
HAL Id: hal-03556758
https://hal.science/hal-03556758v1

Submitted on 4 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generative Supervised Classification Using Dirichlet
Process Priors.

Manuel Davy, Jean-Yves Tourneret

To cite this version:
Manuel Davy, Jean-Yves Tourneret. Generative Supervised Classification Using Dirichlet Process
Priors.. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 3 (10), pp.1781-1794.
�10.1109/TPAMI.2010.21�. �hal-03556758�

https://hal.science/hal-03556758v1
https://hal.archives-ouvertes.fr


This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 

Eprints ID: 4150 

To link to this article: DOI:10.1109/TPAMI.2010.21 

URL: http://dx.doi.org/10.1109/TPAMI.2010.21  

To cite this version: Davy, Manuel and Tourneret, Jean-Yves (2010) 

Generative Supervised Classification Using Dirichlet Process Priors. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32 

(n° 10 ). pp. 1781-1794 . ISSN 0162-8828 

Open Archive Toulouse Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse researchers and 

makes it freely available over the web where possible.  

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@inp-toulouse.fr 

http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr


Generative Supervised Classification
Using Dirichlet Process Priors

Manuel Davy, Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract—Choosing the appropriate parameter prior distributions associated to a given Bayesian model is a challenging problem. 
Conjugate priors can be selected for simplicity motivations. However, conjugate priors can be too restrictive to accurately model the 
available prior information. This paper studies a new generative supervised classifier which assumes that the parameter prior 
distributions conditioned on each class are mixtures of Dirichlet processes. The motivations for using mixtures of Dirichlet processes is 
their known ability to model accurately a large class of probability distributions. A Monte Carlo method allowing one to sample 
according to the resulting class-conditional posterior distributions is then studied. The parameters appearing in the class-conditional 
densities can then be estimated using these generated samples (following Bayesian learning). The proposed supervised classifier is 
applied to the classification of altimetric waveforms backscattered from different surfaces (oceans, ices, forests, and deserts). This 
classification is a first step before developing tools allowing for the extraction of useful geophysical information from altimetric 
waveforms backscattered from nonoceanic surfaces.

Index Terms—Supervised classification, Bayesian inference, Gibbs sampler, Dirichlet processes, altimetric signals.

1 INTRODUCTION

STATISTICAL classification has received considerable atten-
tion in the literature (see, for instance, [1], [2], [3], [4], [5],

and references therein). Among all possible classification
strategies, the Bayes decision rule is known to provide a
minimal probability of error (or, more generally, a minimal
expected value of an appropriate loss function). However, the
Bayes classifier assumes knowledge of the class-conditional
densities and the prior class probabilities. When the class-
conditional densities are unknown, a classifier is generally
built by using training patterns from the different classes
following supervised learning. This paper focuses on
supervised parametric classification. Each feature vector
belonging to one of J identified classes is assumed to be the
random outcome of some stochastic process tuned by an
unknown parameter vector. In this setting, training the
classifier consists of learning the parameter class-conditional
posterior distribution (see Section 2) so as to compute Bayes
factors [6]. We focus in this paper on generative classifiers that
provide better performance than discriminative classifiers for
small training set sizes [7].

Learning a parameter posterior distribution is generally a
difficult problem. The parameter prior distributions have to
be sufficiently general to model accurately the parameter
class-conditional distributions without yielding untractable
computational complexity. As a consequence, advanced
learning strategies have to be developed to handle the
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possible multiple maxima of the objective function. These 
difficulties explain why fully Bayesian generative supervised 
classifiers have received less attention than other classifiers. 
A simple generative training strategy known as naive Bayes 
classification assumes that all features are independent 
inside a given class. This strategy has been used successfully 
in many practical applications, including text classification 
[8] and object detection [9]. Semi-naive Bayes classifiers 
decompose the input features into statistically independent 
subsets with statistical dependency within each subset [10]. 
This paper studies a new generative classifier based on 
Dirichlet process priors. These priors are known to enable the 
modeling of a large class of probability density functions 
(pdfs) (e.g., see [11], [12], [13], [14], [15], and references 
therein). The naive Bayes and semi-naive Bayes classifiers 
mentioned above are special cases of the proposed generative 
classifier based on Dirichlet process priors.

1.1 Contributions

A generative classifier based on hierarchical Bayesian 
models and Markov chain Monte Carlo (MCMC) methods 
has been recently studied in [16]. The Bayesian approach of 
[16] is adapted to cases where a precise generative data 
model can be defined. However, the classifier may be 
difficult to generalize to any classification problem and it 
can lead to high-computational complexity when conjugate 
priors cannot be used for the unknown parameters. The 
present paper studies an alternative supervised generative 
classifier involving Dirichlet process priors. Our approach 
assumes a nonparametric flexible parameter prior distribu-
tion with controlled complexity, known as the Dirichlet 
Process Mixture (DPM) [17]. Our main contribution is to 
derive DPM-based models for generative supervised 
classification as well as efficient MCMC algorithms, allow-
ing one to estimate the unknown parameters of these 
models. It is interesting to mention here the work by 
Shahbaba and Neal [18], which is also related to supervised 
classification using DPMs. However, there are major



differences between [18] and the proposed approach, as
summarized below:

. Shahbaba and Neal have addressed classification in
a discriminative context without using any genera-
tive model. Conversely, the proposed classification
strategy studied here is generative allowing us to
efficiently use the data and a parametric model
associated to these data.

. Instead of modeling the parameter prior by a DPM,
Shahbaba and Neal propose modeling the joint
distribution of the training data and the class labels
by a DPM.

. Shababa and Neal assume that the training data
have a Gaussian distribution. This assumption is not
necessary for the proposed algorithm. For instance,
the radar data studied in the simulation section are
distributed according to gamma distributions.

1.2 Paper Organization

A comprehensive glossary of the main notations is
provided in Appendix A. Section 1 introduces the problem
addressed in this paper. Section 2 presents the proposed
parametric hierarchical Bayesian model used for supervised
classification. Section 3 recalls some useful properties of
Dirichlet processes. Section 4 studies original prior models
for supervised classification. These models assume that the
parameter priors for each class are mixtures of Dirichlet
processes. Consequently, these models do not assume that
the conditional class densities have a known parametric
shape as is often the case in classification problems (see [2,
p. 84] for details). Section 5 applies the proposed Bayesian
methodology to the classification of synthetic and real data.
Conclusions are reported in Section 6.

2 BAYESIAN SUPERVISED CLASSIFICATION

This section recalls the principle of Bayesian supervised
classification, using a parametric hierarchical model.

