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Implementation Strategies for Hyperspectral
Unmixing Using Bayesian Source Separation

Frédéric Schmidt, Albrecht Schmidt, Erwan Tréguier, Maël Guiheneuf,
Saïd Moussaoui, and Nicolas Dobigeon, Member, IEEE

Abstract—Bayesian positive source separation (BPSS) is a
useful unsupervised approach for hyperspectral data unmixing,
where numerical nonnegativity of spectra and abundances has to
be ensured, such as in remote sensing. Moreover, it is sensible to
impose a sum-to-one (full additivity) constraint to the estimated
source abundances in each pixel. Even though nonnegativity and
full additivity are two necessary properties to get physically in-
terpretable results, the use of BPSS algorithms has so far been
limited by high computation time and large memory requirements
due to the Markov chain Monte Carlo calculations. An imple-
mentation strategy that allows one to apply these algorithms on
a full hyperspectral image, as it is typical in earth and planetary
science, is introduced. The effects of pixel selection and the impact
of such sampling on the relevance of the estimated component
spectra and abundance maps, as well as on the computation times,
are discussed. For that purpose, two different data sets have been
used: a synthetic one and a real hyperspectral image from Mars.

Index Terms—Bayesian estimation, computation time, hyper-
spectral imaging, implementation strategy, source separation.

I. INTRODUCTION

IN VISIBLE and near-infrared hyperspectral imaging, each
image recorded by the sensor is the solar light reflected and

diffused back from the observed planet surface and atmosphere
at a particular spectral band. Under some assumptions re-
lated to surface and atmosphere properties—e.g., Lambertian
surface, no intimate mixture, no diffusion terms in the at-
mosphere, and homogeneous geometry in the scene—each
measured spectrum—i.e., each pixel of the observed image
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for several spectral bands—is modeled as a linear mixture of
the scene component spectra (endmembers) [1]–[3]. In this
model, the weight of each component spectrum is linked to
its abundance in the surface area, which corresponds to the
underlying pixel. The main goal of hyperspectral unmixing is to
identify the components of the imaged surface and to estimate
their respective abundances [4], [5].

By considering P pixels of a hyperspectral image acquired in
L frequency bands, the observed spectra are gathered in a P ×
L data matrix X, potentially ignoring spatiality. Each row of
this matrix contains a measured spectrum at a pixel with spatial
index p = 1, . . . , P . According to the linear mixing model, the
pth spectrum, i.e., 1 ≤ p ≤ P , can be expressed as a linear
combination of R pure spectra of the surface components.
Using matrix notations, this linear spectral mixing model can
be written as

X ≈ AS (1)

where nonnegative matrices A ∈ R
P×R
+ and S ∈ R

R×L
+ ap-

proximate X ∈ R
P×L
+ in the sense that 1/2‖AS − X‖2 is

minimized (R·×·
+ denotes the space of matrices with only non-

negative entries of respective dimensions). The rows of matrix
S now contain the pure surface spectra of the R components,
and each element apr of matrix A corresponds to the abundance
of the rth component in pixel with spatial index p. For the
qualitative and quantitative descriptions of the observed scene
composition, the estimation problem consists of finding matri-
ces S and A that allow one to explain the data matrix X and
have a coherent physical interpretation. This approach casts the
hyperspectral unmixing as a source separation problem under
a linear instantaneous mixing model [6]. Source separation is a
statistical multivariate data processing problem whose aim is to
recover unknown signals (called sources) from noisy and mixed
observations of these sources [7], [8].

This problem has been studied in-depth in recent years,
starting with pioneer work more than 15 years ago [9], [10].
From a statistical point of view, the problem is also related
to principal component analysis (PCA) and k-means clustering
(see [11] for an overview). Also note that the factorization AS
is not uniquely defined. For instance, for any matrices Z ∈
R

R×.
+ such that ZZ−1 = I, then AZZ−1S = (AZ)(Z−1S) =

A′S′ is a solution as well; this holds even if the minimization
is able to find a global minimum. However, when solving this
separation problem with hyperspectral data, several constraints
can be considered to reduce the set of admissible solutions. A
first hard constraint is the nonnegativity of the elements of both



matrices S and A since they correspond to pure spectra and
abundances of the surface components, respectively. A second
constraint that may be imposed is the sum-to-one (additivity)
constraint of the abundances. Indeed, the abundance weights
correspond to proportions and should therefore sum to unity.

