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Estimating the Number of Endmembers in
Hyperspectral Images Using the Normal
Compositional Model and a Hierarchical

Bayesian Algorithm
Olivier Eches, Nicolas Dobigeon, Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—This paper studies a semi-supervised Bayesian un-
mixing algorithm for hyperspectral images. This algorithm is
based on the normal compositional model recently introduced by
Eismann and Stein. The normal compositional model assumes that
each pixel of the image is modeled as a linear combination of an
unknown number of pure materials, called endmembers. However,
contrary to the classical linear mixing model, these endmembers
are supposed to be random in order to model uncertainties re-
garding their knowledge. This paper proposes to estimate the
mixture coefficients of the Normal Compositional Model (referred
to as abundances) as well as their number using a reversible jump
Bayesian algorithm. The performance of the proposed method-
ology is evaluated thanks to simulations conducted on synthetic
and real AVIRIS images.

Index Terms—Bayesian inference, hyperspectral images, Monte
Carlo methods, normal compositional model, reversible jump,
spectral unmixing.

I. INTRODUCTION

F OR several decades, hyperspectral imagery has been
receiving growing interest in the signal and image pro-

cessing literature (see [1] and references therein). This interest
can be easily explained by the high spectral resolution of the
images provided by the hyperspectral sensors such as AVIRIS
[2] and Hyperion [3]. Spectral unmixing is a crucial step in
the analysis of these images [4]. It consists of decomposing
the measured pixel reflectances into a mixture of pure spectra
whose fractions, referred to as abundances, have to be esti-
mated. Most unmixing procedures for hyperspectral images
assume that the image pixels are linear combinations of pure
materials. More precisely, according to the linear mixing model
(LMM) presented in [4], the -spectrum of
a mixed pixel is modeled as a linear combination of spectra

corrupted by additive white Gaussian noise

(1)
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where denotes the spectrum of the th
material (referred to as endmember), is the fraction of the th
material in the pixel (referred to as abundance), is the number
of pure materials present in the observed scene, and is the
number of available spectral bands for the image. In addition,
due to obvious physical considerations, the abundances satisfy
the following positivity and sum-to-one constraints:

(2)

Supervised algorithms assume that the endmember spectra
are known, e.g., extracted from a spectral library. In practical

applications, they can be obtained by an endmember extraction
procedure such as the well-known N-FINDR algorithm devel-
oped by Winter [5] or the vertex component analysis (VCA) pro-
posed by Nascimento et al. [6]. However, the LMM has some
limitations when applied to real images [4]. For instance, the
endmember extraction procedures based on the LMM can be
inefficient when the image does not contain enough pure pixels.
This problem, also outlined by Nascimento in [6], is illustrated
in Fig. 1. This figure shows 1) the projections on the two most
discriminant axes identified by a principal component analysis
(PCA) of endmembers corresponding to the red/light
stars, i.e., to the vertices of the red/light triangle, 2) the domain
containing all linear combinations of the actual endmembers
(i.e., the red/light triangle), and 3) the simplex estimated by the
N-FINDR algorithm using the black pixels (blue/dark triangle).
As there is no pixel close to the vertices of the red/light triangle,
the N-FINDR estimates a much smaller simplex (in blue/dark)
than the actual one (in red/light).

An alternative model referred to as normal compositional
model (NCM) has been recently proposed in [7]. The NCM
allows one to alleviate the problems mentioned above by
assuming that the pixels of the hyperspectral image are linear
combinations of random endmembers (as opposed to determin-
istic for the LMM) with known means (e.g., resulting from the
N-FINDR algorithm). This model provides more flexibility re-
garding the observed pixels and the endmembers. In particular,
the endmembers are allowed to be further from the observed
pixels which is clearly an interesting property for the problem
illustrated in Fig. 1. The NCM assumes that the spectrum of a
pixel is defined by the following mixture:

(3)



Fig. 1. Scatterplot of dual-band correct (red/light) and incorrect (blue/dark)
results of the N-FINDR algorithm.

where the are independent Gaussian vectors with known
means extracted from a spectral library or estimated by the
N-FINDR algorithm. Note that there is no additive noise in (3)
since the random nature of the endmembers already models
some kind of uncertainty regarding the endmembers. This
paper assumes that the covariance matrix of each endmember
can be written , where is the identity matrix
and is the endmember variance in any spectral band. More
sophisticated models with different variances in the spectral
bands could be investigated1. For simplicity, this paper assumes
a common variance in all spectral bands that has been consid-
ered successfully in many studies [10]–[13].

