
HAL Id: hal-03556778
https://hal.science/hal-03556778

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Defining an Optimal Configuration Set for Selective
Search Strategy - A Risk-Sensitive Approach

Josiane Mothe, Md Zia Ullah

To cite this version:
Josiane Mothe, Md Zia Ullah. Defining an Optimal Configuration Set for Selective Search Strategy -
A Risk-Sensitive Approach. 30th ACM International Conference on Information and Knowledge Man-
agement (CIKM 2021), ACM, Nov 2021, Queensland (virtual), Australia. �10.1145/3459637.3482422�.
�hal-03556778�

https://hal.science/hal-03556778
https://hal.archives-ouvertes.fr

Defining an Optimal Configuration Set for Selective Search
Strategy – A Risk-Sensitive Approach

Josiane Mothe
IRIT UMR5505 CNRS, INSPE, Univ. de Toulouse

Toulouse, France
josiane.mothe@irit.fr

Md Zia Ullah
IRIT UMR5505 CNRS
Toulouse, France
mdzia.ullah@irit.fr

ABSTRACT
A search engine generally applies a single search strategy to any
user query. The search combines many component processes (e.g.,
indexing, query expansion, search-weighting model, document
ranking) and their hyperparameters, whose values are optimized
based on past queries and then applied to all future queries. Even an
optimized system may perform poorly on some queries, however,
whereas another system might perform better on those queries.
Selective search strategy aims to select the most appropriate combi-
nation of components and hyperparameter values to apply for each
individual query. The number of candidate combinations is huge.
To adapt best to any query, the ideal system would use many combi-
nations. In the real world it would be too costly to use and maintain
thousands of configurations. A trade-off must therefore be found
between performance and cost. In this paper, we describe a risk-
sensitive approach to optimize the set of configurations that should
be included in a selective search strategy. This approach solves the
problem of which and how many configurations to include in the
system. We show that the use of 20 configurations results in signif-
icantly greater effectiveness than current approaches when tested
on three TREC reference collections, by about 23% when compared
to L2R documents and about 10% when compared to other selec-
tive approaches, and that it offers an appropriate trade-off between
system complexity and system effectiveness.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking; Re-
trieval effectiveness; Information retrieval query processing.

KEYWORDS
Adaptive information retrieval, Query driven parameterization,
Learning to rank, Search engine parameters, Risk sensitive systems
ACM Reference Format:
Josiane Mothe and Md Zia Ullah. 2021. Defining an Optimal Configuration
Set for Selective Search Strategy – A Risk-Sensitive Approach. In Proceedings
of the 30th ACM International Conference on Information and Knowledge
Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3459637.3482422

1 INTRODUCTION
According to the American Customer Satisfaction Index [26], users
of World Wide Web search engines are generally satisfied with the
results they obtain. Behind this general satisfaction, however, lie
disparities in user satisfaction with individual searches. According
to comparative analyses of the performances of various search en-
gines on test sets carried out in evaluation forums such as TREC
(Text Retrieval Conference, trec.nist.gov), even those that per-
form best on average over all the queries still fail on some queries,
whereas others may perform better on these queries even if, on
average, they perform less well [22, 37]. User satisfaction would
increase further if the search engine being used performed equally
well on all queries.

A search engine performs several distinct component processes.
These include indexing to extract the document terms that will
be used for query-document matching, automatic query reformu-
lation, search weighting to decide which documents to retrieve,
and ranking retrieved documents. A variety of models have been
proposed to perform these component processes (e.g., Bo1, Bo2 [1],
etc. for query reformulation). Each model has hyperparameters that
influence system effectiveness and can take a variety of values (e.g.,
the number of terms to be added to the query in query expansion).
When building a system, the model for each component must be
chosen and its hyperparameters set optimally. Current practice is to
optimize them experimentally; system effectiveness is maximized
by a combination of component and hyperparameter values based
on past searches or training queries [29]. This is done for each
collection separately by using Grid search [36, 47], Line search [32],
Bayesian optimization [29] or transfer learning [33]. Once opti-
mized, the same system is then used for all future queries. This
ensures the best performance on average for the training queries,
but not for individual queries.

The first attempt to improve the performance of search engines
for individual future queries was the introduction of a selective
query expansion (SQE) [2, 9, 14, 24, 53, 55], which applies query
expansion only to those queries that will benefit from it. SQE consid-
ers two search strategies, one with automatic query re-formulation
and one without. SQE’s use of only two search strategies did not
improve search engine performance very much, however, thus it is
no longer used. Subsequently, selective search strategy approaches
have increased the number of candidate configurations (i.e., the set
of chosen component processes and their hyperparameter values),
the system can choose from to process a new query [3, 8, 16, 23, 54].

The problem of deciding which candidate configurations to in-
clude in a selective search strategy is difficult, because the number
of parameters that can influence a search is very large [20, 40], hence

https://orcid.org/0000-0001-9273-2193
https://orcid.org/0000-0002-4022-7344
https://doi.org/10.1145/3459637.3482422
trec.nist.gov

the number of possible configurations is also very large. For ex-
ample, Deveaud et al. used 20, 000 candidate configurations, which
makes the approach impractical for real-world search engines [16].
The main problem of Deveaud et al. is an adhoc way of candidate
selection, which may cause the risk of choosing non appropriate
configurations. The second problem is to manage a very large pool
of configurations while a smaller number would be enough. There
are obvious advantages to reducing the configurations to a manage-
able number. If it were possible to use a considerable smaller set of
candidate configurations that work well for different queries, the
configuration selection approach would be usable in practice, espe-
cially for web search engines which need to be updated regularly.
This paper focuses on this specific problem.

Here, we develop a new greedy approach that can select from
a large pool of possible configurations those that should be inte-
grated as candidate configurations for a future selective search
strategy. During the training phase on training queries, our greedy
approach iteratively adds one representative configuration at a time
according to the principle that a configuration should be useful.
Our risk-sensitive approach applies a risk-reward trade-off func-
tion to evaluate whether each added configuration increases system
effectiveness on some queries and minimizes the risk of poor per-
formance. Moreover, we incorporate this process into a selective
search strategy that decides which of the candidate configurations
should handle a new query. We evaluate our method on three TREC
collections using different well-established measures of effective-
ness and show that it is more effective than the best configuration
of the pool and more effective than other strong baselines.

2 RELATEDWORK
Selective search strategy. A selective search strategy aims to
select the most appropriate search or system configuration among
many to apply to each individual query [23]; it thus differs from data
fusion, which fuses the retrieved document lists obtained by several
system configurations [21], but still uses a single strategy to process
all the queries [21, 25, 27, 41]. It also differs from double fusion,
which fuses the retrieved document lists over query variations for a
single system (query fusion) and over multiple systems for a single
query (system fusion) [6]. Finally, it differs from distributed selective
search, which avoids searching the entire corpus for each query [38].
This section focuses on selective search strategy approaches.

For each query, the selective query expansion approach selects
one of two configurations for each query: either the configuration
with query expansion or the original, unexpanded query; most
previous studies on SQE focused on how this decision is made.
Cronen-Townsend et al. and Amati et al. estimated how much the
results of the expanded query strayed away from the sense of the
original query to decide whether it should be expanded [2, 14]. The
two configurations used in SQE had only limited effectiveness. Xu et
al. [54] improved SQE such that the system chooses between differ-
ent query expansion strategies according to the type of query. They
defined three types of query: ambiguous queries, queries about a
specific entity and broader queries, and proposed different methods
to treat each type of query. Kevyn Collins-Thompson [13] intro-
duced a constraint optimization framework for SQE by reducing
the expansion risk, without hurting the average gain.

Previous attempts to use a selective search strategy have con-
sidered more than two configurations. Arslan and Dinçer [3] used
eight configurations consisting of eight term-weighting models
in which the hyperparameters were first optimized by using Grid
search. In this approach, the selection of a configuration to process
a new query is based on the frequency distributions of query terms
on the document collection. By considering more configurations in
selective search strategy the system performance improved [3, 54]
when compared to SQE.

The most effective selective search strategy approaches make
the configuration selection decision based on training by machine
learning from queries [16, 23, 40, 53] rather than making the deci-
sion based on a query score as was done previously [3, 14, 54]. He
and Ounis [23] introduced a model selection approach in which
queries were clustered considering three pre-retrieval features and
the best-performing retrieval model was attributed to each clus-
ter. For a given query, the retrieval model attributed to the closest
cluster was then selected to treat the query. The per-parameter
learning (PPL) method of Mothe and Washha [40] predicts the best
configuration to use by considering independently each of its com-
ponent processes and hyperparameters. PPL trains a multi-class
classifier for each component process and hyperparameter such
that each class corresponds to a model (in the case of components)
or a value (in the case of hyperparameters). Seven such classifiers
were trained corresponding to more than 80, 000 configurations
in total. These classifiers were then used to predict the best com-
ponent and hyperparameter configurations for an unseen query,
considering its features. An independently trained classifier for
each parameter may not effectively model system performance
since the parameters might be mutually dependent [20].