2.1 Problem Settings

Assume we want to classify (vectorial) data into J classes
denoted as C1; . . . ; CJ . We assume further that a training set
is available for each class Cj, j ¼ 1; . . . ; J , denoted as
Xj ¼ fx1;j; . . . ;xNj;jg. Inside each class, we assume the
following generative model:

xi;j ¼ Mjð�i;j; ��i;jÞ; ð1Þ

where Mjð�Þ is a known function, the parameters �i;j live in
a space �j � IRd (d is the dimension of the parameter
space), i ¼ 1; . . . ; Nj, and ��i;j is some stochastic noise. Note
that the noise needs not be additive, e.g., the case of a
multiplicative speckle noise will be considered in Section 5.
In probabilistic terms,

xi;j � pjðxi;jj�i;jÞ; ð2Þ

where pjðxi;jj�i;jÞ is the pdf of xi;j (belonging to the class Cj)
conditioned upon �i;j.

The Bayesian algorithms, derived in this paper, estimate
the posterior distribution of the parameter vector �j from the
training set Xj for each class Cj, j ¼ 1; . . . ; J . The parameter

posterior distribution for class Cj will be denoted as pð�jjXjÞ
and its estimation, detailed in the next section, will be referred

to as Bayesian learning.

2.2 Parametric Hierarchical Approach

Within the parametric hierarchical Bayesian settings, learn-

ing pð�jjXjÞ requires the definition of a prior distribution

over the parameter space �j, denoted as pjð�jj��jÞ, with

hyperparameter ��j. The posterior distribution of �j can then

be classically expressed as:1

pð�jjXjÞ ¼
Z
pjð�jj��jÞpð��jjXjÞd��j; ð3Þ

where

pð��jjXjÞ ¼
Z

. . .

Z
pð�1;j; . . . ; �Nj;j; ��jjXjÞd�1;j . . . d�Nj;j

/
Z

. . .

Z
pjð��jÞ

YNj

i¼1

pjðxi;jj�i;jÞpjð�i;jj��jÞ
� �

d �1;j . . . d �Nj;j

ð4Þ

by Bayes rule (/ means “proportional to”). As can be seen,

a prior distribution over the hyperparameter, denoted as

pjð��jÞ, has to be defined to determine the posterior

parameter distribution pð�jjXjÞ in (3). Once pð�jjXjÞ is

known, a new observation vector x can be classified in view

of the predictive densities

pðxjXjÞ ¼
Z
pjðxj�jÞpð�jjXjÞd�j; ð5Þ

for j ¼ 1; . . . ; J . For instance, assuming equal class prior

probabilities, the Bayesian maximum a posteriori (MAP)

classifier assigns x to the class maximizing pðxjXjÞ. The

Bayesian algorithms derived in this paper estimate the

posterior distributions pð�jjXjÞ from the training set Xj.

2.3 Bayesian Computations

In this section, we drop the class subscript as the

derivations are performed in each class in turn, indepen-

dently of the other classes. Equivalently, we assume that the

training samples in a class Cj do not provide any

information regarding parameter �i for i 6¼ j (see [2, p. 85]

for a similar assumption). The classification of a given

observation vector requires the evaluation of multidimen-

sional integrals in (3) and (4). These integrals cannot be

computed in closed-form in the general case. However, they

can be evaluated by using Monte Carlo methods as

proposed in [16]. The resulting algorithm is briefly recalled

below (the reader is invited to consult [16] for more details).
Assume that a set of samples e�ðlÞ, l ¼ 1; . . . ; L, distributed

according to pð�jXÞ is available. Note that pð�jXÞ is defined

as in (3), where the training set Xj has been replaced by

X ¼ ðx1; . . . ;xNÞ for notation simplicity (the class subscript

has been omitted). Then, the integral in (5) can be estimated

as follows:

1. For the sake of notational clarity, we adopt a slight abuse of notation
by denoting Lebesgue integrals over distributions as standard integrals.
These integrals should be understood as sums whenever the parameter to
be integrated is discrete.



pðxjXÞ ¼
Z
pðxj�Þpð�jXÞd � � 1

L

XL
l¼1

p
�
xje�ðlÞ�: ð6Þ

A usual way of generating samples e�ðlÞ distributed accord-
ing to pð�jXÞ is summarized in Algorithm 1.

Algorithm 1. Sampling from the class parameter
posterior distribution

For l ¼ 1; . . . ; L, do

1) sample e��ðlÞ � pð��jXÞ given in (4)

2) sample e�ðlÞ � gð�je��ðlÞÞ
Algorithm 1 requires being able to sample from pð��jXÞ.

In order to do so, one generates samples distributed
according to the joint posterior distribution pð��; ��jXÞ, where
�� ¼ f�1; . . . ; �Ng. The parameters �is are then marginalized
out by only considering the component e��ðlÞ of the full set of
sampled parameters and hyperparameters. In order to
sample from the full posterior pð��; ��jXÞ, one implements
the following Gibbs sampler (where MH stands for
“Metropolis-Hastings”):

Algorithm 2. Gibbs sampler for Bayesian Supervised

classification

% Step 0: Initialization

. Sample e��ð0Þ � hð��Þ
% step 1: Iterations. For l ¼ 1; . . . ; L, do

- For i ¼ 1; . . . ; N , sample e�ðlÞi � pð�ijxi; e��ðl�1ÞÞ /
pðxij�iÞgð�ije��ðl�1ÞÞ using, e.g., an MH step

- Sample e��ðlÞ � pð��je��ðlÞÞ / pð��Þ QN
i¼1 gðe�ðlÞi j��Þ using,

e.g., an MH step

2.4 Comments

Though straightforward to implement, Bayesian supervised
classification requires the definition of several distributions.
In practice, the distribution pðxj�Þ (referred to as likelihood)
is imposed by empirical considerations. The prior pð�j��Þ is
chosen for its conjugacy as well as for physical considera-
tions. However, its choice remains arbitrary in large parts.
In the following, we propose a nonparametric parameter
prior constructed from DPMs.