Several algorithms have been proposed in the literature to
solve fully constrained unmixing problems, i.e., handling both
of the constraints imposed on the spectra and abundances.
Specifically, an iterative algorithm called iterated constrained
endmembers (ICE) has been proposed in [12] to minimize
the size of the simplex formed by the estimated endmembers.
However, as noted in [13], results provided by ICE strongly de-
pend on the choice of the algorithm parameters. More recently,
Jia and Qian have developed in [14] complexity-based BSS
algorithms that exploit pixel correlations to recover endmember
signatures. In [15], Miao and Qi have introduced a nonnegative
matrix factorization (NMF) algorithm with an additivity penalty
on the abundance coefficients. Similarly, other constrained
NMF approaches exploiting smoothness and sparseness fea-
tures have been considered in [16]. Note that all the strategies
described earlier are based on an optimization scheme to min-
imize a penalty criterion. Consequently, they may suffer from
convergence issues, e.g., due to the presence of local maxima
and the large number of parameters to be estimated.

Alternatively, the constrained separation problem can be con-
veniently addressed in a Bayesian framework. Two algorithms
that perform unsupervised separation under positivity and sum-
to-one constraints have been recently proposed [17], [18].
These algorithms are based on hierarchical Bayesian modeling
to encode prior information regarding the observation process
the parameters of interest and include the positivity and full
additivity constraints. The complexity of the inference from the
posterior distribution of the parameters of interest is tackled
using Markov chain Monte Carlo (MCMC) methods [19], [20],
which has been proposed to analyze hyperspectral images [21].
The algorithmic details are not described here. The reader is
invited to read the pseudocodes summarized in algorithms 1
and 2 and to consult [17] and [18] for further details. The only
difference between the two Bayesian positive source separation
(BPSS) algorithms is the sampling of the abundance vectors
ap (p = 1, . . . , P ). However, since these algorithms rely on
MCMC methods, the computation time drastically increases
with the image size, and these algorithms have not been applied
for large-scale data processing in spite of their high effectiveness.

The aim of this paper is to discuss some implementation
strategies that allow one to apply these algorithms to real
hyperspectral data even if images are large. Previous works
about blind source separation of hyperspectral images have
been proposed [22]–[24], but only few use positivity/sum-
to-unity constraints [25]. To overcome this difficulty, a first
approach has been proposed in [25] to combine independent
component analysis (ICA) and BPSS. First, applying an ICA
algorithm (such as JADE [26] or FastICA [27]) to hyperspectral
images is applied to get a rough spatial classification of the
scene and to sample relevant pixels (i.e., from each class, the
pixels whose spectra are mostly uncorrelated are selected).
Second, the spectra associated to these pixels will serve in
the Bayesian separation algorithm to estimate the endmember

spectra. Finally, the abundances can then be estimated on the
whole image using the estimated spectra. However, this strategy
presents a limitation related to the difficulty to determine the
number of pixels to retain from each independent component
class. In this paper, another pixel selection strategy based on
the computation of the convex hull of the hyperspectral data
is introduced. Its influence on separation performances is also
discussed. The issue of estimating the number of sources, or
“intrinsic dimension” [28], will not be addressed in this paper.
Several methods have been proposed in the literature [29], [30].

This paper is organized as follows. Section II describes
the proposed implementation strategies adopted for this paper.
Section III summarizes the improvements related to the tech-
nical aspects of memory storage and computation issues.
Section IV discusses the performances of the resulting algo-
rithms when the pixel selection preprocessing step is introduced.

Algorithm 1 BPSS algorithm

for i = 1, . . . , NMCdo
% sampling the abundance hyperparameters
for p = 1, . . . , P do

Draw λp from the pdf

f(λp|ap:, γp) ∝
R∏

r=1

[
γ

λp
p

Γ(λp)
a

λp
p,r

]
e−ελp1R+(λp).

end for
% sampling the abundance hyperparameters
for p = 1, . . . , P do

Draw γp from the gamma distribution

γp|λp,ap: ∼ G

(
1 + Rλp + ε,

R∑
r=1

ap,r + ε

)
.

end for
% sampling the abundance vectors
for p = 1, . . . , P and r = 1, . . . , Rdo

Draw ap,r from the pdf

f
(
ap,r|λp, γp,S, σ2

e ,X
)

∝ aλr−1
p,r 1R+(ap,r) exp

[
− (ap,r − μp,r)

2

2δ2
p

− γpap,r

]

end for
% sampling the noise hyperparameters
Draw ψe from the inverse-gamma distribution

ψe|σ2
e , ρe ∼ IG

(
Pρe

2
,
1

2

P∑
p=1

1

σ2
e,p

)
.