Xu et al. [53] focused on the automatic query expansion compo-
nent of selective search strategy. They adapt the standard learning
to rank documents model whose purpose is to rank a sample of
documents retrieved by a search system according to their sup-
posed relevance by learning from examples of query-document
preferences [30, 48]. The adaption was that the model does not
learn document ranking but, rather, it learns to rank the candidate
expansion terms based on query-term preferences. In Deveaud et
al. the configuration selection for new queries was also cast as a
problem of learning to rank [15, 16]. Their model learns to rank a
set of configurations according to their potential ability to retrieve
relevant documents for a given query based on examples of query-
configuration preferences. They considered various components
and hyperparameters and built more than 20, 000 configurations.
Although this approach has been shown to be effective, it is not
applicable in practice because the huge number of configurations it
considers is too costly in terms of computing time and maintenance.

None of the related work considers the problem of the choice of
the candidate configurations in selective search strategy. In many
of the previous studies just a few configurations were considered
but their choice was not argued. When there were too many to be
handled, they were selected randomly.

In this paper, we solve this problem with a risk-reward-based
method that pre-selects a manageable number of the candidate con-
figurations. A commercial search engine cannotmaintain thousands
of search configurations or thousands of query reformulations and

search components, specifically because they also need to be reg-
ularly tuned according to the evolution of queries. Our method
requires that only a small, manageable number of configurations
be maintained. Once the set of candidate configurations is obtained,
then any selective search strategy can be applied.
Risk-sensitive criteria. In information retrieval, risk has been
defined as “the risk of performing a given particular query less
effectively than a given baseline system" [6, 7, 17, 18, 51]. Risk-
sensitive functions have been studied in the context of learning to
rank documents where the same search strategy is applied for any
query and a single document ranking function is learned. Wang and
Zhu [50] presented a risk-averse ranking algorithm by considering
the mean-variance analysis of a ranked list, inspired by portfolio
theory. Wang et al. [51] defined 𝐹𝑟𝑖𝑠𝑘 , which estimates the average
reduction in effectiveness by using a given document rankingmodel
rather than a reference model. They proposed a risk-reward trade-
off function, 𝑈𝑟𝑖𝑠𝑘 , to directly optimize a risk-sensitive learning to
rank model that lowers the risk and enhances the reward of the
document ranking model performance. It is used to select the best
unique ranking model to be applied to any query.

Other variants of risk-reward trade-off functions have been pro-
posed in the literature based on 𝐹𝑟𝑖𝑠𝑘 [7, 17–19] to circumvent the
problem of 𝑈𝑟𝑖𝑠𝑘 that it is unclear whether the estimated loss of a
system over a baseline is a “real risk" statistically [17]. Dinçer et
al. [17] introduced𝑇𝑟𝑖𝑠𝑘 , an inferential version of𝑈𝑟𝑖𝑠𝑘 that follows
a Student’s t-distribution. Later, Dinçer et al. [18] also proposed
𝑍𝑟𝑖𝑠𝑘 and 𝐺𝑟𝑖𝑠𝑘 to compare the risk-reward trade-off of a system
against multiple baselines.

De Sousa et al. [46] incorporated risk functions for feature se-
lection in learning to rank documents. They compared the models
obtained by considering different subsets of features in order to
select the most important ones. Benham et al. [6] introduced the
risk function to estimate the risk-reward trade-off in rank fusion.
Later, Benham et al. tried an S-shaped weighting function instead of
the linear weighting function in risk measures; however, they found
no conclusive differences in risk sensitivity [7]. They also suggested
a naming convention and a reversed signed version of the existing
risk measures so that higher value corresponds to higher risk. Also,
Benham et al. [5] studied the inferential behavior of risk measures
and the stability of its confidence intervals. They found that the
distribution of risk-adjusted scores is asymmetrical, undermining
the normality assumption of the t-test statistic used in 𝑇𝑟𝑖𝑠𝑘 , for
example.

In approach described below, we develop a risk-sensitive crite-
rion that aims to determine which candidate configurations should
be included in a pool for a selective search strategy. We develop the
appropriate risk and reward functions, which are based on overall
system effectiveness optimization.

3 RISK-SENSITIVE CRITERIA TO SELECT
CANDIDATE CONFIGURATIONS

For the rest of this paper, configuration refers to a specific setting of
an ensemble of components and their hyperparameters e.g., BM25
with Bo2 query expansion using 5 documents and 10 added query
terms. Each ensemble defines a possible configuration for the pool.
Candidate configuration is a configuration from the initial pool that

has been selected to be included in the meta-system that uses this
configuration pool and a selective search strategy. We use selective
search strategy when referring to the search that selects a candidate
configuration for each individual query. We use parameter as a
generic term for component or hyperparameter.

3.1 Overview
The usual selective search strategy framework comprises two phases
[2, 3, 15, 16, 23]:

• Configuration pool: the meta-system contains a pool of config-
urations it can choose among (first phase);

• Selective search strategy: the meta-system selects the configu-
ration from the pool to be applied for the current query, using
the “best fit" principle (final phase).

Either the configuration pool is limited to 2-8 configurations [2,
3, 23, 53] and hence needs no further limitation, or it contains
20, 000-80, 000 configurations [15, 16, 40].

The main contribution of this paper is to define a third phase in
between the two mentioned above:

• Candidate configuration selection: a limited number of configu-
rations are selected from the initial pool as candidate configu-
rations for the selective search strategy (intermediate phase).

On the one hand, a large candidate configuration pool increases
the potential of selective search strategy. On the other hand, too
many candidate configurations makes the system inoperable in real
life systems. It also increases the risk of overfitting when training
the selective search strategy process if there are many more config-
urations than query examples. Although the selection step is crucial
for applicability when there are too many configurations to choose
among, previous studies have not identified a means to select from a
pool. In the next sub-section we describe the risk-reward functions
we have developed to meet this challenge.

3.2 Risk/reward function
The risk and reward functions are used to reduce the configuration
pool to a limited number of candidate configurations for selective
search strategy.

Not all configurations are equally good or poor. Some configu-
rations may be poor in terms of effectiveness, whatever the query
is, some configurations may be good for some queries but poor for
others, some may be appropriate for just a very limited number of
queries that other configurations process equally well, some con-
figurations may be very similar to others and therefore redundant,
the specific setting of certain parameters may also not be important
in certain contexts (given the setting of other parameters), etc.

We hypothesize that the more candidate configurations are avail-
able for the meta-system to choose, the higher the overall model
effectiveness (in case of appropriate selection), but the higher the
risk (in case of bad selection). Moreover, the more configurations
there are, the costlier the meta-system in terms of time complexity;
the cost of maintaining and ranking more configurations. To solve
the problem of the effectiveness-cost trade-off, we need an opti-
mized configuration set i.e., a limited number of complementary
configurations in the meta-system.

We developed a greedy approach by starting from an effective
configuration and iteratively adding complementary effective con-
figurations to the pool. Intuitively, a straightforward choice for
selecting the first configuration is the configuration that maximizes
the average effectiveness over the training queries. The second
configuration should be chosen as complementary to the first: it
should be more effective than the first configuration, at least for
certain queries (it can receive a reward for this) and at the same
time, it should not negatively affect queries (i.e., bring risk into the
system) if the selective search strategy model chooses it by mistake
for a given query. Hence, the process of selecting the candidate
configurations can be modeled as a trade-off between minimizing
the risk when the meta-system does not obtain the best candidate
configuration and maximizing the reward when the meta-system
selects the best candidate configuration for a given query.

Below, we define the risk-sensitive approach for selective search
strategy. Wang et al. [51] defined risk in the context of learning
to rank documents whose purpose is to decide on the document
ranking for a given query as “the risk [for the system] of perform-
ing a given particular query less effectively than a given baseline
system" [6, 7, 17, 18]. More formally, they defined 𝐹𝑅𝑖𝑠𝑘 as follows:

𝐹𝑅𝑖𝑠𝑘 (Q𝑇 , 𝑀) = 1
|𝑇 |

∑
𝑞𝑖 ∈Q𝑇

max(0, 𝐵(𝑞𝑖) −𝑀 (𝑞𝑖)) (1)

where Q𝑇 is the training query set, 𝐵(𝑞𝑖) is the baseline effec-
tiveness for query 𝑞𝑖 ∈ Q𝑇 , and 𝑀 (𝑞𝑖) is the effectiveness of the
document ranking model for which the risk is estimated. 𝐹𝑅𝑖𝑠𝑘 thus
estimates the average reduction in system effectiveness by using a
given document ranking model rather than a reference model. They
use this principle to select the best unique ranking model which
can be applied to any query.