3 DIRICHLET PROCESSES AND DIRICHLET PROCESS

MIXTURES

3.1 Dirichlet Processes

Dirichlet processes are characterized by a base distribution F0

defined on an appropriate measurable space ð�;BÞ and a
positive real number �. More precisely, a Dirichlet process
with base distribution F0 and concentration parameter �,
denoted as F � DPð�;F0Þ, is the distribution of a random
probability measure F over ð�;BÞ such that, for Borel sets
A1; . . . ; Am forming a partition2 of �,

½FðA1Þ; . . . ;FðAmÞ� � D
�
�F0ðA1Þ; . . . ; �F0ðAmÞ

�
; ð7Þ

where D is the standard Dirichlet distribution [17], [19].
Equivalently, a Dirichlet process F can be defined as a
discrete distribution

F ¼
X1
k¼1

!k�Uk ; ð8Þ

where the probabilities !k are scalar nonnegative values
that sum to one and the Uk are random variables living in
the space of the base distribution. The random variables
ðU1; U2; . . .Þ are independent of the probabilities ð!1; !2; . . .Þ
and i.i.d. among themselves. They can be generated
recursively as follows: U1 � F0, !1 � Bð!1; 1; �Þ, and, for
k ¼ 2; 3; . . . :

. Uk � F0ð�Þ,

. �k � Bð�k; 1; �Þ and !k ¼ �k
Qk�1

k0¼1ð1� �k0 Þ,
where Bð:; a; bÞ denotes the beta distribution with para-
meters a and b (defined in [2, p. 109]). This procedure is
usually referred to as stick breaking representation [11], [12],
[20] and explains the role of F0 and �: F0 determines the
locations of the discrete components of F, while �

determines the variance of the !ks. The reader is invited
to consult [21] to understand the role of parameter �. A first
analysis is conducted in [21] with a fixed value of �, i.e.,
� ¼ 1. The parameter � is then varied to understand how
sensitive the results are to this parameter.

3.2 Polya Urn Representation

Consider a set of independent identically distributed (i.i.d)
variables f��1; . . . ; ��Ng distributed according to Fð�Þ, where
F � DPð�;F0Þ. Then, for any i ¼ 1; . . . ; N ,

pð��ij���i;F0; �Þ ¼
�

�þN � 1
F0ð��iÞ

þ 1

�þN � 1

XN
i0¼1 i0 6¼i

���i0 ð��iÞ; ð9Þ

where ���i ¼ f��i0 gi0¼1;...;N; i0 6¼i. This formula is known as the

Polya urn representation, which also makes clear the role of

F0 and � [22]. The base distribution F0 is used to sample the

location of clusters. Large values of � cause many clusters

to be created (the probability to sample from F0 in (9)

increases with �). Conversely, small values of � favor

sampling from existing clusters and, overall, few clusters

are generated. In theory, it is possible to have an infinite

number of clusters. However, for a small value of �, only a

few of them have a significant weight !k, and the

probability that at least one ��i belongs to such a cluster

becomes extremely small.
The Polya urn representation can also be written for the

posterior distribution of F given f��1; . . . ; ��Ng, as follows:

pðFj��1; . . . ; ��N;F0; �Þ ¼ DPðF1; �þNÞ; ð10Þ

where

F1ð��Þ ¼
�

�þN F0ð��Þ þ
1

�þN
XN
i¼1

���ið��Þ: ð11Þ

3.3 Dirichlet Process Mixtures

A DPM is characterized by a DP F (with base distribution
distribution F0 and concentration parameter�) and a mixture
distribution f . Precisely, a random variable � is distributed
according to a DPM whenever it is generated as follows:2. A partition of a space � is a set of subsets A1; . . . ; Am with arbitrary m

such that Ai \Aj ¼ ; for any i 6¼ j and A1 [ . . . [Am ¼ �.



1. sample F � DPð�;F0Þ,
2. sample �� � Fð�Þ, and
3. sample � � fð�j��Þ.

By iterating Steps 2 and 3, one builds a family of random

variables distributed according to a DPM with mixture

distribution f , base distribution F0, and parameter�. The role

of f is to smooth the DP and to turn it into a continuous

support distribution (whereas the DP F has discrete support).

Each iteration i (i ¼ 1; . . . ; N) of Step 2 yields a parameter ��i
that determines the clusters �i. The Polya urn representation

(9) shows that several ��is can share the same location. This

can also be seen in the stick-breaking representation

(8) emphasizing the locations Uks and their probabilities !k.
Similarly to the finite mixture case studied in [23], it is

possible to introduce a latent variable zi to each �i
(i ¼ 1; . . . ; N). This consists of replacing Step 2 above by:

1. Sample z � pðzjFÞ, where pðz ¼ kjFÞ ¼ !k and
where !k comes from the stick-breaking representa-
tion of F.

2. Set �� ¼ Uz, where Uz comes from the stick-breaking
representation of F.

Finally, the following alternative representation of a DPM

measure Gð�Þ can be useful:

Gð�Þ ¼
Z

�

F ð�j��Þ dFð��Þ with F � DPðF0; �Þ; ð12Þ

where F ð�j��Þ is the cumulative distribution function

associated to the density fð�j��Þ.

4 USING DPMS TO MODEL THE PARAMETER PRIOR

This section introduces an original Bayesian supervised

classification classifier based on DPM priors, referred to

as DPM classifier. DPM classification consists of replacing

the parameter prior distribution
R

� gð�j��Þhð��Þd�� by a DPM

Gð�Þ. Motivations for using a DPM prior include the

possibility of accurately describing a large variety of prior

information with this mixture model. The DPM classifica-

tion model for class Ci can be written:

�i � G; ð13Þ

xi � pðxij�iÞ; ð14Þ

or, equivalently,

F � DP
�
F0; �Þ; ð15Þ

��i � F; ð16Þ

�i � fð�ij��iÞ; ð17Þ

xi � pðxij�iÞ; ð18Þ

where Gð�Þ is a DPM over �, with base distribution F0

and mixture distribution f . Learning a DPM classifier

consists of estimating the DPM parameter �, the para-

meters �i, and the hyperparameters ��i from the training set

X ¼ fx1; . . . ;xNg.

Example. In order to illustrate these elements, we propose
the following toy example. Assume that � is a random
variable with Gaussian distribution, i.e., fð�j��Þ ¼
N ð�;�; 	2Þ. The hyperparameter vector associated to this
prior is �� ¼ ½�; 	2�. Assume also that the base distribution
F0 is the product of a Gaussian distribution over � and an
inverse gamma distribution over 	2. Then, it can be shown
that, conditional on the parameters of F0, � is distributed
according to a mixture of Gaussians

pð�Þ ¼
X1
k¼1

!kN
�
�;�k; 	

2
k

�
; ð19Þ

where the weights are given by the stick-breaking rule and
the parameters ��k ¼ ½�k; 	2

k� are distributed according to
F0, i.e., a Gaussian distribution for � and an inverse
gamma distribution for 	2. This defines the prior
distribution over �. Note that the number of Gaussians
defining the mixture is possibly infinite. In practice, only a
finite number of Gaussians will have a significant weight,
and the posterior distribution relies on these significant
Gaussians. Therefore, the number of Gaussians is esti-
mated in an implicit way. This example will be general-
ized to a multivariate parameter � in Section 5.

