
val	was	outside	the	95%	confidence	interval	of	the	pooled	
studies	revealed	that	one	study	could	be	considered	as	an	
outlier	(Kakizaki, 1984).	Withdrawing	this	study	resulted	
in	an	 increase	 in	 the	mean	effect	 size	and	a	decrease	 in	
heterogeneity,	g	=	−0.30,	95%	CI	[−0.47	–		−0.12],	p < .01,	
Q = 22.11,	df = 15,	p > .10,	tau2 = 0.08,	I2 = 32.1%.

3.3.3.2 | Subgroup analysis of categorical moderator 
variables (Table S2)
The	test	for	subgroup	differences	between	alpha	frequency 
bands	 indicated	a	statistically	significant	subgroup	effect	
(p < .01),	suggesting	that	alpha	frequency	sub-	bands	were	
influenced	differently	by	CWL.	The	effect	of	CWL	on	the	
alpha	 power	 was	 significantly	 larger	 for	 the	 high	 alpha	
(10–	12	Hz)	subgroup	(g	=	−0.39,	p < .01),	while	the	effect	

F I G U R E  3  Contour-	enhanced	funnel	plot	of	studies	measuring	
theta	band	activity.	Some	studies	are	missing	on	the	left-	hand	side	
of	the	plot,	where	results	would	be	in	the	area	of	non-	significance	
(i.e.,	the	white	area	where	p > .05)	and	for	which	non-	reporting	
bias	is	a	plausible	explanation

F I G U R E  4  Forest	plot	of	standardized	effect	sizes	(g)	of	alpha	power	in	high	versus	low	workload	conditions.	Total	standardized	mean	
difference	with	95%	confidence	and	prediction	interval,	weight,	and	heterogeneity	are	reported
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was	 smaller	 for	 the	 low	 alpha	 (8–	10	 Hz)	 subgroup	 (g	 =	
−0.21,	 p  <  .01)	 and	 no	 longer	 significant	 for	 the	 broad-	
band	subgroup	(g	=	−0.21,	p = .22).	However,	a	smaller	
number	of	trials	and	participants	contributed	to	the	high	
and	low	alpha	subgroups	(high	alpha:	k = 4,	N = 67;	low	
alpha:	 k = 3,	 N = 50)	 than	 to	 the	broad-	band	 subgroup	
(k = 10,	N = 359),	meaning	that	the	uneven	covariate	dis-
tribution	may	not	be	able	to	produce	valid	results.

The	 test	 for	 subgroup	 differences	 between	 brain	 re-
gion	 suggested	 that	 there	 was	 a	 statistically	 significant	
subgroup	effect	(p < .01),	meaning	that	the	effect	of	CWL	
on	 the	alpha	band	was	 significantly	different	depending	
on	the	brain	region	measured.	The	effect	of	CWL	on	the	
alpha	band	was	larger	for	the	parietal	region	(g	=	−0.29,	
p < .01)	than	for	the	multiple	region	subgroup	(g	=	−0.23,	
p = .12).	A	sufficient	number	of	studies	and	participants	
(parietal:	k = 6,	N = 153;	multiple:	k	=	6,	N	=	79)	were	
included	 in	 each	 subgroup,	 so	 the	 covariate	 distribution	
was	 not	 problematic	 for	 this	 subgroup	 analysis.	 Frontal,	
central,	and	occipital	electrode	 location	groups	were	not	
reported	 because	 of	 the	 insufficient	 number	 of	 studies	
(k < 3).	Results	of	subgroup	meta-	analyses	for	the	gender	
and	multi- tasking	moderators	did	not	show	any	significant	
effects.	Subgroup	meta-	analyses	using	expertise	and	 type	
of	EEG system	as	predictor	variables	were	not	reported	be-
cause	of	the	insufficient	number	of	studies	(k < 3).

3.3.2.3 | Meta- regression of continuous moderator 
variables
Meta-	regression	 analysis	 revealed	 a	 significant	 effect	 of	
publication	year	(B	=	−0.03,	p < .01)	and	no	effect	of	sam-
ple	size	and	time-	on-	task.

3.3.2.4 | Publication bias
Visual	 inspection	of	 the	funnel	plot	asymmetry	(Figure 5)	
and	Egger’s	linear	regression	test	revealed	a	potential	publi-
cation	bias,	B	=	−1.42,	95%	CI	[−2.06	–		−0.24],	p < .05.	The	
trim-	and-	fill	procedure	suggested	that	four	studies	could	be	
added	(k	=	20),	resulting	in	a	decrease	in	the	effect	size	(g	=	
−0.15,	95%	CI	[−0.69–	0.38],	p	=	.55),	and	high	heterogeneity	
(Q	=	104.28,	df	=	19,	p < .01,	tau2 = 1.19,	I2 = 81.8%).

3.3.3	 |	 Beta

3.3.3.1	 |	 Sensitivity analyses
The	aggregated	effect	 sizes	 for	 the	12	studies	measuring	
beta	band	activity	are	presented	in	Figure 6	(see	Figure S1	
for	 the	 fixed	effects	model).	Overall,	CWL	had	a	moder-
ate	effect	on	the	beta	band,	g	=	0.50,	95%	CI	[0.21–	0.79],	
p <  .01,	 indicating	 that	beta	power	during	a	high	work-
load	task	was	significantly	greater	than	beta	power	in	the	
low	 workload	 condition.	 However,	 heterogeneity	 was	

substantial	 and	 significant,	 Q	 =	 23.23,	 df	 =	 11,	 p  <  .01,	
tau2 = 0.15,	I2 = 52.6%.	Sensitivity	analyses	did	not	iden-
tify	any	potential	outlier.