Inspired by the 𝐹𝑅𝑖𝑠𝑘 measure, we have defined a function for
selecting candidate configurations for selective search strategy. This
function measures the risk associated with selecting for a given
query the configuration 𝑐 𝑗 rather than the reference configuration
𝑐𝑟 . The risk relates to 𝑐𝑟 being better than 𝑐 𝑗 .

The risk function we define is 𝐸𝑓 𝑓𝑅𝑖𝑠𝑘 (𝑐 𝑗), which accumulates
the risk relative to queries in terms of effectiveness for the training
query set. 𝐸𝑓 𝑓𝑅𝑖𝑠𝑘 (𝑐 𝑗) is defined in eq. (2) where Q𝑇 is the training
query set, 𝑝 (𝑐𝑟 , 𝑞) is the performance (effectiveness) of the reference
configuration 𝑐𝑟 for the query 𝑞, and 𝑐 𝑗 is a configuration from the
initial pool. 𝐸𝑓 𝑓𝑅𝑖𝑠𝑘 (𝑐 𝑗) hence accumulates the loss in effectiveness
in relation to queries when the configuration 𝑐 𝑗 is selected, whereas
the reference configuration 𝑐𝑟 would have been the better choice:
it corresponds to the maximum possible risk.

𝐸𝑓 𝑓𝑅𝑖𝑠𝑘 (𝑐 𝑗) =
1
|𝑇 |

∑
𝑞𝑖 ∈Q𝑇

max(0, 𝑝 (𝑐𝑟 , 𝑞𝑖) − 𝑝 (𝑐 𝑗 , 𝑞𝑖)) (2)

In addition to the risk function, we define the corresponding
reward function. This is based on the potential increase in overall
effectiveness (Eq. 3) using configuration 𝑐 𝑗 . The reward function is
defined as follows:

𝐸𝑓 𝑓𝑅𝑒𝑤𝑎𝑟𝑑 (𝑐 𝑗) =
1
|𝑇 |

∑
𝑞𝑖 ∈Q𝑇

max(0, 𝑝 (𝑐 𝑗 , 𝑞𝑖) − 𝑝 (𝑐𝑟 , 𝑞𝑖)) (3)

and aggregates the improvement in effectiveness that would result
if the system takes account of 𝑐 𝑗 for the queries, where 𝑐 𝑗 performs
better than the reference configuration 𝑐𝑟 .

Once the risk and reward have been defined, we have to adapt
formulas of Eqs. 2 and 3 to fit the problem of selecting a set of
candidate configurations that can be used in the selective search
strategy meta-system.

Let R be the entire initial configuration pool and 𝑆𝑘−1 be the set
of configurations that have already been selected at step 𝑘 with an
initial 𝑆0 = {𝑐𝑟 }, which is a point of reference or the first selected
configuration.Q𝑇 is the set of training queries and 𝑝 (𝑐𝑘 , 𝑞𝑖) denotes
the retrieval effectiveness (e.g., nDCG@10) for the query 𝑞𝑖 ∈ Q𝑇
processed by the configuration 𝑐𝑘 .

Given R and 𝑆𝑘−1, we define the risk for selecting the new con-
figuration 𝑐𝑘 ∈ R \ 𝑆𝑘−1 to be added to 𝑆𝑘−1 at step 𝑘 using Eq. 2
in terms of effectiveness as follows:

𝐸𝑅𝐼𝑆𝐾 (𝑐𝑘 , 𝑆𝑘−1) =
1
|𝑇 |

∑
𝑞𝑖 ∈Q𝑇

max(0, max
𝑐 𝑗 ∈𝑆𝑘−1

(𝑝 (𝑐 𝑗 , 𝑞𝑖)) − 𝑝 (𝑐𝑘 , 𝑞𝑖))

(4)
where max𝑐 𝑗 ∈𝑆𝑘−1 𝑝 (𝑐 𝑗 , 𝑞𝑖) is the maximum effectiveness for the
query 𝑞𝑖 in relation to the set of configurations that have already
been selected in 𝑆𝑘−1. In Eq. 4, the risk of adding the configuration
𝑐𝑘 is measured as the cumulative decrease in effectiveness which
the meta-system can achieve if it chooses 𝑐𝑘 rather than the best
configuration in 𝑆𝑘−1 for each of the training queries: it therefore
adapts Eq. 2.

Likewise, we define the reward function using Eq. 3 in terms of
effectiveness as follows:

𝐸𝑅𝐸𝑊𝐴𝑅𝐷 (𝑐𝑘 , 𝑆𝑘−1) =
1
|𝑇 |

∑
𝑞𝑖 ∈Q𝑇

max(0, 𝑝 (𝑐𝑘 , 𝑞𝑖)− max
𝑐 𝑗 ∈𝑆𝑘−1

𝑝 (𝑐 𝑗 , 𝑞𝑖))

(5)
The overall gain for the configuration 𝑐𝑘 ∈ R \ 𝑆𝑘−1 in relation

to the set of training queries and already selected configurations
𝑆𝑘−1 is defined as:

𝐺𝑎𝑖𝑛(𝑐𝑘 , 𝑆𝑘−1) = 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑐𝑘 , 𝑆𝑘−1) − (1 + 𝛼)𝑅𝑖𝑠𝑘 (𝑐𝑘 , 𝑆𝑘−1) (6)

where the functions 𝑅𝑒𝑤𝑎𝑟𝑑 (𝑐𝑘 , 𝑆𝑘−1) and 𝑅𝑖𝑠𝑘 (𝑐𝑘 , 𝑆𝑘−1) refer to
the effectiveness-based Eqs. 4 and 5, respectively. The 𝛼 ≥ 0 is a
risk-sensitive parameter that controls the trade-off between risk and
reward. In our case, we set 𝛼 as 0 to weight risk and reward equally.
We keep a statistical analysis of this risk-sensitive parameter for
future work [5, 18].

Finally, at step 𝑘 we select the configuration 𝑐∗
𝑘
which maximizes

the overall gain according to the following equation:

𝑐∗
𝑘
= argmax
𝑐𝑘 ∈R\𝑆𝑘−1

(
𝐺𝑎𝑖𝑛(𝑐𝑘 , 𝑆𝑘−1)

)
(7)

We then update 𝑆𝑘−1 as follows:

𝑆𝑘 = 𝑆𝑘−1 ∪ {𝑐∗
𝑘
} (8)

where 𝑆𝑘 is the set of 𝑘 risk-sensitive configurations selected for a
set of training queries 𝑄𝑇 .

The risk-sensitive criteria model we propose is generic enough
to be applied to any selective search strategy approach. In the next
section, we present the selective search strategy approach based
on a learning to rank algorithm.

3.3 Best query-configuration fit
The aim of the risk-sensitive criteria we have defined is to optimize
the set of configurations to be used in the selective search strategy
meta-system. When the meta-system has an optimized set of con-
figurations to use, it must then decide which one to use for a given
query.

For the selective search strategy part, we use learning to rank
(L2R) algorithms to rank the configurations as suggested in De-
veaud et al. [16]. Usually, L2R is used to rank documents on a
per-query basis [10]: after training on past queries, the system
is able to rank the retrieved documents for any new individual
query. In L2R documents, a single configuration system is used
to retrieve the initial set of documents and training is based on
query-document pairs along with document relevance for these
pairs or preferences. Deveaud et al. [16] adapted this principle for
selective search strategy as follows. In the standard L2R documents
model, training is composed of query-document pairs, along with
their relevance or preferences, whereas in the L2R configurations
model, the training data is composed of query-configuration pairs,
along with the associated retrieval effectiveness. After training on
past queries, the system is able to rank the configurations for any
new individual query.

The principle is thus to train a ranking model 𝑟 (𝑞𝑖 , 𝑐 𝑗) = 𝑟 (𝑓𝑖, 𝑗)
to assign a score to a given query-configuration pair (𝑞𝑖 , 𝑐 𝑗) i.e., a
given feature vector 𝑓𝑖, 𝑗 . More generally, the rankingmodel can rank
all the configurations for a given query 𝑞𝑖 . In this case, the ranking
model is 𝑅(𝑞𝑖 ,S) = 𝑅(fi), where S is the set of configurations and
f𝑖 = (𝑓𝑖,1, 𝑓𝑖,2, · · · , 𝑓𝑖, |S |) is the set of feature vectors for the query-
configuration pairs. Like the L2R documents model, the ranking
model 𝑅(𝑞𝑖 ,S) is learned from the training data by minimizing the
loss function L(𝑟 ; f,S).