% sampling the noise variances
for p = 1, . . . , P do

Draw σ2
e,p from the inverse-gamma distribution

σ2
e,p|ψe,ap:,S,xp: ∼ IG

(
ρe + L

2
,
ψe + ‖xp: − Sap:‖2

2

)
.

end for
% sampling the source hyperparameters
for r = 1, . . . , Rdo



Draw αr from the pdf

f(αr|sr:, βr) ∝
L∏

l=1

[
βαr

r

Γ(αr)
sαr

r,l

]
e−εαr1R+(αr).

end for
% sampling the source hyperparameters
for r = 1, . . . , Rdo

Draw βr from the gamma distribution

βr|αr, sr: ∼ G

(
1 + Lαr + ε,

L∑
l=1

sr,l + ε

)
.

end for
% sampling the source spectra
for r = 1, . . . , R and l = 1, . . . , Ldo

Draw sr,l from the pdf

f
(
sr,l|αr, βr,A, σ2

e ,X
)

∝ sαr−1
r,l 1R+(sr,l) exp

[
− (sr,l − μr,l)

2

2δ2
r

− βrsr,l

]

end for
end for

Algorithm 2 Fully constrained BPSS algorithm (BPSS2)

for i = 1, . . . , NMCdo
% sampling the abundance vectors
for p = 1, . . . , P do

Draw ap: from the pdf

f
(
ap:|A, σ2

e ,X
)
∝exp

[
−1

2
(ap:−μp)TΛ−1

p (ap:−μp)
]
1S(ap:)

with

S =

{
ap:ap,r ≥ 0, ∀r = 1, . . . , R,

R∑
r=1

ap,r = 1

}
.

end for
% sampling the noise hyperparameters
Draw ψe from the inverse-gamma distribution

ψe|σ2
e , ρe ∼ IG

(
Pρe

2
,
1

2

P∑
p=1

1

σ2
e,p

)
.

% sampling the noise variances
for p = 1, . . . , P do

Draw σ2
e,p from the inverse-gamma distribution

σ2
e,p|ψe,ap:,S,xp: ∼ IG

(
ρe + L

2
,
ψe + ‖xp: − Sap:‖2

2

)
.

end for
% sampling the source hyperparameters
for r = 1, . . . , R do

Draw αr from the pdf

f (αr|sr:, βr) ∝
L∏

l=1

[
βαr

r

Γ(αr)
sαr

r,l

]
e−εαr1R+(αr).

end for

% sampling the source hyperparameters
for r = 1, . . . , Rdo

Draw βr from the gamma distribution

βr|αr, sr: ∼ G

(
1 + Lαr + ε,

L∑
l=1

sr,l + ε

)
.

end for
% sampling the source spectra
for r = 1, . . . , R and l = 1, . . . , Ldo

Draw sr,l from the pdf

f
(
sr,l|αr, βr,A, σ2

e ,X
)

∝ sαr−1
r,l 1R+(sr,l) exp

[
− (sr,l − μr,l)

2

2δ2
r

− βrsr,l

]

end for
end for

II. OPTIMIZATION STRATEGIES

The optimization consists of two independent parts, which
will be referred to as follows: 1) technical optimization (TO)
to reduce the memory footprint, lower the average cost of
algorithmic operations, and make smarter reuse of memory,
and 2) convex hull optimization (CHO) to reduce the number
of spectra to be processed.

Both parts enabled us to analyze hyperspectral images that
so far were not open to analysis. The authors stress that the
techniques applied in 1) do not alter the results of the original
algorithm (see Section III). On the other hand, the optimization
strategy 2) only selects a subset of the original input and may
therefore change the results. The impact of the strategy 2) needs
to be evaluated, which will be presented in Section IV.

A. TO

The algorithms introduced in [17] and [18] and referred
to as BPSS and BPSS2, respectively, could be successfully
launched on an image of a restricted size, typically of a few
thousand pixels. The main goal of this paper is to optimize the
memory requirement of these algorithms to process a whole
hyperspectral image of 100 000 spectra, as it typically occurs in
earth and planetary science. Since the time requirements of the
computation increase drastically for a larger number of pixels
and a larger number of sources, another challenging objective
is to reduce as much as possible the computation time. In that
respect, our proposal is to discuss the memory storage, the data
representation, the operating system (OS) architecture, and the
computing parallelization. These algorithms have been imple-
mented in MATLAB for this paper, but future implementations
will be done in other languages as well.