3.3.3.2 | Subgroup analysis of categorical moderator 
variables (Table S2)
The	test	for	subgroup	differences	between	beta	frequency 
bands	 suggested	 that	 was	 a	 statistically	 significant	 sub-
group	effect	(p < .01),	meaning	that	the	effect	of	CWL	on	
the	beta	band	was	significantly	different	depending	on	the	
beta	sub-	band	measured.	The	effect	of	CWL	was	signifi-
cant	and	large	for	the	beta1	(13–	20	Hz,	g	=	0.93,	p < .01)	
and	beta2	band	(20–	30	Hz,	g	=	0.74,	p < .01),	while	the	
effect	was	no	longer	significant	when	the	broad-	band	fre-
quency	(13–	30	Hz)	was	used	(g	=	0.28,	p	=	.07).	However,	
there	is	an	insufficient	number	of	studies	in	the	beta1	(k	
=	2,	N	=	34)	and	beta2	subgroups	(k	=	3,	N	=	99),	so	the	
covariate	 distribution	 is	 problematic.	 Therefore,	 the	 va-
lidity	 of	 the	 CWL	 effect	 estimates	 for	 each	 subgroup	 is	
uncertain.	The	test	for	subgroup	differences	between	beta	
region	suggested	that	there	was	a	statistically	significant	
subgroup	effect	(p < .10),	meaning	that	the	effect	of	CWL	
on	 the	 beta	 band	 was	 significantly	 different	 depending	
on	the	brain	region	measured.	The	effect	of	CWL	on	the	
beta	band	was	higher	 for	 the	multiple	 region	 (g	=	0.59,	
p  <  .05)	 than	 for	 the	 frontal	 region	 (g	 =	 0.33,	 p  >  .05).	
There	is	a	substantial	unexplained	heterogeneity	between	
the	studies	within	the	frontal	region	subgroup	(I2 = 43%).	
Therefore,	 the	 validity	 of	 the	 CWL	 effect	 estimates	 for	
each	 subgroup	 is	 uncertain.	 The	 occipital	 electrode	 lo-
cation	 subgroup	 was	 not	 reported	 because	 of	 the	 insuf-
ficient	number	of	studies	(k < 3).	The	test	 for	subgroup	
differences	 for	expertise	highlighted	a	statistically	signif-
icant	 subgroup	 effect	 (p  <  .01),	 meaning	 that	 the	 effect	
of	CWL	on	beta	band	activity	was	significantly	different	

F I G U R E  5  Contour-	enhanced	funnel	plot	of	studies	measuring	
the	alpha	band.	Some	studies	are	missing	on	the	right-	hand	side	
of	the	plot,	where	results	would	be	in	the	area	of	non-	significance	
(i.e.,	the	white	area	where	p > .05)	and	for	which	non-	reporting	
bias	is	a	plausible	explanation
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depending	 on	 the	 participant’s	 expertise.	 The	 effect	 of	
CWL	on	the	beta	band	was	larger	for	the	expert	subgroup	
(g	 =	 1.43,	 p  <  .01)	 than	 for	 the	 non-	expert	 subgroup	 (g	
=	0.36,	p < .01).	The	smaller	number	of	studies	and	par-
ticipants	in	the	expert	subgroup	(k	=	3,	N	=	28)	and	the	
substantial	unexplained	heterogeneity	between	the	stud-
ies	within	the	non-	expert	subgroup	(I2 = 49%)	may	reduce	
the	validity	of	 this	effect.	The	results	of	subgroup	meta-	
analyses	for	gender	and	EEG portability	did	not	show	any	
significant	 result.	 Subgroup	 meta-	analysis	 using	 multi- 
tasking	as	predictor	variable	was	not	reported	because	of	
the	insufficient	number	of	studies	per	subgroup	(k < 3).

3.3.3.3 | Meta- regression of continuous moderator 
variables
Meta-	regression	 analysis	 revealed	 a	 significant	 effect	 of	
time-	on-	task	(p < .05,	R2 = 45.54%)	and	sample	size	(B	=	
−0.01,	p < .05)	and	no	effect	of	publication	year.

3.3.3.4 | Publication bias
The	 funnel	 plot	 asymmetry	 (Figure  7)	 could	 have	 been	
caused	by	publication	bias.	Egger’s	 linear	regression	test	
revealed	a	publication	bias,	B	=	1.61,	95%	CI	 [0.7–	2.53],	
p  <  .01.	 The	 trim-	and-	fill	 procedure	 suggested	 that	 six	
studies	could	be	added,	resulting	in	a	decrease	in	the	ef-
fect	size	(g	=	0.21,	95%	CI	[−0.17–	0.59],	p > .05)	and	an	
increase	 in	 heterogeneity	 (Q	 =	 43.61,	 df	 =	 17,	 p  <  .01,	
tau2 = 0.47,	I2 = 61%).

4 	 | 	 Discussion

CWL	is	an	important	concept	in	many	fields	(e.g.,	system	
design,	 adaptive	 automation).	 Although	 it	 has	 been	 the	

focus	of	 research	 for	more	 than	 fifty	years,	 the	methods	
used	to	evaluate	it	are	still	of	interest.	EEG,	as	one	of	the	
most	accessible	brain	imaging	methods,	has	often	been	a	
favorite	candidate.