We adopted the model of Deveaud et al. in the final, selective
search strategy phase. More precisely, given the set of training
queries, we considered the only configurations selected using our
risk-sensitive criteria. Then, for each individual training query, we
trained the model to rank the configurations according to their
effectiveness and kept only the top-ranked configuration. When
the model was trained and given a new (test) query 𝑞𝑡+1 for which
we wanted to know the configuration to use, we built the feature
vectors f𝑡+1 for the candidate configurations only, used the trained
model that predicts the ranking scores of the candidate configu-
rations and obtained the one that gave the highest score. As an
alternative to the L2R model of Deveaud et al., we also formulated
the query-configuration matching problem as a multi-class classi-
fication problem but this worked less well than L2R for this task,
probably because many configurations were similar to each other,
hence it is easier for a model to rank them rather than to use a
one-vs-all classification approach. Thus, we report here only on the
L2R approach.

4 EVALUATION
4.1 Data collection and evaluation measures
To evaluate our contributions, we considered three standard TREC
collections from the Adhoc tasks. TREC78 which consists in ap-
proximately 500K newspaper articles, WT10G composed of ap-
proximately 1.6 million Web/blog page documents, and GOV2 that

includes 25 million web pages. The TREC test collections also in-
clude topics which "standard" format comprises a topic ID, a title, a
description and a narrative. The title contains two or three words
on average that represent the keywords a user could have used to
send a query.

In our experiments, a query is composed of the topic title only.
There are 100 topics in TREC78 (merging topics from TREC7 and
TREC8), 100 topics in WT10G, and 150 topics in GOV2. Finally,
the collections provide qrels i.e., judged documents for each topic,
which is used by the evaluation program trec_eval1 to calculate the
effectiveness for Adhoc.

We used common evaluation measures to estimate the retrieval
effectiveness for a query with a configuration from the above men-
tioned three collections; these measures are the same as those used
to label the query-configuration examples: AP (Average Precision),
nDCG@10 (normalized discounted cumulative gain at the cut-off
rank 10) and P@10 (precision at the 10 cut-off documents).

To evaluate the models we used 2-fold cross-validation on query
sets in all the experiments as follows: half of the queries (let us call
this query set 𝑄𝐴), were used for training while the other half, 𝑄

𝐴
,

was used for testing. Then, conversely, 𝑄
𝐴
was used for training

while 𝑄𝐴 was used for testing. We used 3 draws to randomly split
queries into 𝑄𝐴 and 𝑄

𝐴
and averaged the results. To prepare the

folds for three trials, we randomly shuffled the queries using R’s
sample function (random seed=42) and divide the query set into two
subsets for each trial. We also indicate the standard deviation across
the three trials in order to show how robust the results are. The
same splits are applied no matter what method we use which needs
a training phase i.e., for our methods and some of the baselines (see
subsection 4.3). We follow this 2-fold cross-validation for multiple
trials approach because of the limited number of queries available
in each collection [43, 45].

4.2 Generation of a pool of configurations
Configurations are built by varying the IR components and some
of their hyperparameters. We have limited ourselves to the study
of 2 main IR components: the term weighting model and automatic
query expansion components from which we consider different
variants from the literature. We also consider different values of
the hyperparameter related to query expansion. The model we
developed is generic enough to be applied also when considering
other search components and/or other values of component hy-
perparameters. In this study, we thus did not include the indexing
component because we think it would be too costly to maintain
different indexes in practice. We did not include the learning to
rank document component and keep this for future research.

For the retrieval component, we selected the 22 different models
(e.g., LM, BM25) that are implemented in Terrier2, the tool we used
in our experiments (See Table 1). Each of the models come with a
series of hyperparameters. We used their defaults values that have
been optimized in Terrier on TREC collections and did not apply
an extra -costly- grid search to optimize them. We could have also
considered the hyperparameters for each retrieval model e.g., 𝑘1

1http://trec.nist.gov/trec_eval/
2https://github.com/terrier-org/terrier-core/blob/5.x/doc/
configure_retrieval.md

https://github.com/terrier-org/terrier-core/blob/5.x/doc/configure_retrieval.md
https://github.com/terrier-org/terrier-core/blob/5.x/doc/configure_retrieval.md

Table 1: Components and models & query expansion hyper-
parameter values for defining candidate configurations.

Search weighting model
BB2, BM25, DFRee, DirichletLM, HiemstraLM,InB2, InL2, JsKLs,
PL2, DFI0, XSqrAM, DLH13, DLH, DPH, IFB2, TFIDF, InexpB2,
DFRBM25, LGD, LemurTFIDF, InexpC2
Query expansion model
No, KL, Bo1, Bo2, KLCorrect, Information, KLComplete
QE Hyperparameter and Values
of Exp. doc.: 2, 5, 10, 20, 50, 100
of Exp. terms: 2, 5, 10, 15, 20; Min. # of doc.: 2, 5, 10, 20, 50

and 𝑏 for the BM25 model, and ` for the LM model, but we will
retain this more in-depth analysis and related experimental work
for a future study.

For the query expansion component, we selected the 7 differ-
ent models. Automatic query reformulation comes with crucial
hyperparameters (the number of: documents, terms used in query
expansion, and documents in which the added terms should occur)
for which we considered different values (See Table 1).

Combining all these retrieval and query reformulation models
and hyperparameters from Table 1 results in more than 20, 000
configurations. This configuration pool is the one used as input
to our candidate configuration selection model. The risk-sensitive
function is thus used to reduce the set of candidate configurations
by selecting the best ones in relation to the set of training queries.
In this way, the parameters can influence each other within the
same configuration and we do not need to address the problem
explicitly. We consider various query-configuration examples to
both select the most interesting candidate configurations and train
the query-configuration selective search strategy model.

Query-configuration training examples follow a vector-based
representation: the features 𝑓𝑖, 𝑗 depend on the query (𝑞𝑖), the con-
figuration (𝑐 𝑗), and a label. Any type of features could have been
used for the query features. In past studies, Xu et al. [54] chose
linguistic-based considerations to categorize queries into types such
as ambiguous queries. Deveaud et al. [16] represent queries by both
linguistic and post-retrieval features -calculated after a first search
using the current query, which entail additional cost. For the eval-
uation, we have opted for LETOR features that have been used
successfully for document ranking models [10, 31]. We calculate
LETOR features directly from an initial search that we perform
using a reference system (BM25).

With L2R documents, each LETOR feature is associated with a
query-document pair: these correspond mainly to document scores
for the query using different scoring functions [42]. In our case,
which is different from L2R documents, we also need to define
query-configuration features, but if the LETOR features were to
be calculated for each configuration 𝑐𝑖 , it would be too costly. In-
stead, we have chosen a unique fair configuration (𝑐𝐵𝑀25 is this
reference configuration: BM25 without query expansion in our ex-
periments) to calculate the LETOR query-configuration features.
This is a reasonable trade-off between computing costs and ac-
curately representing a query-configuration pair. L2R documents
based on an initial BM25 ranking will therefore be a fair baseline
for comparing our model and is included in Table 2.

As LETOR features are associated with query-document pairs
rather than query-configuration pairs, we need to aggregate those
features in relation to the documents that have been retrieved for a
given query. If we let 𝑑𝑖 . = (𝑑𝑖1, 𝑑

𝑖
2, · · · , 𝑑

𝑖
𝑛) be the top retrieved doc-

uments for the given query 𝑞𝑖 based on the reference configuration,
where 𝑛 is the number of retrieved documents, we can estimate a
set of scores 𝐶𝑖 = {𝑐𝑖 𝑗 }, where 𝑐𝑖 𝑗 = ℧(Ψ(𝑑𝑘𝑖 , 𝑞𝑖)) with ℧ as a set
of aggregation functions and Ψ as a set of scoring functions, for
example, TF-IDF. A similar principle was used in [4, 12] for query
performance prediction.

With regard to ℧, any kind of statistical aggregation functions
can be used. We focus on the mean, standard deviation and maxi-
mum functions, as [12] showed that these are complementary, at
least for the query performance prediction task. With regard to
scoring functions Ψ, we use those functions that are implemented
in the Terrier FAT framework3 [34]. The Terrier FAT framework
uses the DAAT [49] retrieval strategy to identify the initial sample
of 𝑛 documents and keeps the assignment of these documents in
its memory. This enables fast computation of any scoring function
i.e., the weighting function, without resorting to the expensive in-
verted index in real time. The initial sample of 𝑛 documents could
be retrieved faster by taking advantage of dynamic pruning [35].