4.1 Learning the Class Posterior Distribution

This section derives the posterior parameter distribution
which follows from the model (15)-(18). By introducing the
latent variables z and cluster locations U, one has

pð�jXÞ ¼
Z X

z

pð�; z;UjXÞdU

¼
Z X

z;z

fð�jUzÞpðzjzÞpðU; zjXÞdU;
ð20Þ

where z ¼ ðz1; . . . ; zNÞ is the indicator vector for ð�1; . . . ; �NÞ,
whereas z is the indicator variable for the parameter �
associated to the observation vector xx to be classified. The
distribution pðzjzÞ in (20) is defined as pðz ¼ kjzÞ ¼
1
N

PN
i¼1 �k;zi , i.e., the number of latent variables zi equal to

k divided by the total number of latent variables (the
number of samples in the training set). The parameter
posterior distribution follows

pðU; zjXÞ ¼
Z

�N

pð��;U; zjXÞd��

/
Z

�N

DPðF0; �Þ
YN
i¼1

pðxij�iÞfð�ijUziÞd�i;
ð21Þ

where DPðF0; �Þ is represented by its latent variables and
cluster locations (U, z). Merging Algorithms 1 and 2 yields the
following sampling strategy referred to as Algorithm 3 below.

Algorithm 3. Sampling from the class posterior distribution

% Step 0: Initialization

- For i ¼ 1; . . . ; N , sample from the Polya urne��ð0Þ � pð��je��ð0Þ1 ; . . . ; e��ð0Þi�1Þ and deduce ezð0Þ and eUð0Þ
- For i ¼ 1; . . . ; N , sample e�ð0Þi � fð�je��ð0Þi Þ

% Step 1: Iterations For l ¼ 1; . . . ; L, do

1.1- Sample ezðlÞ � pðzjeUðl�1Þ;e��ðl�1ÞÞ using Algorithm 4 or

Algorithm 5



1.2- Sample eUðlÞ � pðUjezðlÞ;e��ðl�1ÞÞ using Algorithm 6

1.3- Sample e��ðlÞ � pð��jezðlÞ; eUðlÞÞ: for i ¼ 1; . . . ; N , sample

e�ðlÞi � pð�ijxi; eU ðlÞezðlÞi Þ / pðxij�iÞfð�ij eU ðlÞezðlÞi Þ using,

e.g., a MH step

1.4- Sample e
ðlÞ � pð
jezðlÞÞ such that

pð
 ¼ kjezðlÞÞ ¼ 1
N

PN
i¼1 �k;ez ðlÞi

1.5- Sample e�ðlÞ � fð�j eUðlÞe
ðlÞ Þ
1.6- (optional) Sample the DPM hyperparameters, i.e., �

and the parameters defining F0.

The algorithms used to sample the latent variables and
the cluster locations are detailed in Appendix B. An
important extension is Step 1.6, which consists of defining
a prior for the hyperparameter � and the parameters of F0.
The parameter � can be sampled using the method
described in [21] which assumes a gamma prior for �.
The results of [21] show the robustness of the algorithm to
�. It is important to note that the convergence of the
algorithm is made easier by initializing � at a large value,
and letting it decrease. This way, there are as many
locations Ui as data xi in the beginning of the algorithm.
Then, during the iterations, Step 1.6 updates the value of �.
At the very first iterations, this generally results in a
decrease of its value (see Fig. 4), and therefore, the number
of locations Ui also decreases. After some iterations, the
value of � stabilizes. This procedure ensures good con-
vergence because we make sure that all possible modes of
the final distributions are included at the beginning of the
algorithm and that the less significant are removed along
the iterations. This somehow comes down to following the
regularization path, starting from the less regularized
solution, toward the most regularized solutions, and
stabilizing around the appropriate regularization level.
The parameters of F0 can be sampled as shown in Section 5.

5 APPLICATION TO THE CLASSIFICATION OF

SYNTHETIC AND REAL DATA

The efficiency of the proposed DPM classifier has been
tested on different synthetic and real data sets. This section
summarizes some experiments that illustrate the interest of
the proposed classification strategy.

5.1 Classification of Radar Altimeter Signals

This section studies a problem, recently introduced in [24],
consisting of classifying radar altimeter data. The objective is
to validate the proposed DPM-based classification method on
real data. The use of altimetry measurements on ocean
surface and continental ice has demonstrated its effective-
ness. However, the quality of the onboard algorithms also
allows the acquisition of several measurements over non-
ocean surfaces (coastal areas and inland water). The
corresponding measurements are being considered bad,
although they probably contain useful geophysical informa-
tion. Consequently, new processing algorithms efficient for
all kinds of surfaces need to be developed. A first identified
step before developing such processing algorithms is the
classification of altimeter waveforms, according to the over-
flown surface. More precisely, this paper addresses the
problem, recently introduced in [24], of classifying altimeter

waveforms in the four classes “Ocean,” “Desert,” “Forest,”
and “Ice.” The proposed DPM-based classification algorithm
will show very promising results for this problem.

5.1.1 Statistical Model

Altimeter waveforms studied here represent the power of
the backscattered altimeter echo. The observed time series
are associated to the following statistical model:

xðtÞ ¼ Mðt; �Þ��ðtÞ; t ¼ 1; . . . ; T ; ð22Þ

where x ¼ ½xð1Þ; . . . ;xðT Þ� is the observed time series, T ¼
104 is the number of samples, and ��ðtÞ is an i.i.d. multi-
plicative noise referred to as speckle in the radar community
(see, for instance, [25, p. 96], [26] for more details). Note that
the generative model introduced in (1) reduces here to

xi;jðtÞ ¼ Mjðt; �i;j; ��i;jÞ ¼Mðt; �i;jÞ��i;jðtÞ; ð23Þ

where the model Mj ¼M is the same for all classes (the
classes only differ by the distribution of the parameter
vector �) and where the dependence to the time instant t
has been made explicit. The noise ��ðtÞ is known to be
distributed according to a gamma distribution (see [27,
p. 474] for the definition of the gamma distribution used in
this paper), denoted as

��ðtÞ � Gað��ðtÞ;L;LÞ; ð24Þ

where L is a known parameter (called number of looks in the

radar community) associated to the altimeter. In this paper,
we will use real data from the ENVISAT radar such that
L ¼ 100. The functional Mðt; �Þ in (22) results from the so-
called Brown model introduced in [28] and described

accurately in [29, Section 2.7.1.1]:3

Mðt; �Þ ¼ Pn þ
a�	0

2
1þ erf

t� � � c�	2
cffiffiffi

2
p

	c

� �	 

exp �c� t� � � c�	

2
c

2

� �	 

;

ð25Þ

where

a� ¼ exp
�4 sin2 �


2

� �
; ð26Þ

c� ¼ 
1 cosð2�Þ � sin2ð2�Þ

2

	 

; ð27Þ

and where � , 	0, 	c, and � are the unknown parameters,
Pn is the known thermal noise level (it is estimated by

using the first samples of the return waveform), and 
1; 
2

are fixed coefficients (depending on the antenna band-
width, the mean satellite altitude, the velocity of light,
and the earth radius). The erfð�Þ function is the error

function defined by erfðuÞ ¼ 2=
ffiffiffi


p R u

0 expð�v2Þdv. The
unknown parameters have the following physical inter-
pretations (the interested reader is invited to consult [30]
for more details):

3. The interested reader is invited to consult [29, Section 2.7.1.1] for more
details. In particular, the full Hayne model includes additional terms which
are negligible in the detection/classification problem, and are thus omitted
here.