1) Memory: Thanks to the MATLAB profiler, it can be
noticed that the main limitation of the BPSS implementation
is the contiguous memory. Fragmentation may occur when
variables are resized after memory allocation. In this case, the
memory management might not be able to allocate a chunk
of memory that is large enough to hold the new variable.



TABLE I
SUMMARY OF MEMORY LIMITATION, DEPENDING ON THE OS

TABLE II
COMPUTATION TIMES (AFTER TO) IN SECONDS, FOR A SYNTHETIC DATA

SET WITH THREE ENDMEMBERS (NO CUTOFF, NO NOISE), FOR BOTH

BPSS AND BPSS2, WITH AND WITHOUT CHO. IN THIS EXAMPLE,
944 PIXELS WERE SELECTED FORTHE CHO AMONG A TOTAL OF

100 000. THE NAME OFTHE RUN OF TABLE III AND

TABLE IV IS NOTED IN PARENTHESIS

Significant garbage collection may set in, which may have
a significant performance impact. In our case, to reduce the
impact of garbage collection, preallocating the matrices and
work with global variables has been found to be useful.

2) Precision: MATLAB, by default, computes on double
precision. However, computing with single data type saves a
lot of computation time while providing sufficient arithmetic
precision. It has been estimated to win up to 60% computation
time on an x86 processor architecture, while the changes to the
code have been minimal. Furthermore, most data sets come as
single precision.

3) OS Architecture: It is interesting to note that MATLAB
is limited in terms of memory usage (regardless of the size of
physical memory). This depends on the OS and the MATLAB
version (see Table I).

Therefore, a 32-bit LINUX architecture has been chosen.
4) Parallelization: MATLAB contains libraries dedicated to

automatically parallelize parts of the algorithms on a single
computer. BPSS has been run on a four-core machine. The
underlying matrix libraries already provide a certain level of
parallelism, depending on the number of available cores. How-
ever, in the future, parts of the code could be parallelized, and
the jobs could be submitted to a grid in order to speed up the
calculation process.

B. CHO

The proposed pixel selection strategy is based on the convex
hull of the data matrix projection into the subspace spanned
by the principal components. The convex hull of a point set is
the smallest convex set that includes all the points [31]. The
pixels associated to the vertices of the convex hull are selected
[32] and are expected, despite their limited number, to exhibit
the main spectral features of the whole data set. In terms of
abundances, this sample of points should contain the pixels with
the highest abundances of the components that contribute to the
investigated hyperspectral image (i.e., the purest pixels or most

extreme pixels). It can be used as a concise representation of
the data set that still features the strongest spectral signatures
available in the original image. This strategy is also used as
a first step in endmember extraction algorithms for dimension
reduction and purest pixel determination [32]–[37]. Pixel selec-
tion has the advantage to reduce the number of mixture spectra
to unmix and to enforce the sparsity of the mixing coefficients
to be estimated. Note that the spectral dimension of the selected
spectra is not changed; only the spatial dimension is reduced
since only a few pixels are selected.

The convex hull selection has been implemented after seven
spectral components have been selected through PCA, which
turned out to be a good compromise between resource con-
sumption and accuracy.

III. PERFORMANCE AND ACCURACY OF TO

All the following runs are performed on a Quad-Core AMD
Opteron Processor 8384 at 2.7 GHz with 2 GB of memory.

1) Performance: Computation times between the previous
version of BPSS and the TO version have been compared when
processing a synthetic data set of 1052 spectra of 128 bands and
3 sources. For a run attempting at estimating three sources, the
computation time has decreased from 1106 s (previous version)
to 724 s (TO version), i.e., by a factor of about 1.5. In addition,
the total memory consumption is nearly half for the TO version
of the algorithm.

2) Accuracy: Due to the stochastic nature of the BPSS
algorithms, it is difficult to demonstrate that two algorithms are
semantically identical. In order to check that no significant loss
of accuracy has been induced by TO and, in particular, by the
change from double to single precision, several tests have been
performed with different random seeds χ1 and χ2, which are
used for the initialization step of the MCMC. The sources Sχ1

and Sχ2 estimated with and without TO have been compared.
The average correlations between Sχ1 and Sχ2 are 0.9816 ±

0.0315 and 0.9818 ± 0.0255 without and with TO, respectively.
These correlations are due to the stochastic approach in the
Bayesian framework. Correlation values are similar, indicating
that the stochastic variance has not been affected by TO.