Finally, the query-configuration vectors are labeled. The label
for a training example is the effectiveness of the configuration
when treating the query. We successively consider different labels
in the evaluation of the adhoc-oriented task: average precision
(AP), normalized discounted cumulative gain at the cut-off rank
10 (nDCG@10), and precision for 10 cut-off documents (P@10).
This representation is also used for all the selective search strategy
baselines for comparison purposes. To rank the configurations
using learning-to-rank models for selective search strategy, we use
RankLib4 and the SVM𝑟 5 toolkits. As for the label which needs to
be an integer in RankLib, we discretize the metric by ×10,000 to
make it an integer.

To train the selective search strategy model, each training query
has to be evaluated for each of the configurations so as to obtain the
respective effectiveness measures that serve as the ground truth.
The cost of preparing the training data thus depends on the number
of candidate configurations in the meta-system. The configuration
selection step is therefore key and is handled by the risk-sensitive
function for selecting the candidate configurations that we proposed
in section 3.

4.3 Baselines
The baselines are as follows:
* BM25 is obtained using Terrier BM25 with default parameters
b=0.75 and k=1.2 [44] whatever the collection is.
* L2R-D SVM𝑟 is the standard learning to rank documents model
where the initial ranking is obtained using BM25. L2R is based on
𝑆𝑉𝑀 − 𝑟𝑎𝑛𝑘 for which we obtained the best results compared to
other L2R algorithms (we tried Random Forest, SVM-rank, _-MART,
and LISTNet). Given a query, the documents with a relevance la-
bel greater than 0 are considered as relevant examples, whereas
3http://www.terrier.org/docs/v4.0/javadoc/index.html?org/
terrier/matching/models/WeightingModel.html
4sourceforge.net/p/lemur/wiki/RankLib/
5www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

http://www.terrier.org/docs/v4.0/javadoc/index.html?org/terrier/matching/models/WeightingModel.html
http://www.terrier.org/docs/v4.0/javadoc/index.html?org/terrier/matching/models/WeightingModel.html
sourceforge.net/p/lemur/wiki/RankLib/
www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

documents with a label equal to 0 are considered as non-relevant
examples. If there is no non-relevant document but only relevant
documents for a query in the relevance judgment, we retrieve 1,000
ranked documents for that query using the BM25 model and con-
sider the bottom-ranked documents as non-relevant documents.
During testing, 1,000 documents were retrieved and the top 100
documents were re-ranked using SVM-rank model. We tried several
numbers of documents and found that 100 gives the best perfor-
mance. We kept this number whatever the collection is.
* GS (Grid Search) determines the best value for each parameter
to be able to maximize the effectiveness for a set of queries [47].
* Best trained is the best configuration among the entire configu-
ration set: it is chosen for 𝑄𝐴 and applied to 𝑄

𝐴
, and vice versa.

Figure 1: Best for 20 candidate configurations. Performance
for 𝐸𝑅𝐼𝑆𝐾 function on the three collectionswhile varying the
number of candidate configurations. The dotted dash hori-
zontal lines are the single best configuration.

Then, we used two additional baselines which uses selective
search strategy for each individual query. Trained SQE considers
two configurations: one without query expansion and one with.
We took the best configuration ("Best conf.") and its query expan-
sion/non query expansion counterpart. In cases where the best
configuration did not include query expansion, we chose the best
configuration with expansion from the pool as its counterpart. Then
we trained the meta-system for selective query expansion. De-
veaud et al. where a random selection of 100 configurations per
query is applied as in [16]. Compared to our risk-based model, we
increased the number of configurations from 20 to 100 for Deveaud
to give the latter more chances (results with 20 were lower).

Of all the baselines, only BM25 does not need training; they are
applied to the entire query set. BM25 is deterministic. All the other
baselines rely on using 2-fold cross-validation on the collection
query set for three random trials. All the methods take into account
the same three splits, the results of which are averaged (the standard
deviation is also calculated).

We also indicate the Oracle results, none of the Oracle methods
is deterministic because it is impossible to select it automatically.
These methods would need a perfect system that chooses the most
appropriate configuration. In practice, these configurations cannot
be obtained through automatic training.
* Best conf. is the best configuration in the pool of initial 20,000
configurations in average over the queries of the considered collec-
tion i.e., it is the one that maximizes the evaluation measure under

consideration and thus may be different according to the measure.
* Oracle: for each of the queries, we selected the best configuration
among the 20, 000 possible configurations;
* Oracle20SS: for each of the queries, we selected the best config-
uration among the 20 possible configurations selected using the
corresponding Risk function.

5 RESULTS
5.1 Impact of k on effectiveness and cost
We first measured the effectiveness of the 𝐸𝑅𝐼𝑆𝐾 function by con-
sidering different numbers of candidate configurations (𝑘) in the
candidate configuration selection, intermediate phase. We wanted
to analyze the impact of 𝑘 on effectiveness, given the fact that as the
number of candidate configurations increases, the meta-system’s
effectiveness also increases, but it becomes more complex and ex-
pensive. Whatever 𝑘 in the intermediate phase, we then use two
top-ranked configurations on a per-query basis in the final phase.

The cost of considering an additional configuration in the candi-
date set is as follows: at the training stage the system has to evaluate
this configuration for each training query to be able to build the
examples related to this configuration; it has to compare the effec-
tiveness with all the other existing examples in the intermediate
phase i.e., (𝑐𝑘 , 𝑞𝑖) examples (𝐸𝑅𝐼𝑆𝐾 function); and integrate with the
example generation in the learning to rank configurations in the
final phase. The testing (running) part is not significantly affected.

In the training, the model learns to choose the most appropriate
𝑘 candidate configurations from the entire configuration pool and
to choose the 2 top-ranked best configuration from 𝑘 that fits each
of the queries. After learning on the training queries, the model is
applied to the test queries. We tried several L2R algorithms for the
“best fit" part. L2R algorithms require examples to better learn the
objective function. We only considered positive examples, which
are defined on a per-query basis and correspond to the 2 top-ranked
configurations from the examples generated using the 𝑘 configura-
tions as selected by the risk function and based on the maximum
gain (see definition in Section 3). We did not use any negative ex-
amples. We tried different numbers of positive examples and found
that 2 is appropriate.

We present the results for L2R based on Random Forest. The
effectiveness increases with 𝑘 , the number of candidate configura-
tions (see Figure 1, ndcg@10). WT10G -left-side scale- has lower
results than the other collections; however, the results for the three
collections have the same shape. We cannot yet explain the small
outlier peaks, but we can see that there are several stages in the
effectiveness as shown by the curves in Figure 1. The first stage
is around 𝑘 ∈ {5 − 7}, another for 𝑘 ∈ {12 − 16}, then 𝑘 = 20 and
finally 𝑘 ∈ {26 − 30}. We did not report for 𝑘 > 30 since our goal is
to limit the number of configurations.

We chose 20 configurations for further experiments in the inter-
mediate phase and two top-ranked configurations on a per-query
basis from the 20 configurations in the final phase, as it appears to
be an appropriate trade-off between effectiveness and a reasonable
number of configurations for the different collections. This number
could also be certainly optimized during the training phase, but we
keep this point for future work. Twenty configurations is affordable

in terms of computing and time resources even if the training has
to be renewed frequently.

5.2 Effectiveness
We compared the results obtained from our 𝐸𝑅𝐼𝑆𝐾 function with
various baselines. Furthermore, we compared the variants of the
L2R model in the selective search strategy with a fixed number of
configuration candidates (𝑘 = 20).

For the L2R models for learning configurations, we used 4 differ-
ent models from the literature, including point-wise Linear Regres-
sion (LR) and Random Forest (RF), pair-wise SVM-Rank (SVM-𝑟)
and list-wise LambdaMart [52] approaches. We report Random For-
est only since it achieved the best results, although linear regression
and SVM-rank were close to RF. For our context, in the Random
Forest point-wise approach each instance is a vector of features 𝑥𝑖 ,
which represents a query-configuration pair. The ground truth is
the example label i.e., the effectiveness of the configuration for that
specific query which is either considered as continuous or made to
be discrete. In the case of continuous values, learning to rank can
be solved as a regression problem, whereas in the case of discrete
values, learning to rank is considered as a classification problem or
as an ordinal regression problem, depending on whether there is
an ordinal relationship between the classes of effectiveness [28].