A supervised spectral unmixing strategy has been proposed
in [14] when the number of endmembers participating in the
mixture model (3) is known. This paper addresses the impor-
tant problem of estimating this number of endmembers and
the nature of these endmembers. It is a model selection problem
since different values of provide abundance vectors with dif-
ferent sizes, i.e., different models. The proposed algorithm con-
centrates on the NCM because of the interesting properties men-
tioned above. However, it could be used with appropriate mod-
ifications to determine the number of component of the LMM
(1) (see [15] for more details). We assume that the endmember
means in (3) belong to a given spectral library. However, con-
trary to the approach in [14], the algorithm does not know the na-
ture and the number of endmember means from this library par-
ticipating in the NCM. The algorithm is referred to as “semi-su-
pervised” to reflect the partial knowledge about the endmem-
bers present in the NCM mixture. The proposed strategy relies
on a hierarchical Bayesian model. Appropriate prior distribu-
tions are chosen for the NCM abundances to satisfy the posi-
tivity and sum-to-one constraints, as in [15]. A vague conjugate
inverse gamma distribution is defined for the endmember vari-
ance reflecting the lack of knowledge regarding this parameter.
A prior distribution for the number of endmembers is also

1The case of a structured covariance matrix having� different variances has
been considered in [8]. The results have been generalized to any colored noise
[9].

introduced. The proposed algorithm is hierarchical since it al-
lows one to estimate the hyperparameter of the NCM. A vague
prior is assigned to this hyperparameter. The parameters and hy-
perparameter of the resulting hierarchical Bayesian model are
then jointly estimated using the full posterior distribution. Un-
fortunately the joint posterior distribution for the NCM is too
complex to derive closed-form expressions for the minimum
mean square error (MMSE) or maximum a posteriori (MAP)
estimators. Note in particular that the dimension of the abun-
dance vector depends on the unknown number of endmem-
bers involved in the mixture. Therefore, we propose to use a re-
versible jump Markov Chain Monte Carlo (MCMC) algorithm
[16] to generate samples distributed according to the posterior of
interest. This dimension matching strategy proposes moves be-
tween parameter spaces with different dimensions. It has been
successfully used in many signal and image processing appli-
cations including segmentation [17], [18], analysis of musical
audio data [19], and spectral analysis [20].

The paper is organized as follows. Section II derives the pos-
terior distribution of the unknown parameter vector resulting
from the NCM. Section III studies the reversible jump MCMC
sampling strategy that is used to generate samples distributed
according to this posterior and to solve the model selection
problem. Simulation results conducted on synthetic and real
data as well as a comparison with other model selection tech-
niques are presented in Sections IV and V. Conclusions are
reported in Section VI.

II. HIERARCHICAL BAYESIAN MODEL

This section studies the likelihood and the priors inherent to
the proposed NCM for the spectral unmixing of hyperspectral
images. A particular attention is devoted to the unknown number

of endmembers, and to the positivity and sum-to-one con-
straints about the abundances.

A. Likelihood

The NCM assumes that the endmembers , ,
are independent Gaussian vectors whose means are assumed to
belong to a known spectral library (where

is the number of elements in the library and represents
the -spectrum of the th endmember). More-
over, this paper assumes that the endmember spectrum compo-
nents are independent from one band to another and Gaussian
such that

where is the mean vector of ,
is its covariance matrix, and denotes the Gaussian dis-
tribution with mean vector and covariance matrix . How-
ever, the number of components , as well as the spectra in-
volved in the mixture are unknown. Using the NCM definition
(3) and the independence between the endmembers, the likeli-
hood of the observed pixel can be written as

(4)



where , is the standard
norm, , contains the
endmember defining the mixture (3), and

(5)

Note that the mean and variance of this Gaussian distribution
depend both on the abundance vector contrary to the clas-
sical LMM. Note also that the dimensions of and (via the
quantities and ) depend on the unknown number
of endmembers .