In	 the	 current	 study,	 we	 reviewed	 articles	 that	 inves-
tigated	EEG	spectral	band	power	differences	during	 low	
and	high	workload	tasks.	Our	meta-	analysis	is	the	first	to	
quantitatively	examined	the	impact	of	CWL	on	the	three	
bands	 most	 often	 used	 in	 the	 literature:	 theta	 (k	 =	 16),	
alpha	(k	=	17),	and	beta	(k	=	12).	We	found	significant	evi-
dence	for	the	influence	of	CWL	on	the	three	power	bands.	
The	standardized	mean	difference	of	band	power	between	
high	and	 low	workload	was	0.68	with	a	95%	confidence	
interval	of	0.41	to	0.95	for	theta,	−0.25	with	a	95%	confi-
dence	interval	of	−0.45	to	−0.04	for	alpha,	and	0.50	with	

F I G U R E  6  Forest	plot	of	standardized	effect	sizes	(g)	of	beta	power	in	high	versus	low	workload	conditions.	Total	standardized	mean	
difference	(SMD)	with	95%	confidence	and	prediction	interval,	weight,	and	heterogeneity	are	reported

F I G U R E  7  Contour-	enhanced	funnel	plot	of	studies	measuring	
the	beta	band.	Some	studies	are	missing	on	the	left-	hand	side	of	the	
plot,	where	results	would	be	in	the	area	of	non-	significance	(i.e.,	
the	white	area	where	p > .05)	and	for	which	non-	reporting	bias	is	a	
plausible	explanation
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a	95%	confidence	interval	of	0.21	to	0.79	for	beta.	We	will	
begin	 by	 discussing	 these	 results	 and	 the	 accompanying	
subgroup	analyses	to	investigate	the	effect	of	our	selected	
moderators,	then	we	will	consider	the	limitations	of	this	
review	as	well	as	future	perspectives	for	the	measurement	
of	CWL	by	EEG.

4.1	 |	 Theta

The	theta	frequency	power	is	the	most	sensitive	to	the	in-
crease	 in	 CWL	 due	 to	 an	 increase	 in	 the	 task	 demands:	
theta	power	was	greater	in	high	versus	low	cognitive	load	
conditions.	 Moreover,	 this	 effect	 is	 specifically	 observed	
for	the	frontal	region,	as	indicated	by	our	subgroup	analy-
sis.	The	theta	of	the	frontal	cortex	is	a	frequency	that	has	
been	 associated	 with	 the	 processes	 of	 working	 memory	
and	executive	functions.	The	increase	in	theta	power	has	
often	been	related,	in	a	proportional	way,	to	the	amount	of	
information	to	be	retained	in	memory	(Gärtner	et	al., 2015;	
Howard	 et	 al.,  2003;	 Jensen	 &	 Tesche,  2002;	 Maurer	
et	 al.,  2015;	 Onton	 et	 al.,  2005;	 Roux	 &	 Uhlhaas,  2014;	
Wisniewski	et	al., 2015)	as	well	as	 information	manipu-
lation	 (Griesmayr	 et	 al.,  2010;	 Griesmayr	 et	 al.,  2014).	
Studies	showing	that	an	increase	in	theta	power	predicted	
performance	 in	 working	 memory	 tasks	 have	 suggested	
the	functional	role	of	this	frequency	in	this	type	of	process	
(Womelsdorf	et	al., 2010;	Zakrzewska	&	Brzezicka, 2014).	
At	the	neuroanatomical	level,	studies	coupling	EEG	and	
fMRI	(Meltzer	et	al., 2007;	Michels	et	al., 2010;	Scheeringa	
et	al., 2009;	Tsujimoto	et	al., 2010)	as	well	as	 studies	by	
magnetoencephalography	 (Gevins	 et	 al.,  1997;	 Meltzer	
et	 al.,  2007;	Onton	et	al.,  2005)	have	associated	 this	 fre-
quency	 with	 the	 activation	 of	 two	 regions:	 the	 anterior	
cingulate	cortex	(ACC)	and	the	medial	prefrontal	cortex	
(mPFC).	The	activation	of	these	two	regions	has	been	as-
sociated	with	executive	control	and	working	memory	pro-
cesses	(Bush	et	al., 2000;	Niendam	et	al., 2012;	Shenhav	
et	al., 2013).	More	than	simply	being	involved	in	memory	
processes,	the	theta	could	allow	the	allocation	of	different	
cortical	resources	according	to	the	task	(Onton	et	al., 2005;	
Sauseng	et	al., 2007;	Shenhav	et	al., 2013).	Thus,	theta	may	
underpin	cognitive	control	and	the	distribution,	efficient	
or	not,	of	cognitive	resources	(Cavanagh	&	Frank, 2014).

Surprisingly,	 our	 subgroup	 analysis	 results	 showed	
a	 smaller	 average	 effect	 size	 in	 multi-	tasking	 situations	
compared	to	single-	tasking	situations.	This	result,	incon-
sistent	with	what	 is	generally	observed	 in	 the	 literature	
(Borghini	et	al.,  2014),	 is	also	 in	contradiction	with	 the	
hypothetical	 role	 of	 theta	 power	 in	 cognitive	 control,	
which	 should	be	 strongly	 solicited	during	multitasking.	
For	example,	a	study	that	trained	elderly	people	via	video	
games	showed	an	increase	in	frontal-	midline	theta	power	