The average cross correlation between Sχ1 and Sχ2 with and
without TO is 0.9760 ± 0.0388. This value is similar to the
correlation due to the stochastic process, demonstrating that the
TO version is equivalent to the original version of BPSS.

No significant differences have been observed, confirming
that the TO version is equivalent to the original version of
BPSS.

IV. PERFORMANCE AND ACCURACY OF CHO

The impact of the convex hull pixel selection preprocessing
step has been evaluated on two data sets: 1) synthetic data
generated from linear mixtures of known materials and 2) an
Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité
(OMEGA) hyperspectral image of the south polar cap of Mars
as an example from planetology. Since the BPSS with TO
has been shown to be semantically equivalent to the previous
version, the TO approach is used in the rest of this paper.



TABLE III
RESULTS OBTAINED FOR DIFFERENT SYNTHETIC DATA SETS WITH THE BPSS ALGORITHM. THE CHARACTERISTICS OF EACH DATA SET ARE SHOWN:

NUMBER OF ENDMEMBERS, CUTOFF, AND NOISE. EACH DATA SET HAS BEEN ANALYZED WITH A NUMBER OF SOURCES TO BE ESTIMATED

EQUAL TO THE NUMBER OF ENDMEMBERS USED TO GENERATE THE ARTIFICIAL DATA SET, WITH AND WITHOUT PIXEL SELECTION.
THE QUALITY OF THE ESTIMATION IS EXPRESSED THROUGH THE NUMBER OF WELL-ESTIMATED SOURCES AND THE

MEAN ABSOLUTE EXPRESSION, AS EXPLAINED IN THE TEXT

A. Synthetic Data

1) Description: Several synthetic data sets have been gen-
erated by mixing a known number of endmembers, with abun-
dances simulated with uniform distribution. The generated data
sets are of size 200 × 500 pixels, which is a spatial size
similar to the one of a typical hyperspectral image. For the
endmembers, the following spectra have been used: H2O and
CO2 ice spectra [38], [39] and mineral spectra from the U.S.
Geological Survey Digital Spectral Library splib06a [40], re-
sampled to match the 128 wavelengths of OMEGA C Channel
[41]. To ensure the sum-to-one constraint on the R endmember
abundances, a uniform distribution on the simplex has been
used following a well-established scheme [42]. Synthetic data
sets have been generated with three, five, and ten endmem-
bers. Based on this method, data sets for which the maximum
abundance of each single endmember was limited to certain
values (100%, 80%, and 60%) have also been considered. These
latter data, which are called “cutoff” in the sequel, allow one to
test the method efficiency face to various conditions in terms
of purity of the samples (in cases where pure—to a certain
degree—components occur in the data set or not). In addition,
a three-component asymmetric data set has been investigated,
with one of the component abundances (albite) being limited to
a cutoff of 35% and the abundances of the two others (ices) not
being limited. In addition, data sets with some added OMEGA-
like Gaussian noise, amplified or not, have also been generated
and investigated. The noise estimation on the dark currents of
the OMEGA instruments for observation 41_1 has been used
[39]. Note that, for all the considered simulation scenarios, the
number of sources to be estimated has been tuned to the actual
number of endmembers used to produce the artificial data set.

2) Performance: Computation times are about 50 times
shorter when pixel selection by convex hull (CHO) is performed
as a preprocessing step (see Table II).

3) Accuracy:
a) Analysis of the results: The spectrum of each esti-

mated source has been compared to the spectra from the spec-

tral library containing the pure endmembers used to produce
the synthetic data set. The absolute value of the correlation has
been used as a similarity measurement (thus as a criterion for
the determination of the best spectral match). In Fig. 1, each
source is represented along with its best match, according to
the aforementioned criterion. Table III (resp. Table IV) shows
the results for BPSS (resp. BPSS2).