. � > 0 is the radar echo propagation time, related to
the distance between the radar and the point
observed on earth,

. 	0 > 0 is the retrodiffusion coefficient depending on
the ocean area,

. 	s > 0 is related to the ocean significant wave height
(SWH) by SWH ¼ 2clight	s with 	2

s ¼ 	2
c � 	2

p (clight is
the speed of light and 	2

p is a known coefficient),
. � is the radar antenna absolute off-nadir pointing

angle.

The previous statistical model is fully characterized by
the following parameter vector:

� ¼ ½�=� ref ; 	0=	
ref
0 ; SWH=SWHref ; �=�ref � 2 � � IR4;

where each parameter has been scaled to ensure the
components of � are on a single scale (note that the dimension
of the parameter space is d ¼ 4 for this example). The pdf of
the radar waveform satisfies the following relation:

pðxj�Þ ¼
YT
t¼1

Ga xðtÞ;L; L

Mðt; �Þ

� �

/ exp �L
XT
t¼1

logMðt; �Þ þ xðtÞ
Mðt; �Þ

	 
!
:

ð28Þ

5.1.2 Parameter and Hyperparameter Priors

The prior distribution for the unknown parameter vector �
is a DPM with mixture distribution fð�j��Þ, base distribution
F0ð��Þ, and DPM hyperparameter �. The mixture distribu-
tion is assumed to be a multivariate Gaussian distribution,

fð�j��Þ ¼ N ð�;�;�Þ; ð29Þ

where �� ¼ f�;�g contains the hyperparameters (� is the
mean vector and � is the diagonal covariance matrix). For
computational reasons, we assume a normal-inverse
Wishart base distribution as in [31],

F0ð��Þ ¼ NIWð�;�;�0; �0; �0;�0Þ; ð30Þ

¼ N ð�;�0;�=�0ÞIWð�; �0;�0Þ; ð31Þ

where �0, �0, �0, and �0 are the base function hyperpara-
meters (to which might be added the DPM hyperpara-
meter �). The normal-inverse Wishart distribution is the
conjugate prior for the mean and covariance matrix of a
multivariate normal distribution. The reader is invited to
consult [32, p. 272], [27, p. 80] for more details about this
distribution. In particular, the inverse-Wishart distribution
IWð�; �0;�0Þ has the following density:

IWð�; �0;�0Þ ¼
2��0d=2
�dðd�1Þ=4Qd

i¼1 �
�
�0þ1�i

2

� 1

j�0j�0=2j�jð�0þdþ1Þ=2

exp � 1

2
trace

�
��1

0 ��1
�	 

:

ð32Þ

5.1.3 DPM Posterior Distribution

Before proposing the algorithm to sample the parameters
and hyperparameters according to their full posterior, we
first note that the Gaussian distribution is conjugate for the
normal-inverse Wishart distribution. Indeed,

YN
i¼1

fð�ij��Þ
" #

F0ð��Þ

¼
YN
i¼1

Nð�i;�;�Þ
" #

NIWð�;�;�0; �0; �0;�0Þ

¼ Cð�1:NÞ NIWð�;�;�N; �N; �N;�NÞ;

ð33Þ

where

� ¼ 1

N

XN
i¼1

�i; ð34Þ

�N ¼
�0�0 þN�
�0 þN

; ð35Þ

�N ¼ �0 þN; ð36Þ

�N ¼ �0 þN; ð37Þ

��1
N ¼ ��1

0 þ
XN
i¼1

ð�i � �Þð�i � �ÞT

þ �0N

�0 þN
ð�0 � �Þð�0 � �ÞT; ð38Þ

and the constant is (here, d ¼ 4)

Cð�1:NÞ ¼
�0

�N

	 
d=2


�
Nd
2
j�N j�N=2

j�0j�0=2

Yd
j¼1

�ð�Nþ1�j
2 Þ

�ð�0þ1�j
2 Þ

: ð39Þ

This constant depends on �1:N through the parameter �N

and should be computed via its logarithm for numerical
stability. Moreover, considering (33) for one �, we haveZ

fð�j��ÞF0ð��Þd�� ¼ Cð�Þ ð40Þ

since the normal-inverse Wishart integrates to one.

5.1.4 Sampling the Hyperparameters

Algorithm 3 contains an optional step for estimating the
hyperparameter � of the DPM model and the hyperpara-
meters defining the base distribution F0ð��Þ. This optional
step requires to define appropriate prior distributions for
these unknown hyperparameters. This paper assumes that
the prior for � is a gamma distribution as in [21]. The base
distribution F0ð��Þ is a normal-inverse Wishart with para-
meters �0, �0, �0, and �0. We assume here that �0 is known
and we estimate �0, �0, and �0. Therefore,

pð�0; �0;�0jU; zÞ

/
Y
z2IðzÞ

F0ðUzj�0; �0;�0Þ

24 35pð�0; �0;�0Þ;
ð41Þ

where IðzÞ denotes the set of values taken by the variables
z1; . . . ; zl and pð�0; �0Þ is the prior distribution of the
hyperparameters. Assume the prior structure

pð�0; �0;�0Þ / Gað�0;��; ��ÞPð�0;��ÞIWð�0; �00;�00Þ
IIfd;dþ1;...gð�0Þ;

ð42Þ



where Pð�0;��Þ is the Poisson distribution and IIfd;dþ1;...gð:Þ is
the indicator variable for the set ðd;1Þ. The hyperparameter
posterior distribution can be decomposed into the terms

pð�0jU; zÞ ¼ Gað�0;�0�; �
0
�Þ; ð43Þ

pð�0j�0;U; zÞ / �
0 �0
� �ð�0 þ 1Þ�1

Yd
i¼1

�
�0 þ 1� i

2

� ��#IðzÞ
IIðd;1Þð�0Þ;

ð44Þ

pð�0j�0;U; zÞ ¼ IWð�0; �0;�0Þ; ð45Þ

where #IðzÞ denotes the number of elements in IðzÞ and

�0� ¼ �� þ
d #IðzÞ

2
; ð46Þ

�0� ¼ �� þ
1

2

X
z2IðzÞ

ð�z � �0ÞT��1
z ð�z � �0Þ; ð47Þ

�0� ¼ �� 2�
d#IðzÞ

2 j�0j�
#IðzÞ

2

Y
z2IðzÞ

j�zj�1=2; ð48Þ

�0 ¼ �0#IðzÞ þ �00; ð49Þ

�0
�1 ¼ ��1

00 þ
X
z2IðzÞ

��1
z : ð50Þ

These hyperparameters can be sampled conditionally on U
and z in Step 1.6 of Algorithm 3 by direct sampling for �0 in
(43) and �0 in (45), and by an MH step for �0 with truncated
Poisson proposal distribution.