associated	with	the	training	gains	of	the	multi-	task	train-
ing	 (Anguera	 et	 al.,  2013).	This	 inconsistent	 result	 may	
be	due	to	the	insufficient	number	of	studies	(K	=	4)	that	
used	multi-	tasking.	Three	of	 these	4	 studies	had	a	 rela-
tively	high	 standardized	effect	 size	 (Fallahi	 et	 al.,  2016:	
g	=	0.40;	Gong	et	al., 2019:	g	=	0.50;	Puma	et	al., 2018:	g	
=	0.51),	compared	to	the	study	by	Matthews	et	al. (2015);	
g	=	0.15).	 In	 the	 latter	 study,	which	was	detected	as	an	
outlier	in	our	analyses,	the	comparison	between	low	and	
high	 CWL	 was	 operationalized	 by	 asking	 participants	
to	perform	two	separate	tasks	at	the	same	time:	a	threat	
detection	 task,	 in	which	participants	were	 instructed	 to	
identify	potentially	dangerous	individuals	in	a	3D	visual	
scene,	 and	 a	 change	 detection	 task,	 where	 participants	
were	 instructed	 to	 detect	 the	 simultaneous	 appearance,	
disappearance	or	movement	of	two	icons	on	a	map.	These	
tasks,	which	are	specific	to	military	operations,	are	cog-
nitively	 demanding	 and	 may,	 therefore,	 require	 signif-
icant	 neural	 recruitment	 even	 when	 performed	 alone.	
Performing	these	two	tasks	concurrently	might	not	be	as-
sociated	to	an	increase	in	theta	power	because	the	theta	
power	may	already	be	high	in	the	“low	load,”	single-	task	
condition	 and	 may	 not	 have	 increased	 considerably	 in	
the	 dual-	task	 condition	 (i.e.,	 ceiling	 effect).	 However,	
the	 unequal	 distribution	 of	 studies	 between	 subgroups	
prevents	 any	 categorical	 conclusions	 and	 further	 work	
is	 needed	 to	 investigate	 the	 impact	 of	 multi-	tasking	 on	
theta	 power.	 The	 second	 outlier	 detected	 by	 our	 analy-
ses	(Zhang	et	al., 2016)	had	a	very	large	effect	size	(g	=	
2.28).	The	authors	 studied	 the	 impact	of	a	 single	visual	
working	memory	task	with	parametric	variation	of	load	
(1	to	6)	on	the	theta	power	in	the	frontal	midline	region	
(Fz).	 Moreover,	 the	 authors	 extracted	 the	 theta	 power	
during	stimulus	retention	times,	the	periods	in	which	the	
most	 resources	are	committed	 (Jensen	&	Tesche, 2002).	
Focusing	on	the	critical	period	undoubtedly	enabled	such	
a	large	effect	size	to	be	obtained.

Some	studies	have	shown	that	theta	power	was	modu-
lated	by	the	increase	in	task	demand	only	for	individuals	
having	 higher	 working	 memory	 capacities	 (Zakrzewska	
&	Brzezicka, 2014)	or	presenting	higher	performance	 in	
multitasking	situations	(Puma	et	al., 2018).	In	these	stud-
ies,	 groups	 with	 low	 performances	 showed	 high	 theta	
power	throughout	the	experiment,	regardless	of	the	level	
of	difficulty.	The	neural	efficiency	hypothesis—	that	is,	at	
equal	performance,	a	higher	neural	activation	is	a	sign	of	
less	efficient	neural	processing	(Neubauer	&	Fink, 2009)—	
could	explain	this	phenomenon.	The	hypothesis	surmises	
that	 a	 high	 theta	 power	 for	 low	 performers	 in	 a	 low-	
demand	condition	reflects	a	greater	recruitment	in	neural	
resources	 and	 therefore,	 less	 efficient	 neural	 processing.	
High	performers,	on	the	other	hand,	demonstrate	neural	
efficiency	to	meet	the	demands	of	the	simplest	tasks	with	
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fewer	neural	resources	(i.e.,	lower	theta	power).	Increased	
difficulty	then	requires	greater	neural	resources,	matching	
the	increase	in	theta	power.	This	increase	then	reaches	a	
plateau	when	the	demands	of	the	task	require	all	the	avail-
able	 neural	 resources	 (Puma	 et	 al.,  2018;	 Zakrzewska	 &	
Brzezicka, 2014;	Zhang	et	al., 2016).	By	indexing	the	level	
of	effort	required	for	a	certain	type	of	task,	the	theta	could	
be	an	indicator	of	the	level	of	neural	efficiency	of	the	par-
ticipants.	 This	 hypothesis,	 although	 speculative,	 could	
partly	explain	the	inconsistency	of	the	results	evaluating	
theta	and	CWL	(e.g.,	Brouwer	et	al., 2014;	Hsu	et	al., 2015).