Table 2 presents successively the results for three reference TREC
collections. In each sub-table, horizontally, the first block shows
the four baselines as described above; the second block shows our
𝐸𝑅𝐼𝑆𝐾 L2R configurations (third row) with 20 configurations, as
well as other trained selective search strategy methods: the trained
selective query expansion (Trained SQE row) and the state-of-the-
art Deveaud et al. [16]. The last block shows the Oracle methods.
The table presents the values of the measures when averaged over
three different random splits for 2-fold cross validation; we used
exactly the same three random splits as we did for the baselines
that need training. We also show the standard deviation for these
three trials in square brackets.

From the results, we can observe that trained selective search
strategy approaches (2nd horizontal block, Table 2) outperform
all the baselines that do not select configurations (1st horizontal
block apart for MAP on TREC78). Among these models Trained
SQE is closed to the non-deterministic Best Conf. model for all
the collections and measures; in its principle Trained SQE is also
close to our model when two configurations only are kept while
it in addition uses the constraint that one configuration should
use query expansion and the other should not. With regard to our
𝐸𝑅𝐼𝑆𝐾 method (ERisk-RF, Table 2), the improved differences are
statistically significant after family-wise correction with Bonfer-
roni [11] when compared to both Deveaud et al. [16] (↑) on TREC78,
and WT10G for MAP, and L2R-D SVM𝑟 (△) across collections and
metrics. For Deveaud et al., the results reported in Table2 are not
directly comparable with the one reported in [16] where the au-
thors used 5-fold cross-validation with one trial while in this paper,
we used 2-fold cross-validation with three trials. Another major
difference is the way the queries are represented. For a fair compari-
son, we re-implemented Deveaud et al. and used LETOR features to
represent the queries as in our method while Deveaud et al. initially
used pre-and-post retrieval features. We can also observe that the

Table 2: Risk-RF outperforms any baseline on all measures
on collections. In a sub-table, the first block shows baselines
that use a single configuration for all queries; the second
block shows trained selective search strategy (SelSS) includ-
ing ours (𝑘 = 20 configurations); the latest shows oracles. Ef-
fectiveness in absolute value, averaged on 3 draws plus stan-
dard deviation in square brackets. The best values (exclud-
ing Oracle) are in bold font. △ (resp. ↑) indicates statistically
significant improvement compared to the L2R documents
(resp. Deveaud et al.), two-tailed paired t-test (𝑝 < 0.05).

TREC78
Methods MAP nDCG@10 P@10

B
aselines

BM25 .21 .47 .43
L2R-D SVM𝑟 .22 [.000] .48 [.001] .46 [.004]
GS .24 [.003] .51 [.019] .47 [.003]
Best trained .25 [.010] .52 [.008] .47 [.009]

SelSS

Trained SQE .24 [.002] .53 [.007] .49 [.006]
Deveaud et al. [16] .24 [.002] .56 [.003] .52 [.004]
ERisk-RF .28△↑ [.007] .63△↑ [.005] .60△↑ [.012]
Best conf. .26 .54 .51
Oracle .39 .83 .80
Oracle20SS .29 .63 .61

WT10G

B
aselines

BM25 .22 .39 .38
L2R-D SVM𝑟 .20 [.002] .34 [.002] .32 [.005]
GS .25 [.001] .40 [.001] .38 [.020]
Best trained .22 [.006] .40 [.002] .40 [.012]

SelSS

Trained SQE .24 [.003] .39 [.019] .39 [.021]
Deveaud et al. [16] .29 [.006] .49 [.002] .47 [.006]
ERisk-RF .32△↑ [.006] .52△ [.014] .50△ [.010]
Best conf. .25 .42 .41
Oracle .45 .72 .69
Oracle20SS .33 .53 .52

GOV2

B
aselines

BM25 .27 .46 .54
L2R-D SVM𝑟 .28 [.001] .49 [.002] .57 [.003]
GS .35 [.005] .52 [.003] .62 [.008]
Best trained .35 [.005] .49 [.012] .59 [.010]

SelSS

Trained SQE .35 [.009] .52 [.002] .63 [.005]
Deveaud et al. [16] .40 [.003] .66 [.001] .77 [.005]
ERisk-RF .41△ [.002] .67△ [.002] .79△ [.010]
Best conf. .36 .52 .63
Oracle .50 .85 .94
Oracle20SS .42 .68 .80

results are robust in relation to the standard deviation across the
three random train/test splits.

By delving deeper into the analysis of Table 2, we can see that
the best configuration (First line last block) corresponds to the
configuration which maximizes the reported measure when consid-
ering the large set of possible configurations. Among the more than
20,000 different configurations, for TREC78, the configuration that
maximizes P@10 obtains 0.51 (IFB2 model without query expan-
sion), whereas the configuration that maximizes nDCG@10 obtains

0.54 (InexpC2 model). By definition, the best configuration for a
given measure cannot be surpassed by any other single configura-
tion. Nonetheless, it is not possible to decide in advance what the
best configuration will be for a given collection. Best trained (last
row in the baseline block) uses exactly the same train/test splits
as our L2R configuration risk-sensitive models, but selects a single
configuration to handle the training queries. This selected configu-
ration will be used for all the test queries; it is hence a fair baseline
since it can be trained. For TREC78, Best trained obtains a P@10 of
0.47 (standard deviation 0.009 for the three trials); which is close to
the best configuration (𝑃@10 = 0.51). It is important to mention
that none of our initial configurations uses document re-ranking.
This is what L2R-D SVM𝑟 (L2R documents, 𝑃@10 = 0.46) does (2nd
line in the baseline block); it surpasses BM25 (𝑃@10 = 0.43), on
which it is based, for the initial document ranking but the results
are similar to grid search GS (𝑃@10 = 0.47). We can observe that
certain other single configurations (including the best one) surpass
L2R-D. Trained SQE is the closest to the best configuration. The
same comments also hold for MAP and nDCG@10. Best trained and
grid search are the best baselines; L2R-D is relatively close to them.
These three methods involve training and use a single configuration
for all the queries. We will see on the other collections that best
trained is consistently the best among the methods that use a single
configuration without any kind of oracle decision.

Oracle and Oracle20SS highlight the maximum level of effec-
tiveness we could reach with a perfect match between the query
and the best configuration for that query. It is 0.80 for TREC78 for
P@10 when all the 20,000 configurations are considered, and 0.61
with the ERisk 20 selected configurations. Although our models
can still be improved in order to achieve these maximum levels,
we can observe that the training works reasonably well and that
our models are close to the Oracle20SS. Similarly to the TREC78
collection, ERisk-RF is the most effective for the WT10G and GOV2
collections. All the baselines are surpassed. Again, GS is close to the
best configuration; L2R-D generally surpasses the initial ranking
(BM25); Best trained and L2R-D are close to each other, although
Best trained is most often slightly better. None of the baselines that
does not use any sort of Oracle are able to reach the “Best configu-
ration" Oracle when taking into account a single configuration for
all the queries. Risk-RF surpasses all the methods and the difference
is statistically significant (apart from in two cases).

6 DISCUSSION AND CONCLUSION
Information retrieval approaches generally look for the best param-
eter settings that will then be used for all future queries. Here, we
consider an alternative approach that aims to automatically select
the best parameter setting to be applied to each individual query.
Such a selective search strategy cannot handle the huge number
of possible parameters, whether they are components (such as the
weighting search model), or hyperparameters (such as the number
of terms to add in the automatic query reformulation). Instead, it
needs a limited set of candidate configurations that are, nonetheless,
effective at returning highly appropriate results. The risk-sensitive
method we developed in this paper provides a means for identifying
this limited set of configurations. Moreover, we built this method

into a meta-system that learns to select the best of these candidate
configurations to fit a new query.

To some extent, our work can be seen as extending the selective
query expansion approach [2, 14]. In SQE, however, the candidate
configurations are limited to two - one configuration without expan-
sion and one with - which limits the overall system effectiveness.
In SQE, a single search weighting component is used for both the
initial query and the expanded one. Also, it uses a single query ex-
pansion model and a set of hyperparameters for all queries. Arslan
and Dinçer [3] used eight term weighting models with set hyperpa-
rameters which also limited the possible gains in effectiveness.