5.2 Experiments

This section first presents simulation results obtained with
synthetic data, in order to demonstrate the accurate
learning ability of the proposed Bayesian model. Results
obtained with real radar altimetry data are then analyzed.

5.2.1 Synthetic Data

The data studied here have been generated using the Brown
model in (25). In order to demonstrate the good ability of
our model to learn the posterior data distribution for a class,
we consider one class with the following distribution for the
model parameters (adjusted to match real data):

� � Nð� ; 32; 4 � 10�4Þ and � ref ¼ 32; ð51Þ

	0 � Nð	0; 12; 2:25Þ and 	ref
0 ¼ 12; ð52Þ

SWH � 0:5 GaðSWH� 4; 10; 10Þ þ 0:5U ðSWH; ½1; 2�Þ
and SWHref ¼ 2;

ð53Þ

� � Nð�; 9:5 � 10�4; 6:3 � 10�9Þ and �ref ¼ 0:001: ð54Þ

Fig. 1 shows 10 waveforms generated according to the
Brown model in (25), with parameters sampled from the
distributions (51)-(54) with multiplicative gamma-distribu-
ted white noise (L ¼ 100). Step 1.3 of the above algorithm

has been implemented using a one-at-a-time Gaussian
random walk with variance 4 � 10�4. The model hyperpara-
meters have been selected as follows: �0 ¼ ½1 1 1 1�T,
�� ¼ �� ¼ 5, �� ¼ d ¼ 4, �00 ¼ 0:1Id, and �00 ¼ dþ 1. These
values are generic and changing them into a reasonable
range does not much influence the results.

In order to check that the algorithm accurately learns the
values of the different parameters for each training data set,
the proposed algorithm has been run 100 times for N ¼ 100
different training data sets. Each Monte Carlo run consists
of L ¼ 5; 000 iterations (including Lburn in ¼ 3;000 iterations).
The minimum mean square error (MMSE) estimates of ��gt

i ,
denoted as b��MMSE

i , have been compared to their ground
truth values via

Err��ðNÞ ¼
1

N

XN
i¼1

�b��MMSE
i � ��gt

i

�T
S�1

�b��MMSE
i � ��gt

i

�
; ð55Þ

where ��gt
i is the actual value of the parameter vector,

S�1 ¼ diagð� ref ; 	ref
0 ; SWHref ; �refÞ, and

b��MMSE
i ¼ 1

L� Lburn in

XL
l¼Lburn inþ1

e��ðlÞi ; ð56Þ

where ~�1 ¼ �=� ref , ~�2 ¼ 	0=	
ref
0 , ~�3 ¼ SWH=SWHref , and ~�4 ¼

�=�ref are the normalized model parameters. The average of
Err��ðNÞ over the 100 Monte Carlo runs is 0.109 with
standard deviation 0.063 (to be compared with the average
norm of ��gt

i over the 100 simulations, which is 5.43). Fig. 2
shows that the parameters of each training signal have been
accurately learned through the simulations. Over the 100
simulations, only six failed to converge to the ground truth
parameter values for each of the 100 parameters. In order to
illustrate the algorithm convergence, Figs. 3 and 4 represent
the simulated components of � sampled in Step 1.5, the
evolution of #IðzÞ, and the hyperparameters �, �, and � for
one typical simulation with N ¼ 100 data. The chain has
clearly converged after about 3,000 burn-in iterations.
Overall, the learning phase for this example takes a couple
of minutes on a standard PC computer and Matlab/Octave
code. Fig. 5 represents the histograms of the four compo-
nents of the samples e�ðlÞ for l 2 f3;001; . . . ; 5;000g. The

Fig. 1. Ten of the simulated radar altimetry time series (i.e., 10 data)
used to train the classifier.



estimated marginal posterior distributions are quite close to
the true parameter distributions, which shows the ability of
our model to learn multimodal, non-Gaussian distributions.

Fig. 6 shows the marginal posterior distributions of the
different parameters for two sample sizes, N ¼ 10 and
N ¼ 1;000, which have to be compared with Fig. 5, which
has been obtained with N ¼ 100. The higher N , the better
the estimated parameter posteriors, as expected. When a
very limited number of training data is available (N ¼ 10),
the learning ability is also correct. The regularization role of
the DPM during learning can be clearly seen on the third
component of �: The model considers that there is only one
mode for N ¼ 10 (which is reasonable given the very
limited number of training data) whereas the two modes
are clearly recovered for N ¼ 100 and N ¼ 1; 000. These
simulations have clearly demonstrated the ability of the
proposed algorithm to learn the parameter posterior
distribution. The algorithm classification ability is then
studied by using real radar altimetry data.

5.2.2 Real Data

As explained in [24], extraction of geophysical information
from waveforms backscattered from nonoceanic surfaces is
an identified goal of future altimetry missions. The classifica-
tion of the received radar waveforms into the different classes

Fig. 2. Evolution of the mean quadratic error for the signal parameters ��ðlÞ,
l ¼ 1; . . . ; 100 for each of the 5,000 iterations of the MCMC algorithm,
averaged over 100 Monte Carlo runs. The upper and lower curves
represent the 95 percent confidence interval (�2 standard deviations).

Fig. 3. Evolution of the parameter � sampled at each iteration in Step 1.5 of Algorithm 3 from the class posterior distribution, for each of the four
components. As can be seen, the MCMC algorithm mixes quite well.



corresponding to the different kinds of the surfaces would

considerably simplify this extraction of information. The real

data studied in this section are grouped into four classes,

referred to as “Ocean,” “Ice,” “Forest,” and “Desert” as

described in Table 1. Ten training data from each class are

plotted in Fig. 7, where it should be noted that the amplitudes

can differ significantly from one class to another, some having
a large variability.