4.2	 |	 Alpha

Alpha	spectral	power	appears	 to	be	negatively	 impacted	
by	the	increase	in	CWL:	an	increase	in	CWL	leads	to	a	de-
crease	in	alpha	power.	The	presence	of	the	alpha	frequency	
has	 long	 been	 considered	 as	 indexing	 a	 “wakefulness”	
state	of	the	brain,	due	to	its	desynchronization	during	cog-
nitive	tasks	(the	“cortical	idling	hypothesis,”	Pfurtscheller	
et	 al.,  1996).	 Several	 studies	 have	 indeed	 observed	 a	 de-
crease	 in	 alpha	 power	 associated	 with	 an	 increase	 in	
task	 demands	 (Fairclough	 &	 Venables,  2006;	 Fallahi	
et	 al.,  2016;	 Fink	 et	 al.,  2005;	 Klimesch,  1999;	 Pergher	
et	al., 2019;	Sterman	et	al., 1994).	Klimesch	et	al.  (2007)	
hypothesized	that	alpha	synchronization	may	correspond	
to	an	active	process	of	 inhibiting	information	that	 is	not	
relevant	to	the	task	(the	“inhibition-	timing	hypothesis”):	
The	hypothesis	postulates	that	when	faced	with	a	cogni-
tive	demand,	the	cortical	areas	involved	in	the	processing	
of	the	task	experience	a	desynchronization	of	alpha	power	
(i.e.,	uninhibited),	while	the	areas	that	are	not	necessary	
to	 the	 task	 or	 that	 could	 interfere	 with	 it	 are	 inhibited	
by	 alpha	 synchronization,	 particularly	 in	 the	 occipito-	
parietal	areas	 (Jensen	et	al., 2002;	Klimesch	et	al., 2007;	
Rihs	 et	 al.,  2007).	 This	 may	 explain	 why	 an	 increase	 in	
alpha	power	has	also	been	observed	during	the	processing	
of	cognitive	 tasks	 (Jensen	et	al., 2002;	Palva	et	al., 2005;	
Tuladhar	et	al., 2007).	The	alpha	rhythm	could	 thus	act	
as	 an	 information	 inhibiter	 which	 optimizes	 the	 signal-	
to-	noise	 ratio	 for	 the	 benefit	 of	 the	 neurons	 involved	 in	
the	processing	of	relevant	information	(Klimesch, 2012).	
This	 functional	 role	 of	 alpha	 has	 been	 supported	 in	 nu-
merous	 studies	of	visual	attention	 that	have	 shown	 that	
the	allocation	of	attention	in	one	direction	is	accompanied	
by	a	suppression	of	alpha	in	the	contralateral	visual	cor-
tex	and	an	increase	in	alpha	in	the	ipsilateral	visual	cortex	
(Clayton	et	al., 2019;	Wildegger	et	al., 2017).	In	a	recent	
study	that	used	rhythmic	transcranial	magnetic	stimula-
tion	(rTMS)	during	a	visuospatial	working	memory	 task	
(Riddle	et	al., 2020),	10	Hz	magnetic	pulses	at	the	poste-
rior	parietal	cortex	contralateral	to	the	non-	cued	hemifield	

(where	distractors	are	presented),	increased	visual	work-
ing	memory	performance	compared	to	arrhythmic	TMS.	
This	study	suggests	 the	 involvement	of	parietal	alpha	 in	
the	inhibition	processes.	Our	subgroup	analyses	are	con-
sistent	with	 those	 results,	 showing	a	greater	decrease	 in	
alpha	power	in	the	parietal	area	following	an	increase	in	
CWL.

However,	 a	 controversy	 remains	 because	 some	 stud-
ies	observed	an	increase	in	alpha	power	in	areas	involved	
in	cognitive	processing	 (e.g.,	 Jensen	et	al., 2002).	An	ex-
planation	for	this	discrepancy	has	been	advanced	by	van	
Ede  (2018),	 who	 argue	 that	 the	 posterior	 alpha	 power	
increases	 during	 the	 encoding	 of	 verbal	 material	 (even	
when	 the	 stimuli	 are	 encoded	 visually),	 whereas	 it	 de-
creases	during	 the	encoding	of	visual	material	 (van	Ede	
et	al., 2017).	However,	this	explanation	based	on	the	na-
ture	of	the	stimuli	(i.e.,	visual	or	verbal)	does	not	account	
for	some	of	our	results.	Kakizaki’s	study	(Kakizaki, 1984,	
considered	 as	 an	 outlier	 by	 our	 analyses),	 measured	 the	
cerebral	 activity	 of	 the	 occipital	 cortex	 (Oz)	 during	 an	
increase	 in	 CWL	 imposed	 by	 mental	 arithmetic	 tasks.	
Results	 revealed	an	 increase	 in	 the	spectral	power	of	all	
frequencies,	 including	alpha,	with	 the	 increase	 in	CWL.	
Calculation	involves	many	cortical	networks	(e.g.,	prefron-
tal,	premotor,	parietal;	Zago	et	al., 2001),	including	the	oc-
cipital	cortex.	Indeed,	it	has	been	shown	that	injury	of	the	
occipital	cortex	impairs	the	calculation	process	when	the	
digits	to	be	manipulated	are	presented	visually	(Dehaene	
&	 Cohen,  1997).	 The	 involvement	 of	 this	 region	 during	
the	 task	should,	 therefore	have	resulted	 in	a	decrease	 in	
alpha	power.	Moreover,	in	Murata’s	study	(Murata, 2005),	
participants	were	asked	to	determine	whether	the	stimu-
lus	(letter)	presented	on	the	screen	matched	the	stimulus	
presented	one,	two	or	three	trials	previously,	in	terms	of	
letter	and	location.	Alpha	power	measured	in	Fz,	Cz,	and	
Pz	also	 increased	with	the	difficulty	of	 the	task.	Further	
studies	evaluating	 the	modulation	of	alpha	according	 to	
the	type	of	stimuli	must	be	conducted	in	order	to	test	the	
hypothesis	 of	 alpha	 specificity.	 Concerning	 the	 power	
of	 alpha	 sub-	bands,	 results	 from	 the	 literature	 showed	
that	high	alpha	 interacts	with	visual	cognitive	 tasks	and	
semantic	 memory	 demands,	 while	 low	 alpha	 reflects	
a	 general	 attentional	 demand,	 not	 specific	 to	 the	 task	
(Klimesch,  1999).	The	 results	 of	 our	 subgroup	 analyses,	
although	 based	 on	 a	 small	 number	 of	 studies,	 provides	
support	 to	 the	 literature.	 Among	 the	 studies	 that	 mea-
sured	both	sub-	bands,	the	difference	in	sensitivity	to	CWL	
between	 lower	 and	 upper	 alpha	 was	 minor	 when	 mea-
sured	during	an	N-	back	(Rietschel	et	al., 2012)	or	stimulus	
detection	task	(Shaw	et	al., 2018),	but	larger	in	the	case	of	
a	more	visually	rich	flight	simulator	environment	(Jaquess	
et	al., 2017).	The	difference	between	these	two	sub-	bands	
thus	 appears	 to	 be	 quantitative	 rather	 than	 qualitative,	
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with	the	upper	alpha	slightly	more	sensitive	to	CWL	than	
the	lower	alpha.	Overall,	the	inverse	relationship	between	
alpha	 and	 CWL	 seems	 well	 established,	 as	 indicated	 by	
the	 very	 similar	 estimated	 effect	 sizes	 from	 the	 random	
and	fixed	effects	models	used	in	the	present	meta-	analysis.