B. Parameter Priors

1) Prior Distributions for the Number and Mean of the End-
members: A discrete uniform distribution on is
chosen as prior distribution for the number of mixture compo-
nents

(6)

where is the maximum number of pure elements that can
be present in a pixel. Note that this uniform prior distribution
does not favor any model order among .

All combinations of spectra belonging to the library are
assumed to be equiprobable conditionally upon the number of
endmembers leading to

(7)

where is an unordered sequence of distinct ele-
ments of .

2) Abundance Prior: Because of the sum-to-one constraint
inherent to the mixing model, the abundance vector can be split
into two parts as with .
To satisfy the positivity constraint, the abundance vector has
to belong to a simplex defined by

(8)

A uniform distribution on this simplex is chosen as prior distri-
bution for the partial abundance vector

(9)

where means “proportional to” and is the indicator
function defined on the set . This prior ensures the positivity
and sum-to-one constraints of the abundance coefficients and
reflects the absence of other prior knowledge about this param-
eter. Note that any abundance could be removed from and
not only the last one . For symmetry reasons, the algorithm
proposed in the next section will remove one abundance coeffi-
cient from uniformly drawn in . Here, this com-
ponent is supposed to be to simplify notations. Moreover, for
sake of conciseness, the notations and will be used

in the sequel to denote the quantities in (5) where has been
replaced by .

3) Endmember Variance Prior: The prior distribution for the
variance is chosen as a conjugate inverse gamma distribution

(10)

where and are the shape and scale parameters (see [21, p.
581] for definition). This paper classically assumes (as
in [17]) and estimates within a hierarchical Bayesian frame-
work. Such approach require to define a prior distribution for
the hyperparameter . This paper assumes that the prior of is
a non-informative Jeffreys’ prior [22] defined by

(11)

This prior reflects the lack of knowledge regarding the hyperpa-
rameter .

C. Posterior Distribution

The posterior distribution of the unknown parameter vector
can be easily computed after marginalizing

over the hyperparameter

(12)

Straightforward computations lead to the following posterior
distribution:

(13)

The posterior distribution (13) is too complex to derive the
MMSE or MAP estimators of . In particular, the dimension of

is unknown and depends on the number of endmembers . In
such case, it is usual to resort to MCMC methods to generate
samples distributed according to the posterior distribution
and to use these samples to approximate the MMSE or MAP
estimators. To handle the model selection problem resulting
from the unknown value of , we use a reversible jump MCMC
method that generate samples according to defined in
(3).

III. REVERSIBLE JUMP MCMC ALGORITHM

A stochastic simulation algorithm will be employed to sample
according to . The vectors to be sampled belong to a space
whose dimension depends on , requiring to use a dimension
matching strategy as in [23], [24]. More precisely, the proposed
algorithm, detailed in Algorithm 1, consists of four different
moves:

1) updating the endmember means contained in ;
2) updating the abundance vector ;
3) updating the variance ;
4) updating the hyperparameter .

These steps are scanned systematically as in [23] and are de-
tailed next.



Algorithm 1: Hybrid Metropolis-within-Gibbs sampler for
semi-supervised hyperspectral image unmixing according to
the NCM

• Initialization:

— Sample parameter ,

— Choose spectra in the library to build ,

— Sample parameters and ,
— Set ,

• Iterations: For , do

— Update :
draw ,
if then

propose a birth move (see Algorithm 2),
else if then

propose a death move see Algorithm 3),
else if then

propose a switch move see Algorithm 4),
else if
draw ,
if [see Eq. (18)] then

set ,
else

set ,
end if,

— Sample from the pdf in Eq. (20),

— Sample from the pdf in Eq. (22),

— Sample from the pdf in Eq. (23),
— Set .

A. Updating the Endmember Matrix

Three types of moves, referred to as “birth,” “death,” and
“switch” (as in [15]), enable one to update the endmember
means involved in the mixture. The two first moves consist of
increasing or decreasing the number of pure components by
1. Therefore, they require the use of the reversible jump MCMC
method introduced by Green [16]. In the third move, the di-
mension of is not changed, requiring the use of a standard
Metropolis–Hastings (MH) acceptance procedure. Assume that
at iteration , the current model is defined by .
The “birth,” “death,” and “switch” moves are defined as follows
(the step-by-step algorithms are, respectively, presented in
Algorithm 2, Algorithm 3, and Algorithm 4).