In order to assess the learning ability of our classification
strategy, N ¼ 1;000 training data from each of the four
classes were selected randomly for training. The MCMC
algorithm was run independently on these four data sets,
with � ref ¼ 32, 	ref

0 ¼ 9, SWHref ¼ 2, and �ref ¼ 0:001. This

Fig. 5. Histograms of the four components of the parameter vector computed from the samples e�ðlÞ for l 2 f3;001; . . . ; 5;000g (jagged lines), and pdfs

used to sample the four components of the parameter vector (smooth lines). The crosses represent the values used in the simulations.

Fig. 6. Histograms of the four components of the parameter vector computed from the samples e�ðlÞ for l 2 f3;001; . . . ; 5;000g (jagged lines), and pdfs

used to sample the four components of the parameter vector (smooth lines). The crosses indicate the values used in the simulations. The number of

training data is (a) N ¼ 10 and (b) N ¼ 1;000 (bottom row).

Fig. 4. Evolution of the hyperparameters � ((a) in log scale) , � ((b) in log scale), � ((c) in log scale) sampled at each iteration in Step 1.6 of
Algorithm 3. (d) represents the evolution of the number of different values for z used at each iteration (in log scale).



procedure was repeated five times by changing the random
sample of N ¼ 1;000 data for each class, leading to the
histograms in Fig. 8. As can be seen, the procedure ensures
a stable learning of the parameter posterior distribution.
Moreover, it can be seen that this distribution is multimodal
and/or non-Gaussian in several parameters, which justifies
the approach implemented here. Once the model para-
meters have been estimated conditioned on each class, the
estimates can be plugged into the class pdfs following the
plug-in classification rule [4]. The results obtained with this
plug-in rule for the four-class problem defined in Table 1
are depicted in Table 2.

For comparison, the results obtained when using a
Gaussian prior for the unknown parameter vector are
provided in Table 3. These results have been computed
with the same code as in the DPM prior case with the

additional constraint � ¼ 10�300. The proposed classification
rule based on a DPM prior for � yields better performance
than a naive Bayesian rule based on a Gaussian prior for �,
although the latter is already quite sophisticated. The
proposed DPM-based classifier was also compared to the
one-versus-one and one-versus-all SVM multiclass methods
with a polynomial kernel [33, p. 59]. The average of
50 confusion matrices obtained with 1,000 training samples
and 1,000 test samples is provided in Tables 4 and 5. The
DPM-based classification method shows better performance
than the SVM approaches (because it uses the generative
Brown model) at the price of a higher computational cost.
The advantage of using a generative model allows one to
encode the mapping between a reduced set of parameters
and the data. An alternative strategy could be to estimate the
parameters and thus implement an SVM-based classifier in
the space of the parameters. However, this strategy is less
robust insofar as it does not capture the uncertainty about
the parameters.

6 CONCLUSIONS

This paper studied a new supervised classification algo-
rithm based on a Bayesian model whose parameter priors

Fig. 7. Ten of the real altimetry time series (i.e., 10 data) used to train the classifier observed over the different surfaces.

TABLE 1
Data Used to Train and Test the Classifier



are Dirichlet process mixtures. Note again that Dirichlet
process mixtures are interesting since they can be used to
describe accurately a large class of probability distributions.
An efficient learning algorithm was developed to estimate
the class posterior distributions required for Bayesian
classification. The resulting classification rule was applied
to a practical problem consisting of classifying radar
altimeter waveforms backscattered from different surfaces

(i.e., oceans, ices, forests, and deserts). The obtained results
are promising for this application. A recent study has
shown that linear discriminant analysis performed on
appropriate features (extracted from the Brown model)
can also provide interesting classification results for
altimetric signals [24]. A comparison between this classifi-
cation strategy and the proposed DPM-based classification
rule is currently under investigation.

Fig. 8. Histograms of the four components of � computed from the samples e�ðlÞ for l 2 f3;001; . . . ; 5;000g for the four classes (marginal distributions).
In order to assess the stability of the learning procedure, five different training sets were used, each containing 1,000 training data.

TABLE 2
Confusion Matrix for the Four-Class Altimetry Problem Using a DPM Prior for �



APPENDIX A

A GLOSSARY OF NOTATIONS

. J : number of classes

. C1; . . . ; CJ : classes

. Xj ¼ fx1;j; . . . ;xNj;j
g: training set for class Cj

. xi;j: ith training vector for class Cj

. Nj: number of training vectors for class Cj

. Mj: model for class Cj

. �i;j: parameter vector associated to the training
vector xi;j

. ��i;j: noise associated to the training vector xi;j

. �j � IRd: parameter space for class Cj

. d: dimension of the parameter space

. pjðxi;jj�i;jÞ: pdf of xi;j (belonging to the class Cj)
conditioned upon �i;j

. pð�jjXjÞ: parameter posterior distribution for the
training set Xj associated to class Cj

. pjð�jj��jÞ: prior distribution for �j

. ��j: hyperparameter vector for class Cj

. X ¼ ðx1; . . . ;xNÞ: generic training set

. x: generic observation vector to be classified

. pðxjXjÞ: predictive density of x conditioned to the
training set Xj

. N : number of training vectors belonging to X

. �: parameter vector for the generic training set X

. pð�jXÞ: parameter posterior distribution for the
generic training set X

. e�ð1Þ; . . . ; e�ðLÞ: samples distributed according to pð�jXÞ

. ��: hyperparameter vector for the generic training
set X

. pð��jXÞ: hyperparameter posterior distribution for
the generic training set X

. e��ð1Þ; . . . ; e��ðLÞ: samples distributed according to
pð��jXÞ

. F � DPð�;F0Þ: Dirichlet process with base distribu-
tion F0 and concentration parameter �

. !1; !2; . . . : weights of the Dirichlet process (DP)

. U1; U2; . . . : cluster locations of the Dirichlet process

. Bð!; a; bÞ: beta distribution with parameters a and b
for the random variable !

. fð�j��Þ: mixture density of a Dirichlet process
mixture (DPM)

. z ¼ ðz1; . . . ; zNÞ: vector containing the latent variables
associated to the vectors �1; . . . ; �N where �i � G

. U ¼ ðU1; . . . ; UNÞ: cluster locations of �1; . . . ; �N
where �i � G

. z: latent variable associated to a generic parameter
vector �

TABLE 3
Confusion Matrix for the Four-Class Altimetry Problem Using a Gaussian Prior for �

TABLE 4
Confusion Matrix for the Four-Class Altimetry Problem Using the One-versus-One SVM Multiclass Method [33, p. 59]

(1,000 Training Samples and 1,000 Test Samples)

TABLE 5
Confusion Matrix for the Four-Class Altimetry Problem Using the One-versus-All SVM Multiclass Method [33, p. 59]

(1,000 Training Samples and 1,000 Test Samples)



. pðzjFÞ: discrete distribution of the latent variable z
associated to the Dirichlet process F

. Gð�Þ: DPM probability measure

. Mðt; �Þ: Model for an altimetric signal with para-
meter vector �

. x ¼ ½xð1Þ; . . . ;xðT Þ�: time-varying radar waveform

. ��ðtÞ: vector containing noise samples for an alti-
metric signal

. Gað!; a; bÞ: gamma distribution with parameters a
and b for the random variable !