4.3	 |	 Beta

The	 results	 regarding	 the	 beta	 frequency	 range	 revealed	
a	 moderate	 positive	 effect	 of	 CWL	 on	 this	 frequency.	
Numerous	 studies	 have	 established	 the	 involvement	
of	 the	 beta	 frequency	 in	 a	 variety	 of	 cognitive	 processes	
such	as	working	memory	 (Chen	&	Huang, 2016;	Deiber	
et	al., 2007),	language	processing	(Weiss	&	Mueller, 2012),	
long-	term	 memory	 (Hanslmayr	 et	 al.,  2014),	 and	 deci-
sion	 making	 and	 reward	 processing	 (Marco-	Pallarés	
et	 al.,  2015).	 However,	 the	 functional	 role	 of	 this	 fre-
quency	 is	 debated.	 Some	 researchers	 consider	 that	 the	
beta	frequency	plays	a	role	in	maintaining	cognitive	rep-
resentations	 and	 motor	 commands	 (the	 “status	 quo	 hy-
pothesis,”	 Engel	 &	 Fries,  2010),	 while	 others	 argue	 that	
this	 frequency	 allows	 network-	level	 communication	
and	 endogenous	 (re)activation	 of	 information	 (Spitzer	
&	 Haegens,  2017).	 Moreover,	 some	 authors	 suggest	 that	
there	are	functional	distinctions	between	beta1	and	beta2,	
and	that	these	sub-	bands	have	functional	roles	similar	to	
their	 neighboring	 frequencies	 (i.e.,	 alpha	 and	 gamma).	
Thus,	 beta1	 is	 thought	 to	 have	 an	 inhibitory	 role	 and	
could	contribute	to	the	protection	of	WM	representations	
(Hanslmayr	et	al., 2009;	Kornblith	et	al., 2016;	Pereira	&	
Wang, 2015),	while	beta2	is	thought	to	be	more	involved	
in	top-	down	information	processing	processes	(Kornblith	
et	al., 2016;	Marco-	Pallarés	et	al., 2015).	Our	meta-	analysis	
by	subgroup	analyses	indicate	that	beta1	(g	=	0.93,	k	=	2;	
Kakizaki, 1984;	Orlandi	&	Brooks, 2018)	and	beta2	(g	=	
0.74,	k	=	3;	Kakizaki, 1984;	Orlandi	&	Brooks, 2018;	Pavlov	
&	Kotchoubey, 2017)	were	much	more	sensitive	to	CWL	
than	broad-	band	beta	 (g	=	0.28,	k	=	7).	The	 insufficient	
number	of	studies	in	these	subgroups	and	a	redundancy	
of	these	studies	across	subgroups	could	explain	these	un-
expected	results.	Another	subgroup	analysis	revealed	that	
expert	participants	(g	=	1.43,	k	=	3;	Morales	et	al., 2019;	
Orlandi	&	Brooks, 2018)	showed	a	greater	increase	in	beta	
power	with	an	 increase	 in	CWL	than	non-	expert	partic-
ipants	 (g	 =	 0.36,	 k	 =	 9).	 Here,	 we	 must	 note	 that	 some	
of	 the	 studies	 had	 characteristics	 that	 could	 explain	 the	
aforementioned	 subgroup	 analysis	 results.	 Orlandi	 and	
Brooks’	study	(Orlandi	&	Brooks, 2018)	took	place	in	the	
Maritime	 Safety	 Queensland	 Simulator,	 in	 which	 par-
ticipants	 were	 asked	 to	 complete	 several	 berthing	 tasks	
that	lasted	one	to	two	hours	depending	on	the	difficulty.	
Morales	et	al.  (2019)	measured	 the	activity	of	 four	pairs	

of	 surgeons	during	a	 surgical	 exercise	on	domestic	pigs.	
The	surgeons	performed	eight	surgical	exercises,	with	an	
average	duration	of	approximately	20	minutes.	The	 first	
study	had	a	total	time-	on-	task	comprised	between	360	and	
480	min,	while	the	second	had	a	time-	on-	task	of	about	172	
min,	which	is	much	larger	than	the	average	time-	on-	task	
of	the	other	studies	(M	=	42.73	min).	Such	heavy	and	time-	
consuming	protocols	might	explain	the	very	large	increase	
in	beta	power	observed	by	the	estimated	effect	sizes.

Our	results	seem	to	indicate	that	the	beta	frequency	is	
positively	associated	with	CWL.	However,	the	numerous	
mechanisms	that	underlie	this	frequency	and	their	speci-
ficities	still	need	to	be	specifically	investigated	for	a	better	
understanding.	Studies	specifically	aimed	at	distinguish-
ing	 the	 functional	 roles	 of	 beta	 according	 to	 its	 location	
(e.g.,	 prefrontal,	 parietal)	 and	 frequency	 (i.e.,	 beta1	 &	
beta2)	under	high	CWL	are	thus	still	needed.