The use of a vast number of configurations - up to 20,000 as
proposed by Deveaud et al. [16] improved effectiveness compared
to previous methods. The cost of the system is high, however; it
must handle and maintain too many configurations to be applica-
ble in a real-world search engine. The method we described here
limits the number of candidate configurations to one that should
be applicable in practice. Our method outperforms that of Deveaud
et al. also in that it avoids ‘overfit’ (when with too many candidate
configurations compared to the number of training queries, the
model learns very well on the training data but fails on the fore-
sight task). Deveaud et al. represented queries by many pre-and
post-retrieval features, which entails additional cost, whereas we
represent queries using LETOR features in our proposed method.
The extra cost of our approach is then small compared to using
linguistic features [16, 54]. Although the results may be dependent
of this choice, our choice paves the way for including the ranking
document component when building the candidate configuration
pool, which we will evaluate further in future studies.

Both the work presented here and our previous work in Deveaud
et al. [16] are based on Terrier, making the results dependent on
the underlying technological choice. Terrier however implements
a large variety of models and can be considered as representative
enough of IR state of the art components.

The risk-sensitive method we have developed to select candidate
configurations enables the overall system to increase its perfor-
mance substantially compared to the best configuration (ndcg@10
up to 0.52 on WT10G collection versus 0.42 for the best configu-
ration), that demonstrates the power of selecting the appropriate
configuration for each individual query. This method can be used
in any search engine as long as it gathers information from the past
queries to train the model.

This work could also be applied in future to the diversity task
using Clueweb collections inwhich a query contains various aspects
that might determine the relevance of the documents retrieved.
Some configurations may cover more query aspects than others.
Thus, selective search strategy with an optimized set of candidate
configurations could outperform other document diversification
strategies. Using these collections has the extra advantage, this
would also demonstrate the applicability of the proposed approach
in the web context we mentioned in the introduction.

ACKNOWLEDGMENTS
We would like to thank Toulouse Transfer Technology for their
valuable help and funding for the patent publication linked to this
research [39].

REFERENCES
[1] Giambattista Amati. 2003. Probabilistic Models for Information Retrieval based on

Divergence from Randomness. University of Glasgow, UK. Ph.D. Dissertation. PhD
Thesis.

[2] Giambattista Amati, Claudio Carpineto, and Giovanni Romano. 2004. Query
Difficulty, Robustness, and Selective Application of Query Expansion. InAdvances
in Information Retrieval. Springer Berlin Heidelberg, Berlin, Heidelberg, 127–137.

[3] Ahmet Arslan and Bekir Taner Dinçer. 2019. A selective approach to index term
weighting for robust information retrieval based on the frequency distributions
of query terms. Information Retrieval Journal 22, 6 (2019), 543–569.

[4] Niranjan Balasubramanian, Giridhar Kumaran, and Vitor R. Carvalho. 2010.
Predicting Query Performance on theWeb. In Proceedings of the 33rd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Geneva, Switzerland) (SIGIR ’10). ACM, New York, NY, USA, 785–786.

[5] Rodger Benham, Ben Carterette, Alistair Moffat, and J. Shane Culpepper. 2019.
Taking Risks with Confidence. In Proceedings of the 24th Australasian Document
Computing Symposium (Sydney, NSW, Australia) (ADCS ’19). Association for
Computing Machinery, New York, NY, USA, Article 1, 4 pages. https://doi.
org/10.1145/3372124.3372125

[6] Rodger Benham and J. Shane Culpepper. 2017. Risk-Reward Trade-offs in Rank
Fusion. In Proceedings of the 22Nd Australasian Document Computing Symposium
(Brisbane, QLD, Australia) (ADCS 2017). ACM, New York, NY, USA, Article 1,
8 pages.

[7] Rodger Benham, Alistair Moffat, and J. Shane Culpepper. 2020. On the Pluses
and Minuses of Risk. In Information Retrieval Technology. Springer International
Publishing, Cham, 81–93.

[8] Anthony Bigot, Sébastien Déjean, and Josiane Mothe. 2015. Learning to Choose
the Best System Configuration in Information Retrieval: the Case of Repeated
Queries. Journal of Universal Computer Science (J. UCS) 21, 13 (2015), 1726–1745.

[9] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. 2008. Selecting
Good Expansion Terms for Pseudo-relevance Feedback. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (Singapore, Singapore) (SIGIR ’08). ACM, New York, NY,
USA, 243–250.

[10] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to
Rank: From Pairwise Approach to Listwise Approach. In Proceedings of the 24th
International Conference on Machine Learning (Corvalis, Oregon, USA) (ICML
’07). ACM, New York, NY, USA, 129–136.

[11] Benjamin A Carterette. 2012. Multiple testing in statistical analysis of systems-
based information retrieval experiments. ACM Transactions on Information
Systems (TOIS) 30, 1 (2012), 1–34.

[12] Adrian-Gabriel Chifu, Léa Laporte, Josiane Mothe, and Md Zia Ullah. 2018. Query
Performance Prediction Focused on Summarized Letor Features. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). ACM, New York, NY, USA, 1177–1180.

[13] Kevyn Collins-Thompson. 2009. Reducing the Risk of Query Expansion via
Robust Constrained Optimization. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management (Hong Kong, China) (CIKM ’09).
Association for Computing Machinery, New York, NY, USA, 837–846. https:
//doi.org/10.1145/1645953.1646059

[14] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. 2004. A Framework for
Selective Query Expansion. In Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Management (Washington, D.C., USA)
(CIKM ’04). ACM, New York, NY, USA, 236–237.

[15] RomainDeveaud, JosianeMothe, and Jian-YunNia. 2016. Learning to Rank System
Configurations. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management (Indianapolis, Indiana, USA) (CIKM ’16).
ACM, New York, NY, USA, 2001–2004.

[16] Romain Deveaud, Josiane Mothe, Md Zia Ullah, and Jian-Yun Nie. 2018. Learning
to Adaptively Rank Document Retrieval System Configurations. ACM Transac-
tions on Information Systems (TOIS) 37, 1 (2018), 3.

[17] B. Taner Dinçer, Craig Macdonald, and Iadh Ounis. 2014. Hypothesis Testing
for the Risk-sensitive Evaluation of Retrieval Systems. In Proceedings of the 37th
International ACM SIGIR Conference on Research & Development in Information
Retrieval (Gold Coast, Queensland, Australia) (SIGIR ’14). ACM, New York, NY,
USA, 23–32.

[18] B. Taner Dinçer, Craig Macdonald, and Iadh Ounis. 2016. Risk-Sensitive Evalua-
tion and Learning to Rank Using Multiple Baselines. In Proceedings of the 39th
International ACM SIGIR Conference on Research & Development in Information
Retrieval (Pisa, Italy) (SIGIR ’16). ACM, New York, NY, USA, 483–492.

[19] B. Taner Dinçer, Iadh Ounis, and Craig Macdonald. 2014. Tackling Biased Base-
lines in the Risk-Sensitive Evaluation of Retrieval Systems. In Advances in Infor-
mation Retrieval. Springer International Publishing, Cham, 26–38.

[20] Nicola Ferro and Gianmaria Silvello. 2016. A General Linear Mixed Models
Approach to Study System Component Effects. In Proceedings of the 39th Interna-
tional ACM SIGIR Conference on Research & Development in Information Retrieval
(Pisa, Italy) (SIGIR ’16). ACM, New York, NY, USA, 25–34.

[21] Edward A Fox and Joseph A Shaw. 1994. Combination of multiple searches. NIST
special publication SP 243 (1994), 127–137.

[22] Donna Harman and Chris Buckley. 2009. Overview of the reliable information
access workshop. Information Retrieval 12, 6 (2009), 615.

[23] Ben He and Iadh Ounis. 2004. A Query-Based Pre-Retrieval Model Selection
Approach to Information Retrieval. In Coupling Approaches, Coupling Media and
Coupling Languages for Information Retrieval (Vaucluse, France) (RIAO ’04). CID,
Paris, FRA, 706–719.

[24] Ben He and Iadh Ounis. 2007. Combining fields for query expansion and adaptive
query expansion. Information processing & management 43, 5 (2007), 1294–1307.

[25] D Frank Hsu and Isak Taksa. 2005. Comparing rank and score combination
methods for data fusion in information retrieval. Information retrieval 8, 3 (2005),
449–480.

[26] Joseph Johnson. Aug 10, 2021. ACSI - U.S. customer satisfaction with Google
2002-2021. https://www.statista.com/statistics/185966/us-
customer-satisfaction-with-google/

[27] Oren Kurland and J. Shane Culpepper. 2018. Fusion in Information Retrieval:
SIGIR 2018 Half-Day Tutorial. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval (Ann Arbor, MI, USA) (SIGIR
’18). Association for Computing Machinery, New York, NY, USA, 1383–1386.

[28] Léa Laporte, Rémi Flamary, Stéphane Canu, Sébastien Déjean, and Josiane Mothe.
2014. Nonconvex regularizations for feature selection in ranking with sparse
svm. IEEE Transactions on Neural Networks and Learning Systems 25, 6 (2014),
1118–1130.