. Pn: known thermal noise level

. 
1; 
2: known coefficients depending on the kind of
altimeter radar

. �; SWH; 	c; �: unknown parameters for the altimetric
waveform

. Nð�;�;�Þ: multivariate normal distribution with
mean vector � and covariance matrix � for the
random vector �

. NIWð�;�;�0; �0; �0;�0Þ: normal-inverse Wishart
distribution with parameters �0; �0; �0;�0 for the
random vector and matrix � and �

. IWð�; �0;�0Þ: inverse Wishart distribution with
parameters �0;�0 for the random matrix �

. Pð�0;��Þ: Poisson distribution with parameter �� for
the random variable �0

. IðzÞ: set of values taken by the variables contained in z

. #IðzÞ: number of elements in IðzÞ

. �;�: hyperparameters associated to � for the
classification of altimetric signals

. �0; �0; �0;�0: base function hyperparameters asso-
ciated to the hyperparameter prior

. �N; �N; �N;�N : parameters of the DPM posterior
distribution for the classification of altimetric signals

. IIfd;dþ1;...gð:Þ: indicator variable for the set ðd;1Þ

. �0�; �
0
�; �

0
�; �
0;�0�1: parameters of the hyperparameter

posterior distribution for the classification of alti-
metric signals

APPENDIX B

SAMPLING DPM LATENT VARIABLES AND CLUSTER

LOCATIONS

This appendix summarizes three algorithms which can be

used to sample DPM latent variables and cluster locations:

. The Algorithm 4 details Step 1.1 of the Gibbs
sampler in Algorithm 3 used to sample the DP in
the case where the base distribution F0 is conjugate
for the mixture distribution fð�j�Þ, following [34,
Algorithm 2].

. Algorithm 5 extends Algorithm 4 to the more
general case where F0 is not conjugate for fð�j�Þ
and is derived from [34, Algorithm 5].

. Algorithm 6 addresses Step 1.2 of Algorithm 3 above
in all cases.

Before presenting these algorithms, let us introduce some

notations.
Let IðzÞ denote the set of values taken by the variables

z1; . . . ; zN . Indeed, for the sake of simplicity, we do not
assume that the zis take all their values in a set f1; . . . ; kmaxg,
but instead some values spread among the integers. The

reason for this is that the Gibbs samplers may create and
suppress locations Uks, thus incrementing the largest k
while forming gaps in-between “alive” indexes k. Thus,
IðzÞ contains the values of k that are effectively used at a
given iteration. We denote N�i;kðzÞ ¼

PN
i0¼1;i0 6¼i �k;zi0 the

number of variables zi0s (i0 6¼ i) which are equal to k.

Algorithm 4. Sampling the latent variables (conjugate case)

. Let z0  ezðl�1Þ

. For i ¼ 1; . . . ; N , do

- if z0i 6¼ z0i0 for all i0 6¼ i (singleton cluster), then

remove eU ðlÞz0i from the state.

- Sample z0i � pðz0ijz0�i;
e�ðl�1Þ
i ; eUðl�1ÞÞ such that

p
�
z0i ¼ k

��z0�i;
e�ðl�1Þ
i ; eUðl�1Þ� /

N�i;kf
�e�ðl�1Þ

i

�� eU ðl�1Þ
k

�
; for k 2 Iðz0Þ;

�

Z
f
�e�ðl�1Þ

i

��U�F0ðdUÞ; for a new k 62 Iðz0Þ;
0; for all other values of k;

8>><>>: ð57Þ

and, if a new cluster is created, sampleeU ðl�1Þ
z0
i
� pðU je�ðl�1Þ

i Þ / fðe�ðl�1Þ
i jUÞF0ðUÞ

. Let ezðlÞi z0i

There are many cases where the base distribution is not

conjugate for fð�j�Þ in practical applications. In this case, MH

steps are necessary, and they may be implemented as

follows (derived from [34, Algorithm 5]):

Algorithm 5. Sampling the latent variables (general case)

. Let z0  ezðl�1Þ

. For i ¼ 1; . . . ; N , do

- Sample a candidate z?i from the Polya urn

probabilities

Qðz?i ¼ kÞ ¼
N�i;kðzÞ
�þN�1 ; for k 2 Iðz0Þ;

�
�þN�1 ; for a new k 62 Iðz0Þ;
0; for all other values of k:

8<: ð58Þ

- if z?i 2 Iðz0Þ, then compute r1 ¼ fðe�ðl�1Þ
i jU 0z?i Þ=

fðe�ðl�1Þ
i jU 0z0iÞ. With probability minð1; r1Þ, set z0i z?i .

- Otherwise, compute r1 ¼ fðe�ðl�1Þ
i jU?Þ=fðe�ðl�1Þ

i jU 0z0iÞ,
where U? � F0. With probability minð1; r1Þ,
set z0i z?i and U 0z0

i
 U?.

- Let ezðnÞi z0i

Once the latent variables are sampled, the cluster locations
can be updated as indicated below.

Algorithm 6. Sampling the cluster locations (all cases)

. Let U0  eUðl�1Þ

. For k 2 IðezðlÞÞ, sample eUðlÞk from pðUkje�ðl�1Þ
i with i such

that ezðlÞi ¼ kÞ / F0ðUkÞ
Y

i¼1;...;N

such that ~z
ðlÞ
i
¼k

fðe�ðl�1Þ
i jU�kÞ,

as follows:

- In the conjugate case, sample directly from

pðUkje�ðl�1Þ
i with i such that ezðlÞi ¼ kÞ

- In the non-conjugate case, sample U? � qðU?jU 0kÞ,
then compute



r2 ¼ qðU 0
k
jU?Þ

qðU?jU 0
k
Þ

F0ðU?Þ
F0ðU 0kÞ

Y
i¼1;...;N

such that ~z
ðlÞ
i
¼k

fðe�ðl�1Þ
i jU?Þ

fðe�ðl�1Þ
i jU 0kÞ

; ð59Þ

and, with probability minð1; r2Þ, set eUðlÞl U ð?Þ;

otherwise, set eUðlÞl  U 0k

The implementation of Algorithm 6 requires sampling

from the normal-inverse Wishart distribution NIWð�;
�; e�N; e�N; e�N; e�NÞ, where e�N , e�N , e�N , and e�N are defined as

in (34)-(38), with the �is being the e� ðl�1Þ
i s such that ez ðlÞi ¼ k.
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