Taken	together,	our	results	support	the	use	of	the	theta	
power	spectral	as	a	neurophysiological	index	of	CWL.	The	
theta	 frequency	of	 the	 frontal	cortex,	although	 it	cannot	
be	associated	with	a	unique	cognitive	process,	appears	to	
be	 most	 strongly	 associated	 with	 CWL.	While	 the	 alpha	
and	beta	frequencies	are	believed	to	reflect	inhibition	and	
engagement	processes	of	brain	resources,	the	frontal	cor-
tex	theta	frequency	seems	to	have	a	more	straightforward	
relationship	with	cognitive	engagement.

4.4	 |	 Limitations

At	 the	methodological	 level,	 several	 factors	 limit	 the	 re-
sults	of	this	quantitative	review.

First,	 our	 meta-	analyses	 did	 not	 include	 all	 studies	
that	 are	 relevant	 to	 the	 topic	 and	 cannot	 claim	 to	 be	
exhaustive.	 Inclusion	 is	 determined	 by	 the	 statistical	
indices	provided	by	 the	studies	and	estimating	a	mean	
effect	 size,	 therefore	 requires	 being	 more	 restrictive	
in	 including	 studies	 than	 in	 a	 systematic	 review.	 Also,	
several	publications	that	matched	the	inclusion	criteria	
were	not	included,	because	the	authors	did	not	answer	
and	 we,	 therefore	 lacked	 the	 necessary	 information	 to	
calculate	 an	 effect	 size.	 In	 addition,	 by	 restricting	 the	
studies	 included	 in	 the	 analysis	 to	 those	 published	 in	
peer-	reviewed	 journals,	 it	 is	 possible	 that	 some	 data	
available	 in	 the	 literature	 (e.g.,	 gray	 literature,	 non-	
English	 sources)	 were	 not	 included.	 Restricting	 our	
selection	 to	 studies	 published	 in	 peer-	reviewed	 jour-
nals	 could	 in	 part	 explain	 the	 asymmetry	 observed	 on	
the	 different	 funnel	 plots;	 an	 asymmetry	 that	 shows	 a	
bias	 in	 favor	 of	 studies	 with	 large	 standard	 errors	 and	
large	positive	ES,	symptomatic	of	the	“file	drawer	prob-
lem”	(Rosenthal, 1979).	The	trim-	and-	fill	method	aims	
to	identify	asymmetries	caused	by	publication	bias	and	
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to	correct	them,	by	virtually	integrating	missing	studies.	
After	estimating	and	integrating	the	number	of	missing	
studies,	 this	 method	 makes	 it	 possible	 to	 recalculate	 a	
meta-	analysis	considering	the	newly	integrated	studies.	
This	resulted,	for	each	of	the	three	frequencies	investi-
gated,	 in	 a	 decrease	 in	 the	 estimated	 effect	 sizes.	 It	 is,	
therefore,	possible	 that	 the	effects	 initially	observed	 in	
our	analyses	were	overestimated	due	to	publication	bias.	
However,	the	“trim-	and-	fill”	method	does	not	consider	
other	factors	that	can	influence	a	funnel	plot	asymmetry	
(e.g.,	 Egger	 et	 al.,  1997).	 Moreover,	 in	 the	 presence	 of	
strong	 intergroup	heterogeneity,	 this	method	 is	known	
to	produce	biased	estimates	(Terrin	et	al., 2003).	The	in-
tergroup	 heterogeneity	 observed	 in	 our	 meta-	analyses	
can	 be	 explained	 by	 the	 methodological	 diversity	 of	
the	included	studies,	such	as	the	tasks	used	to	generate	
CWL,	the	type	of	EEG	system	used	(e.g.,	headset,	wire-
less	 EEG)	 and	 the	 location	 of	 the	 electrodes	 (e.g.,	 one	
at	 Fz,	 two	 at	 F3,	 F4).	This	 heterogeneity	 was	 expected	
due	to	the	wide	variety	of	protocols	that	have	attempted	
to	measure	CWL	and	reflects	the	interest	of	CWL	mea-
surement	 in	 many	 areas.	This	 review,	 which	 is	 not	 in-
tended	to	be	limited	to	a	specific	field,	therefore	reflects	
this	diversity.	As	discussed	above,	it	is	important	to	keep	
in	mind	that	different	tasks	were	used	to	modulate	cog-
nitive	load	(see	Table S1).	Some	of	the	included	studies	
compared	EEG	spectral	power	between	a	0-	back	and	a	
1-	back	condition	on	the	N-	Back	test,	while	other	studies	
compare	1-	back	and	3-	back	conditions.	This	difference	
in	mental	effort	 is	expected	to	be	an	important	moder-
ator	of	the	computed	effect	size	but	is	difficult	to	assess	
quantitatively	due	to	the	diversity	of	protocols.

4.5	 |	 Future work

Before	EEG	can	be	proposed	as	a	functional	CWL	meas-
urement	system	in	cognitively	demanding	professional	
situations	such	as	those	experienced	by	military,	medi-
cal,	 transport,	or	nuclear	operators,	many	 factors	need	
to	be	studied	in	greater	depth.	Several	studies	comparing	
three	levels	of	CWL	(low,	moderate,	and	high)	have	ob-
served	no	difference	between	moderate	and	high	 load-
ing	conditions	(e.g.,	Castro-	Meneses	et	al., 2020;	Gevins	
et	al., 1998).	This	quantitative	review	was	restricted	 to	
comparing	relatively	distinct	 loads	 (low	vs.	high	 load).	
More	studies	might	be	interested	in	investigating	inter-
mediate	 levels	 of	 difficulty,	 which	 could	 then	 be	 ana-
lyzed	by	meta-	regression.