A source is considered a good estimation of a certain end-
member if both spectrally match each other best and if their
absolute correlation is greater than 80%. For each run, the
number of well-estimated sources is mentioned in Tables III
and IV. Note that endmembers matched by several sources, in
case it happens, are only counted once. Along with the number
of well-estimated sources, the mean value of the correlations
between (only) the well-estimated sources and their best spec-
tral match also helps for the assessment of the accuracy for
the estimation of the whole set of sources for each run. Simple
distance could not be used here because the scale in usual blind
source separation is undetermined [8].

b) BPSS versus BPSS2: In most of the tested cases, the
quality of estimation is unambiguously better with BPSS2 than
that with BPSS (see Tables III and IV). The improvement
appears to be even more significant when the number of end-
members is increasing. Our three-endmember test data set is
a mixture of two endmembers with strong spectral signatures
(CO2 and H2O ices) and a third one with weaker signatures
(albite), as often with minerals. Interestingly, while using BPSS
allows one to correctly estimate the ice spectra but not albite,
BPSS2 is actually able to correctly estimate the three endmem-
bers. This confirms that adding the sum-to-one constraint is
necessary when dealing with such a data set, which is important
regarding the analysis of other data set.

c) Effect of the pixel selection (CHO): With the exception
of the asymmetric data set (see in the following), the endmem-
bers are less well estimated when a pixel selection has been
performed, with the loss appearing to be less significant when
the number of endmembers is low.



Fig. 1. (Blue lines) Sources estimated by BPSS2 and (red dotted lines) their spectral matches for an artificial data set with ten endmembers (no cutoff, no noise).

TABLE IV
RESULTS OBTAINED FOR DIFFERENT SYNTHETIC DATA SET WITH THE BPSS2 ALGORITHM. THE CHARACTERISTICS OF EACH DATA SET ARE SHOWN:

NUMBER OF ENDMEMBERS, CUTOFF, AND NOISE. EACH DATA SET HAS BEEN ANALYZED WITH A NUMBER OF SOURCES TO BE ESTIMATED

EQUAL TO THE NUMBER OF ENDMEMBERS USED TO GENERATE THE ARTIFICIAL DATA SET, WITH AND WITHOUT PIXEL SELECTION.
THE QUALITY OF THE ESTIMATION IS EXPRESSED THROUGH THE NUMBER OF WELL-ESTIMATED SOURCES AND THE

MEAN ABSOLUTE EXPRESSION, AS EXPLAINED IN THE TEXT

Also note that the results with pixel selection do not appear
to be very sensitive to the cutoff variations: The loss of quality
(between runs performed with and without pixel selection) is

similar for cutoffs of 60%, 80%, and 100%, which can be
explained by the pixel selection’s ability to extract the purest
available pixels.



Fig. 2. (Blue lines) Sources estimated by BPSS2 and (red dotted lines) their
spectral matches for an artificial data set with three endmembers and 100-times
amplified OMEGA-like noise (no cutoff).

d) Effect of the number of endmembers: Due to the curse
of dimensionality, the higher the number of endmembers to be
estimated with a fixed number of wavelengths, the more diffi-
cult the estimation becomes [43], [44]. Still, BPSS2 gives ex-
cellent results even for ten sources, as all spectra are estimated
with a correlation coefficient higher than 99% (see Fig. 1).

e) Effect of the maximum abundance cutoff: The cutoff
affects the quality of estimation, which is clearly better, for
BPSS and BPSS2, when pure components occur in the data set.
This has to be remembered when dealing with real data sets.

f) Effect of noise: The results clearly show that the
method is very robust to noise, as the estimation of the sources
does not appear to be significantly affected by the addition
of a Gaussian OMEGA-like noise to the synthetic data set.
BPSS2 (without pixel selection) even manages to successfully
overcome the addition of a 100-times amplified OMEGA-like
noise (see Table II and Fig. 2).

g) Effect of asymmetry in maximum abundance cutoff: In
this case, the results are better with pixel selection rather than
without. BPSS2 with pixel selection is the only run (performed
on this synthetic data set) that allows one to successfully
estimate the three endmembers that have been used to generate
the data set, including albite, whose abundances have been
limited to a cutoff of 35% and whose spectral signature is
weaker than the ones of the other endmembers (ices). This
result can be explained by the fact that pixel selection is able to
extract the pixels with the strongest available albite signature,
and consequently overcomes the blinding effect of the ices
occurring in the whole data set, which has affected the results
when no pixel selection has been performed.

B. OMEGA Data

1) Presentation: The OMEGA instrument is a spectrometer
onboard Mars Express (European Space Agency), which pro-
vides hyperspectral images of the Mars surface, with a spatial
resolution from 300 m to 4 km, 96 channels in the visible
range, and 256 wavelength channels in the near infrared [45].
In this paper, 184 spectral bands have been selected according
to the best signal-to-noise ratio. Conversely, spectral bands that
contain thermal emission have been removed.