• birth: a birth move is proposed with the
probability . A new spectrum is randomly chosen
among the available endmembers means of the library to
build . As the number of pure components
has increased by 1, a new abundance coefficient vector
is proposed according to a rule inspired by [23]:
— draw a new abundance coefficient from the beta dis-

tribution ;
— re-scale the existing weights so that all weights sum to

1, using , ;
— build .

Algorithm 2: Birth Move

1: set ,

2: choose in such as ,

3: set ,

4: draw ,

5: add to and re-scale the others coefficients, i.e.,

with .

• death: a death move is proposed with
the probability . One spectrum of is removed,
as well as the corresponding abundance. The remaining
abundances are re-scaled to sum to 1.

Algorithm 3: Death Move

1: set ,
2: draw ,

3: remove from , i.e., set

4: remove from and re-scale the remaining
coefficients, i.e., set

with .

• switch: a switch move is proposed with the probability
. A spectrum randomly chosen in is replaced

by another spectrum randomly chosen in the library .

Algorithm 4: Switch Move

1: if then

2: draw ,

3: choose in such as ,

4: replace in by , i.e., set

5: set and .

6: end if

At each iteration, one of these moves is randomly chosen with
probabilities , and . These probabilities follow
three conditions2:

• ;
• (a death move is not allowed for );
• (a birth move is impossible for ).

2The case � � � has been accepted for the semi-supervised algorithm as a
pixel can be spectrally pure.



As a result, for
and .

The abundance coefficient vector has a uniform prior dis-
tribution on the simplex defined in (8), which is equivalent to
choosing a Dirichlet distribution as prior for the
full abundance vector . Therefore, the acceptance probability
for the birth move is with

(14)

where denotes the probability density function (pdf) of the
beta distribution (see the Appendix).

Regarding the acceptance probability for
the death move, two cases have to be considered. When the cur-
rent model order is such that , the acceptance proba-
bility is

(15)

When , the death move yields , i.e., one
single pure element is present in the proposed model, which
leads obviously to . Thus, is deterministic, and the
acceptance rate is

(16)

In this case, the Jacobian equals to 1 as is independent from
. Consequently, the previous equation yields

(17)

Concerning the switch move, the acceptance probability is the
standard MH ratio with

(18)
Note that the proposal ratio associated to the switch move is
1, since in each direction the probability of selecting one spec-
trum from the library is . Once the endmember
matrix has been obtained, the abundances, endmember vari-
ances, and hyperparameter are generated following the proce-
dures detailed below.

B. Generating Samples According to

The Bayes’ theorem yields

(19)

which easily leads to

(20)

Thus, the conditional distribution of is defined on the simplex
ensuring the abundance vector satisfies the positivity and

sum-to-one constraints (2) imposed to the model. The genera-
tion of according to (20) can be achieved using a Metropolis-
within-Gibbs move with a uniform prior distribution (9) as pro-
posal distribution.

C. Generating Samples According to

The conditional distribution of the variance can be deter-
mined as follows:

(21)

Thus, the conditional distribution of the noise variance is

(22)

D. Generating Samples According to

The conditional distribution of is

(23)

where is the gamma distribution with shape parameter
and scale parameter [21, p. 581].

IV. SIMULATION RESULTS

A. Synthetic Pixel

This section studies the accuracy of the semi-supervised al-
gorithm presented in Sections II and III for unmixing a syn-
thetic pixel. We first consider a pixel resulting from the combi-
nation of random endmembers with variance
and abundance vector . The endmember
means are the spectra of construction concrete, green grass and
micaceous loam. The results have been obtained for

iterations, including burn-in iterations, with
the algorithm summarized in Algorithm 1. The spectrum library

used in this simulation, depicted in Fig. 2, contains six ele-
ments defined as construction concrete, green grass, micaceous
loam, olive green paint, bare red brick, and galvanized steel
metal. These spectra have been extracted from the spectral li-
braries provided with the ENVI software [25]. The first step of
the analysis estimates the number of components . The poste-
rior distribution of depicted in Fig. 3 is clearly in good agree-
ment with the actual value of since its maximum is obtained
for . The second step of the analysis estimates the a pos-
teriori probabilities of all spectrum combinations, conditioned
to . For this simulation example, 100% of these sampled
spectrum combinations are composed of the first three spectra
of the library which are the actual spectra defining the mixture.