With	 regard	 to	 the	 safety	 domain,	 the	 study	 of	 the	
emotional	 load	 also	 seems	 to	 be	 of	 crucial	 importance,	
considering	that	unforeseen	and/or	extremely	dangerous	
unexpected	 events	 can	 greatly	 affect	 operators,	 despite	

their	 training.	 For	 example,	 Grissmann	 et	 al.  (2017)	 ob-
served	a	decrease	in	the	activity	of	the	frontal	theta	under	
negative	 affective	 valence.	 The	 authors	 considered	 that	
the	negative	stimuli	interfered	with	the	processing	of	the	
task	through	the	reduction	in	activity	of	the	frontal	cogni-
tive	control	network.

The	 combined	 study	 of	 attentional	 reserve	 and	 CWL	
also	 seems	 to	 be	 a	 promising	 avenue	 for	 both	 applied	
and	 fundamental	 research.	 To	 our	 knowledge,	 only	 two	
studies	have	jointly	studied	CWL	(by	spectral	power)	and	
attentional	 reserve	 (by	 ERP;	 Jaquess	 et	 al.,  2017;	 Shaw	
et	al., 2018).	These	two	constructs	appeared	indeed	to	be	
strongly	linked,	considering	that	CWL	represents	what	is	
used	and	attentional	reserve	what	remains	available	from	
our	limited	resources.	The	study	of	 these	two	constructs	
could	lead	to	a	finer	understanding	of	our	cognitive	capac-
ities	and	their	limits.

Our	 meta-	analysis	 was	 limited	 to	 the	 comparison	 of	
spectral	power	difference	in	the	frequency	bands	of	inter-
est.	 However,	 this	 method	 of	 analysis	 of	 the	 brain	 elec-
trical	 signal	 is	 embedded	 in	 a	 simplifying	 localizationist	
framework	and	does	not	allow	to	take	account	of	the	in-
terconnected	neural	networks	that	enable	cognitive	func-
tions	 (Herbet	 &	 Duffau,  2020).	 For	 example,	 one	 model	
that	 is	 gaining	 influence	 in	 the	 understanding	 of	 the	
human	brain	is	the	“communication	through	coherence”	
model	 (Fries,  2005,	 2015),	 which	 suggests	 that	 neural	
synchronization	 is	 the	 functional	 mechanism	 by	 which	
information	transmission	and	perceptual	binding	occurs	
in	the	brain	(Chapeton	et	al., 2019;	de	Vries	et	al., 2020).	
We	suggest	that	the	systematic	study	of	the	effect	of	CWL	
on	 the	 interareal	 coherence	 and	 functional	 connectivity	
of	 the	brain	could	be	of	 interest	 to	complete	our	under-
standing	of	the	effect	of	CWL	on	our	brain	activity	(e.g.,	
Kamzanova	et	al., 2020;	Muthukrishnan	et	al., 2020).

For	 field	 application	 purposes,	 it	 is	 likely	 that	 fre-
quency	 spectral	 power	 will	 not	 be	 able	 to	 measure	
all	 of	 the	 constituent	 dimensions	 of	 CWL	 (Matthews	
et	al., 2015).	Indeed,	it	is	illusory	to	expect	an	increase	
in	cognitive	demand	to	be	treated	in	the	same	way	for	
each	individual,	especially	in	real-	world	settings	where	
several	 tasks	must	generally	be	performed	 in	parallel.	
Responding	 to	 this	 demand	 implies	 a	 cascade	 of	 pro-
cesses	 (from	 the	 commitment	 of	 cognitive	 resources	
to	 self-	regulation	 processes)	 that	 can	 vary	 inter	 and	
intraindividually	 across	 tasks,	 goals,	 and	 time.	 It	 is	
unrealistic	 to	 search	 for	 a	 measure	 that	 would	 index	
all	these	phenomena	at	once.	However,	the	increase	in	
the	activity	of	 the	central	nervous	 system	 that	 can	be	
measured	 by	 EEG,	 and	 particularly	 the	 frontal	 theta	
spectral	 power,	 allows	 us	 to	 have	 a	 reflection	 of	 the	
neural	 resources	 engaged	 to	 complete	 the	 task.	 This	
index	 can	 serve	 as	 a	 basis	 for	 the	 systematized	 study	
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of	other	processes	involved	in	the	resolution	of	a	cog-
nitive	task,	such	as	effort	allocation	(Hockey, 1997)	or	
stress	regulation	(Matthews	et	al., 2002).	A	better	esti-
mate	of	CWL	could	be	made	by	coupling	EEG	with	an-
other	technique,	for	example	with	heart	rate	variability	
measures	which	seems	sensitive	 for	other	dimensions	
of	CWL	(Matthews	et	al., 2015)	with	a	certain	robust-
ness,	 as	 shown	 by	 a	 recent	 meta-	analysis	 (Hughes	
et	al., 2019).

5 	 | 	 CONCLUSION

Overall,	 our	 results	 argue	 in	 favor	 of	 a	 sensitiveness	 of	
EEG	 for	 CWL.	 Among	 the	 three	 main	 frequencies	 used	
in	the	literature,	the	theta	power	spectral	is	the	most	sen-
sitive	to	an	increase	in	task	demand.	The	beta	band	was	
also	sensitive	to	CWL,	while	the	alpha	band	was	inversely	
correlated	 with	 it.	 The	 EEG	 technique,	 even	 with	 few	
electrodes,	 appears	 to	 be	 an	 inexpensive	 and	 valid	 way	
to	measure	some	aspects	of	CWL	in	real	time.	However,	
the	 presence	 of	 heterogeneity	 and	 potential	 publication	
bias	means	that	our	results	should	be	taken	with	caution.	
Several	studies	still	need	to	be	carried	out	in	order	to	test	
the	 different	 hypotheses	 concerning	 the	 functional	 role	
of	these	frequencies	and	their	interaction	with	interindi-
vidual	differences.
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