Fig. 3. Reference spectra of the OMEGA hyperspectral image 41_1: (i) in
blue: synthetic H2O ice with a grain size of 100 μm, (ii) in red: synthetic CO2

ice with a grain size of 10 cms, and (iii) in black: OMEGA typical dust materials
with atmosphere absorption.

TABLE V
COMPUTATION TIMES IN SECONDS, FOR THE OMEGA 41_1 IMAGE WITH

THREE ENDMEMBERS, FOR BOTH BPSS AND BPSS2, WITH AND WITHOUT

CHO. IN THIS EXAMPLE, 670 PIXELS HAVE BEEN SELECTED WITH THE

CHO, AMONG A TOTAL OF 111 488. THE NAME OF THE RUN OF

TABLE VI IS NOTED IN PARENTHESES

TABLE VI
RESULTS ON ALGORITHMS BPSS AND BPSS2 ON A PORTION OF THE

OMEGA IMAGE (41_1.CUT) AND ON THE ENTIRE IMAGE (41_1). FOR

41_1.CUT, THE PROPORTION OF PIXELS WITH DETECTED CO2 IS 48.72%,
AND IT IS 63.48% FOR H2O [39]. FOR 41_1, THE PROPORTIONS OF PIXELS

FOR CO2 AND H2O ARE 16.76% AND 21.84%, RESPECTIVELY. THE

COLUMNS H2O, CO2, AND DUST INDICATE THE CORRELATIONS

COEFFICIENT BETWEEN THE ESTIMATED SOURCES AND THE REFERENCE

SPECTRA. (−) INDICATES NO IDENTIFICATION OF H2O NEITHER FROM

SPECTRAL NOR SPATIAL RESULTS. THIS SOURCE HAS BEEN DETECTED

TO BE CO2 ICE (CORRELATION OF 0.911)

Blind source separation on this data set has been initiated by
using the JADE algorithm [46]. In particular, the 41_1 image
of the permanent south polar region has been used for the
supervised classification approach with WAVANGLET [39],
unsupervised classification approach [47], and unsupervised
blind source separation using BPSS [25]. Since no ground
truth is available, the results from physical nonlinear inversion
have been considered as a reference [39], [48], [49]. In this
image, the surface is dominated by dust, and some spectra
contain CO2 and water ices (see Fig. 3). This reference data
set for hyperspectral classification is available online.1 The
Luo et al. method introduced in [30] has estimated two sources

1http://sites.google.com/site/fredericschmidtplanets/Home/hyperspectral-
reference



Fig. 4. Estimation of three sources of the entire OMEGA image 41_1 with BPSS using a preprocessing step of pixel selection employing the convex hull method.
The first and third sources are clearly identified as CO2 and H2O ices (see Fig. 3) with correlation coefficients of 0.953 and 0.940, respectively (see run OMEGA-7
of Table VI). The spatial abundances are well estimated regarding the WAVANGLET classification method [39], [25]. The second source is identified as dust with
a lower correlation coefficient (0.372).

for both 41_1 and 41_1.CUT images. From previous work
using band ratio detection [41], physical inversion of the radia-
tive transfer [48], [49], supervised classification approach using
WAVANGLET [39], and unsupervised classification [47], three
endmembers have been detected: dust, CO2, and water ice. The
number of sources has been tuned to three in our study.

The proportions of pixels containing CO2 and H2O ices
on the 41_1 image are estimated to be 16.76% and 21.84%,
respectively [39]. The first 300 lines of the 41_1 image (subset
named 41_1.CUT) contain all spectra having ices. For this
subset, the proportions of pixels with detected CO2 and H2O
are 48.72% and 63.48%, respectively.

2) Performance: Computation times are about 100 times
shorter when pixel selection by convex hull (CHO) has been
performed as a preprocessing step (see Table V).