Fig. 2. Endmember spectra of the library.

Fig. 3. Posterior distribution of the estimated number of components�.

The posterior distributions of the corresponding abundance co-
efficients and variance are finally estimated and depicted in
Figs. 4 and 5. The posteriors are in good agreement with the ac-
tual values of these parameters, i.e., and

.

B. Comparison With Other Model Selection Strategies

This section compares the Bayesian algorithm developed in
this paper with other model selection strategies. First, it is im-
portant to note that all model selection methods can be used only
when several pixels share the same endmembers, contrary to the
proposed algorithm. Moreover, these methods cannot be used
to determine which endmembers from the library are actually
present in the observed mixture [they just allow one to estimate
the number of endmembers defining (3)]. We suppose here
that several synthetic pixels are sharing the same endmember
spectra. The first algorithm studies a maximum-likelihood es-
timator (MLE) of the intrinsic dimension of the observed data

Fig. 4. Posterior distribution of the estimated abundances.

Fig. 5. Posterior distribution of the estimated variance � .

[26], [31]. The next methods mainly rely on the sample covari-
ance matrix of the observed pixels. More precisely, we consider
the enhanced versions of the well-known Akaike information
criterion (AIC) and minimum description length (MDL initially
derived in [32] and [34] and reconsidered in [27] for detecting
signals embedded in white noise). The new AIC-based criterion
constructed from random matrix theory (RMT) in [28] (referred
to as RMT estimator), the Malinowski’s F-test advocated in [29]
and the PCA-based dimension reduction technique described in
[31] (and widely used in the hyperspectral imagery community
[4]) are also investigated for comparison. Finally, the hyperspec-
tral signal subspace identification by minimum error (HySime)
proposed in [30] is considered for this comparison.

To provide a dimension estimator common to all datasets,
several pixels sharing the same endmember spectra have to
be considered. For the algorithms described above, the number
of observations (i.e., the number pixels) has to be larger than the
observation dimension (i.e., the number of bands). The simula-
tion parameters have been fixed to bands and
pixels. The pixels have been simulated according to
the NCM in (3) with two different variances ( and

) and different numbers of endmember signatures
( , , and ). For each scenario, the abun-
dance vectors for each pixel have been generated according



TABLE I
ESTIMATED NUMBERS OF PURE COMPONENTS (IN �) OBTAINED BY THE REVERSIBLE-JUMP MCMC METHOD

AND OTHER MODEL SELECTION ALGORITHMS WITH � � ���� AND � � ����

Fig. 6. Real hyperspectral data: Moffett field acquired by AVIRIS in 1997 (left)
and the region of interest shown in true colors (right).

to Gaussian distributions truncated to the simplex (8) with the
following mean vectors:

• 3 endmembers: ;
• 4 endmembers: ;
• 5 endmembers: .

The threshold default values recommended in [31] have been
used for the PCA-based method and the Malinowski’s F-test.
The estimated number of components obtained by the pro-
posed reversible-jump MCMC method is compared to the other
model selection algorithms in Table I for the different simulation
settings. The reversible-jump MCMC method performs signif-
icantly better than the other model selection algorithms espe-
cially for larger noise variance (i.e., ). This result can
be explained by the fact the proposed Bayesian algorithm fully
takes advantage of the NCM model structure, contrary to the
other model selection techniques.

V. SPECTRAL UNMIXING OF AN AVIRIS IMAGE

This section considers a real hyperspectral image of size
50 50 depicted in Fig. 6 to evaluate the performance of the
different algorithms. This image has been extracted from a
larger image acquired in 1997 by the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) over Moffett Field, CA, and
has received much attention in hyperspectral imagery literature
(see for instance [35] and [36]). The analyzed area is composed
of a lake (top) and a coastal zone (bottom). The data set has been
classically reduced from the original 224 bands to
bands by removing water absorption bands.