[29] Dan Li and Evangelos Kanoulas. 2018. Bayesian Optimization for Optimizing
Retrieval Systems. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). ACM,
New York, NY, USA, 360–368.

[30] Hang Li. 2011. A short introduction to learning to rank. IEICE TRANSACTIONS
on Information and Systems 94, 10 (2011), 1854–1862.

[31] Yuan Lin, Jiajin Wu, Bo Xu, Kan Xu, and Hongfei Lin. 2017. Learning to rank
using multiple loss functions. International Journal of Machine Learning and
Cybernetics 10, 10 (2017), 485–494. Issue 3.

[32] David G Luenberger, Yinyu Ye, et al. 1984. Linear and nonlinear programming.
Vol. 2. Springer, Switzerland.

[33] Craig Macdonald, B. Taner Dinçer, and Iadh Ounis. 2015. Transferring Learning
To RankModels forWeb Search. In Proceedings of the 2015 International Conference
on The Theory of Information Retrieval (Northampton, Massachusetts, USA) (ICTIR
’15). Association for Computing Machinery, New York, NY, USA, 41–50. https:
//doi.org/10.1145/2808194.2809463

[34] Craig Macdonald, Rodrygo LT Santos, Iadh Ounis, and Ben He. 2013. About
learning models with multiple query-dependent features. ACM Transactions on
Information Systems (TOIS) 31, 3 (2013), 11.

[35] Joel Mackenzie, J. Shane Culpepper, Roi Blanco, Matt Crane, Charles L. A. Clarke,
and Jimmy Lin. 2018. Query Driven Algorithm Selection in Early Stage Retrieval.
In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining (Marina Del Rey, CA, USA) (WSDM ’18). Association for Computing
Machinery, New York, NY, USA, 396–404. https://doi.org/10.1145/
3159652.3159676

[36] Donald Metzler and W Bruce Croft. 2007. Linear feature-based models for
information retrieval. Information Retrieval 10, 3 (2007), 257–274.

[37] Stefano Mizzaro and Stephen Robertson. 2007. Hits Hits TREC: Exploring IR
Evaluation Results with Network Analysis. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (Amsterdam, The Netherlands) (SIGIR ’07). Association for Computing
Machinery, New York, NY, USA, 479–486. https://doi.org/10.1145/
1277741.1277824

[38] Hafeezul Rahman Mohammad, Keyang Xu, Jamie Callan, and J. Shane Culpepper.
2018. Dynamic Shard Cutoff Prediction for Selective Search. In The 41st Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval
(Ann Arbor, MI, USA) (SIGIR ’18). Association for Computing Machinery, New
York, NY, USA, 85–94. https://doi.org/10.1145/3209978.3210005

[39] Josiane Mothe and Md Zia Ullah. Application on 2019 July 29, published on
2021 Feb. 03. Apparatus and method for information retrieval using a set of
pre-selected search configurations using efficiency and risk functions - Dis-
positif et procédé de récupération d’informations utilisant un ensemble de
configurations de recherche pré-sélectionnées à l’aide de fonctions d’efficacité
et de risque. https://worldwide.espacenet.com/patent/search/
family/067956648/publication/EP3771996A1?q=19305984.7

[40] Josiane Mothe and Mahdi Washha. 2017. Predicting the Best System Parameter
Configuration: the (Per Parameter Learning) PPL method. Procedia Computer
Science 112 (2017), 1308 – 1317. Knowledge-Based and Intelligent Information
and Engineering Systems: Proceedings of the 21st International Conference,
KES-20176-8 September 2017, Marseille, France.

[41] Rabia Nuray and Fazli Can. 2006. Automatic ranking of information retrieval
systems using data fusion. Information processing & management 42, 3 (2006),
595–614.

https://doi.org/10.1145/3372124.3372125
https://doi.org/10.1145/3372124.3372125
https://doi.org/10.1145/1645953.1646059
https://doi.org/10.1145/1645953.1646059
https://www.statista.com/statistics/185966/us-customer-satisfaction-with-google/
https://www.statista.com/statistics/185966/us-customer-satisfaction-with-google/
https://doi.org/10.1145/2808194.2809463
https://doi.org/10.1145/2808194.2809463
https://doi.org/10.1145/3159652.3159676
https://doi.org/10.1145/3159652.3159676
https://doi.org/10.1145/1277741.1277824
https://doi.org/10.1145/1277741.1277824
https://doi.org/10.1145/3209978.3210005
https://worldwide.espacenet.com/patent/search/family/067956648/publication/EP3771996A1?q=19305984.7
https://worldwide.espacenet.com/patent/search/family/067956648/publication/EP3771996A1?q=19305984.7

[42] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
13, 4 (2010), 346–374.

[43] Fiana Raiber and Oren Kurland. 2014. Query-performance Prediction: Setting
the Expectations Straight. In Proceedings of the 37th International ACM SIGIR
Conference on Research & Development in Information Retrieval (Gold Coast,
Queensland, Australia) (SIGIR ’14). ACM, New York, NY, USA, 13–22.

[44] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[45] Anna Shtok, Oren Kurland, David Carmel, Fiana Raiber, and Gad Markovits. 2012.
Predicting query performance by query-drift estimation. ACM Transactions on
Information Systems (TOIS) 30, 2 (2012), 11.

[46] Daniel Xavier De Sousa, Sérgio Daniel Canuto, Thierson Couto Rosa, Welling-
ton Santos Martins, and Marcos André Gonçalves. 2016. Incorporating Risk-
Sensitiveness into Feature Selection for Learning to Rank. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Management
(Indianapolis, Indiana, USA) (CIKM ’16). ACM, New York, NY, USA, 257–266.

[47] Michael Taylor, Hugo Zaragoza, Nick Craswell, Stephen Robertson, and Chris
Burges. 2006. Optimisation Methods for Ranking Functions with Multiple Pa-
rameters. In Proceedings of the 15th ACM International Conference on Information
and Knowledge Management (Arlington, Virginia, USA) (CIKM ’06). ACM, New
York, NY, USA, 585–593.

[48] Andrew Trotman. 2005. Learning to rank. Information Retrieval 8, 3 (2005),
359–381.

[49] Howard Turtle and James Flood. 1995. Query evaluation: strategies and optimiza-
tions. Information Processing & Management 31, 6 (1995), 831–850.

[50] Jun Wang and Jianhan Zhu. 2009. Portfolio Theory of Information Retrieval.
In Proceedings of the 32nd International ACM SIGIR Conference on Research and
Development in Information Retrieval (Boston, MA, USA) (SIGIR ’09). Association
for Computing Machinery, New York, NY, USA, 115–122. https://doi.org/
10.1145/1571941.1571963

[51] Lidan Wang, Paul N. Bennett, and Kevyn Collins-Thompson. 2012. Robust Rank-
ingModels via Risk-sensitive Optimization. In Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information Retrieval (Port-
land, Oregon, USA) (SIGIR ’12). ACM, New York, NY, USA, 761–770.

[52] Qiang Wu, Christopher J. Burges, Krysta M. Svore, and Jianfeng Gao. 2010.
Adapting Boosting for Information Retrieval Measures. Information Retrieval 13,
3 (2010), 254–270.

[53] Bo Xu, Hongfei Lin, and Yuan Lin. 2016. Assessment of learning to rank meth-
ods for query expansion. Journal of the Association for Information Science &
Technology 67, 6 (2016), 1345–1357.

[54] Yang Xu, Gareth J.F. Jones, and Bin Wang. 2009. Query Dependent Pseudo-
Relevance Feedback Based on Wikipedia. In Proceedings of the 32nd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(Boston, MA, USA) (SIGIR ’09). Association for Computing Machinery, New York,
NY, USA, 59–66.

[55] Le Zhao and Jamie Callan. 2012. Automatic Term Mismatch Diagnosis for Se-
lective Query Expansion. In Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information Retrieval (Portland, Ore-
gon, USA) (SIGIR ’12). ACM, New York, NY, USA, 515–524.

https://doi.org/10.1145/1571941.1571963
https://doi.org/10.1145/1571941.1571963

	Abstract
	1 Introduction
	2 Related work
	3 Risk-sensitive criteria to select candidate configurations
	3.1 Overview
	3.2 Risk/reward function
	3.3 Best query-configuration fit

	4 Evaluation
	4.1 Data collection and evaluation measures
	4.2 Generation of a pool of configurations
	4.3 Baselines

	5 Results
	5.1 Impact of k on effectiveness and cost
	5.2 Effectiveness

	6 Discussion and conclusion
	References