3) Accuracy: Table VI reports the results from different
tests; each run is defined by a number. To estimate the quality
of estimation, the correlation between the reference spectra and
the estimated sources has been computed. The attribution of
each source has been done ad hoc using both spectral source
and spatial abundances.

a) Asymmetric abundances of the sources: The quality of
estimation with both BPSS and BPSS2 is significantly lower for
data set 41_1 (runs OMEGA-5 to OMEGA-8) in comparison
with 41_1.CUT (runs OMEGA-1 to OMEGA-4). This result
suggests that both BPSS and BPSS2 are less efficient in a case
of an asymmetric distribution of the sources.

b) BPSS versus BPSS2: The BPSS algorithm gives sig-
nificantly better results than the BPSS2 one (for instance, run

OMEGA-3 versus OMEGA-4). This is due to nonlinearity in
the radiative transfer and noise in the data set in contradiction
with the full additivity constraint.

c) Effect of pixel selection: When convex hull selection
has been used as a preprocessing step to BPSS/BPSS2, the
estimation is significantly better (see Fig. 4 for run OMEGA-5
and Fig. 5 for run OMEGA-7). These results show that pixel
selection is a way to better take into account the occurrence of
rare endmembers and is thus an interesting method to provide
better results.

V. DISCUSSION AND CONCLUSION

For the first time, an MCMC-based blind source separation
strategy with positivity and sum-to-one constraints has been
effectively applied on a complete hyperspectral image with a
typical size frequently encountered in earth and planetary sci-
ence. The optimization of BPSS [17] and BPSS2 [18] presented
in this paper consists of two independent parts: 1) TO reduces
the memory footprint, lowers the average cost of algorithmic
operations, and makes smart reuse of memory, and 2) CHO
reduces the number of spectra to process.

Fig. 6 summarizes the following results in a schematic form.
1) TO, for both BPSS and BPSS2, allows one to decrease

the computation times by a factor of 1.5, without altering
the accuracy of the results. Memory consumption has also
been reduced by a significant factor. With such unambigu-
ous advantages, the TO versions of BPSS and BPSS2 can
be rather used than the original implementations.



Fig. 5. Estimation of three sources of the entire OMEGA image 41_1 with BPSS without pixel selection. The second source is clearly identified as CO2 ice
(see Fig. 3) with a correlation coefficient of 0.957 (see run OMEGA-5 of Table VI). The first and third sources are identified as dust and water ice with lower
correlation coefficients of 0.555 and 0.773, respectively. The spatial abundances of water ice are not well estimated regarding the WAVANGLET classification
method [39].

Fig. 6. Schematic of source separation estimation and usefulness of convex
hull pixel selection for hyperspectral images.

2) Trivially, the results obtained for linear artificial data set
(with uniform abundance distributions identical for each
endmember with abundances until 100%) have demon-
strated that the sources estimated by the TO strategy are
equivalent to that by the CHO strategy (for instance, runs
BPSS-1 to BPSS-2 in Table III and runs BPSS2-1 to
BPSS2-2 in Table IV). In this case, pixel selection is
still relevant to reduce the computation time by about
50 times (Table II).

3) The results obtained for the artificial data set with uniform
abundance distributions and identical cutoffs for all end-
members have shown that the estimation of the sources
is less accurate when a pixel selection (CHO) has been

performed (runs BPSS-3 to BPSS-6 in Table III and runs
BPSS2-3 to BPSS2-6 in Table IV). In this case, despite
50-times shorter computation times, using pixel selection
as a preprocessing step seems to be inadequate.

4) For OMEGA data, the computation time reduction due
to CHO has been around 100 (Table V). Abundance
distributions can be significantly imbalanced (some end-
members are significantly less present in the scene). In
that case, pixel selection by convex hull (CHO) is a way to
overcome the bias caused by the overwhelming endmem-
bers. This has been supported by the results obtained for
the synthetic data set of linear mixture using imbalanced
uniform distribution.

5) BPSS2 seems to better estimate the sources in the artifi-
cial data set but not in the real case. This is probably due
to nonlinearity or the non-Gaussian noise effect.

6) The method BPSS2 appears to be very robust to Gaussian
noise, as shown by the results obtained on the synthetic
data set, even with 100-times actual OMEGA noise.

7) Sometimes, some sources have been well estimated but
anticorrelated with the real spectra. This behavior has
been interpreted to be due to the linearly dependent
endmembers. In that case, spectra built by a linear combi-
nation of all sources except the considered source already
contain spectral signatures of the considered source. The
last source is then anticorrelated with the corresponding
endmember to decrease his contribution. This behavior
has to be studied in further detail because it is clearly a
limitation of blind source separation.



In the future, the choice of the number of sources, which is
an input in the current implementation, should be automated
to allow one batch processing without human intervention. A
methodology of pixel selection for use across data sets should
also be established to enable integration of source separation
techniques into larger systems and aim at the generation of
catalogs and maps.
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