Fig. 7. � � � endmember spectra built with ENVI.

As detailed in Section III, the reversible jump MCMC algo-
rithm requires the use of a spectral library containing the end-
member spectra that might appear in the image to be analyzed.
As no ground truth is available for this AVIRIS image, we have
built the required library from the image. First, a K-means pro-
cedure has been used to classify the image into six regions. Then
the purest pixels related to each class, extracted with the pixel
purity index algorithm [37], have been chosen as components
of the library. This new spectral library whose spectra are rep-
resented in Fig. 7 contains six endmembers. Three of them have
been clearly identified as follows:

• endmember 1: water;
• endmember 3: vegetation;
• endmember 6: soil.

whereas the endmembers 2, 4, and 5 are more difficult to be
interpreted.

The Moffett image is analyzed by the proposed reversible
jump MCMC algorithm, using this spectral library. For each
pixel, the abundance vector is estimated conditionally upon
the endmember matrix. Fig. 8 shows the map of the estimated
number of endmembers in the considered area. The lake area
includes at least two endmembers defined as “water” and the
unidentified “endmember #2.” As the water spectrum energy
is very low, the algorithm has to balance the measured water



Fig. 8. Number of endmembers estimated by the proposed algorithm (darker
(resp. brighter) areas means � � � [resp. � � �)].

Fig. 9. Fraction maps estimated by the proposed algorithm.

pixel spectrum by adding other contributions, which explains
the presence of more than one endmember in this area. The
lake-shore area contains the greatest number of endmembers
(up to 6), including the unidentified endmembers 4 and 5. The
ground area is composed exclusively of soil and vegetation,
which is clearly in good agreement with the results obtained
for instance in [15] and [14]. The fraction maps for each end-
member and the presence maps (with a threshold of 15% for the
abundances) obtained by the algorithm are depicted in Figs. 9
and 10, respectively. These figures allow one to appreciate the
proportion of endmembers contained in the different regions
of the image. To finish, we would like to mention that more
results, conducted on the well-known Cuprite data set, can be
found in the technical report [38].

VI. CONCLUSION

A new semi-supervised hierarchical Bayesian unmixing algo-
rithm was derived for hyperspectral images. This algorithm was
based on the normal compositional model introduced by Eis-
mann and Stein [7]. The proposed algorithm generated samples
distributed according to the joint posterior of the abundances,
the endmember variances and one hyperparameter. These sam-
ples were then used to estimate the parameters of interest. The
proposed algorithm showed several advantages versus the stan-
dard model selection strategies. In particular, it allows one to

Fig. 10. Presence maps estimated by the proposed algorithm.

estimate which components from a spectral library participate
in the mixture for a single given pixel. The simulation results
on synthetic and real data showed interesting results.

Perspectives include the extension of the NCM algorithm to
more complex scene models. For instance, the hyperspectral im-
ages could be considered as a set of homogenous regions, in
which common endmembers are present. In this case, spatial
correlations for the abundance vectors could be introduced be-
tween neighboring pixels to improve unmixing.

APPENDIX

ACCEPTANCE PROBABILITIES FOR THE

“BIRTH” AND “DEATH” MOVES

The acceptance probabilities for the “birth” and “death”
moves introduced in Section III are derived in this Appendix .

At iteration index , consider the birth move from the
state to the new state with

,

and . The acceptance ratio associated to this
move is

(24)

where refers to the proposal distribution, is the
Jacobian of the transformation and denotes the transi-
tion probability, i.e., et .
Using the moves specified in Section III, the proposal ratio is

(25)

where denotes the pdf of a beta distribution . In-
deed, the probability of choosing a new element in the library
(“birth” move) is and the probability of re-
moving an element (“death” move) is . The Jaco-
bian matrix of the transformation is given as follows

...
. . .

...
...



...
. . .

...
...

which implies

(26)

The posterior ratio is

(27)

The prior distribution of the abundance coefficient vector is
a Dirichlet distribution , which leads to

(28)

By choosing a priori equiprobable configurations for condi-
tionally upon , the prior ratio related to the means spectrum
matrix is

(29)

The prior ratio related to the number of mixtures reduces
to 1. Finally, the acceptance ratio for the “birth” move can be
written

(30)
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