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Abstract A de Rham p-current can be viewed as a map (the current map) be-
tween the set of embeddings of a closed p-dimensional manifold into an ambient
n-manifold and the set of linear functionals on differential p-forms. We demonstrate
that, for suitably chosen Sobolev topologies on both the space of embeddings and
the space of p-forms, the current map is continuously differentiable, with an image
that consists of bounded linear functionals on p-forms. Using the Riesz Repre-
sentation Theorem we prove that each p-current can be represented by a unique
co-exact differential form that has a particular interpretation depending on p.

Embeddings of a manifold can be thought of as shapes with a prescribed topol-
ogy. Our analysis of the current map provides us with representations of shapes
that can be used for the measurement and statistical analysis of collections of
shapes. We consider two special cases of our general analysis and prove that: (1)
if p = n − 1 then closed, embedded, co-dimension one surfaces are naturally rep-
resented by probability distributions on the ambient manifold; and (2) if p = 1
then closed, embedded, one-dimensional curves are naturally represented by fluid
flows on the ambient manifold. In each case we outline some statistical applications
using an Ḣ1 and L2 metric, respectively.
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1 Introduction

This article presents a theoretical setting for the measurement and analysis of
shapes. It was motivated by the fact that while the human brain seems to be nat-
urally equipped with a metric that can distinguish between “shapes”, formulating
a precise mathematical statement that allows one to formulate judgments like
“objects 1 and 2 are the same” or “objects A and B are different” is non-trivial.

Restricting to the simplest possible case for a precise definition of a shape,
we consider it as an embedding of a closed manifold N into a Euclidean space or
some well-chosen closed manifold M ; this gives a set of shapes in M a prescribed
topology – that of N . Equipping the space of embeddings of N into M with an
appropriate function space topology gives the space of shapes the structure of a
smooth Fréchet, Banach, or Hilbert manifold. From here one can equip the space
with a metric and begin studying the metric geometry or Riemannian geometry of
shapes. Alternatively, one can study the action of a transformation group on the
space of shapes and use a metric that measures the “cost” of deforming one shape
into another. Either approach may be used for the purpose of shape classification
and recognition, or to give a statistical description of a collection of shapes, a
problem that has found potential application in medical imaging.

In [17] Michor and Mumford considered the manifold of C∞ closed, embedded
curves Emb(S1,R2) equipped with a Riemannian metric of Sobolev type. Elements
of Emb(S1,R2) represent shapes, but many elements represent the same shape –
for instance, all that differ only by reparameterisation (i.e., composition on the
right) by a circle diffeomorphism η ∈ D(S1)) – so a shape space that results by
quotienting out this action is commonly used.

The method of Large Deformation Diffeomorphic Metric Mapping (LDDMM) [5,
26] studies the action of the diffeomorphism group of M , D(M), on the space of
embeddings (which we will refer to as shapes), with applications in the field of
medical imaging. Given a metric g on D(M) and a fixed reference shape, a mea-
sure of similarity is given by the infimum over all curves connecting the identity
diffeomorphism with a diffeomorphism that deforms the shape to the given refer-
ence shape. A shape is identical to the reference if there exists an isometry that
maps the shape to the reference.

It can be beneficial to transform the shapes in some way prior to analysis.
One option is to use de Rham p-currents, as in [24,10,8,6], which were originally
intended to provide a computationally efficient method for shape comparison using
LDDMM. Note that some mathematical aspects have been explored in [7,13] for
both currents and varifolds. We suggest that currents are the correct theoretical
tool to represent shapes for addressing the general problem and so provide an
analysis of shape in the spirit of geometric measure theory [20] by treating the
integral as a function of the domain of integration, in this case the shape. Our
goal is to derive meaningful invariants of shapes that do not rely on fixed reference
shapes or explicit knowledge of the mathematical embedding describing the shape,
and then use these invariants to measure the similarity or dissimilarity of shapes.
Furthermore, the set of embeddings of a closed manifold N1 into some ambient
space is unrelated to the set of embeddings of a topologically distinct manifold N2,
so we require invariants that depend only on the dimension of the shape and not
on the topology in order to compare (and potentially interpolate) between shapes
of different topologies.
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We consider the space EsN consisting of Sobolev Hs embeddings of a closed,
p-dimensional manifold N into the n-dimensional torus Tn (note that the torus
is used for notational convenience, and matches typical computational implemen-
tation, but not necessarily other analytic work) where s > p

2 + 1 so that each

embedding is at least C1. To each embedding in EsN we assign a bounded linear
functional on the space of Sobolev Hk differential p-forms over Tn via the current
map C which, for any embedding ϕ ∈ EsN and any Hk p-form α ∈ Hk (Λp (Tn)),
is defined by:

C(ϕ)(α) =

∫
ϕ(N)

α.

Observe that C(ϕ) is invariant under reparameterisations of N by Sobolev Hs

diffeomorphisms, Ds(N) ; i.e., the current map can be seen as an alternative to
Michor and Mumford’s shape space EsN/Ds(N). So for us, the bounded linear
functional C(ϕ) is exactly the shape of the pre-shape ϕ. In Section 2 we prove
that the current map has the following properties: (1) for any ϕ ∈ EsN , C(ϕ) is
a bounded linear functional on Hk (Λp (Tn)) whenever k > n

2 ; (2) the current
map is continuous whenever k > n

2 ; and (3) the current map is differentiable
whenever k > n

2 + 1. A consequence of property (1) is that we may apply the

Riesz Representation Theorem, which guarantees the existence of a unique Hk

p-form βC(ϕ) representing the shape C(ϕ). In Section 3 we prove that: (a) no two
representing forms are collinear with the zero form; and (b) any representing form
is always a co-exact form.

Following our general analysis we specialise to the situations where p = (n−1),
N any (n− 1)-dimensional manifold, and p = 1, N = S1, and interpret the results
of our general analysis in each of these contexts.

When p = (n− 1) and N is any (n− 1)-dimensional manifold we use property
(2) to show that each current of a closed, embedded, co-dimension one surface can
be represented by a unique probability density on the ambient space, which can
be computed using only the characteristic function of the shape and the Hodge
Laplacian. Moreover, we are able to show that that Michor and Mumford’s shape
space EsN/Ds(N) is topologically embedded in the set of Hk probability densities.
We equip the space of positive probability densities with the Ḣ1 metric considered
in [14] and explain how this can be used as a metric on co-dimension one shapes
along with some statistical applications.

When p = 1 and N = S1, property (2) of our general results implies that the
forms representing currents of closed, embedded curves correspond to divergence-
free vector fields on Tn. We regard this space as the tangent space to the iden-
tity element of the group (and smooth Hilbert manifold) of Sobolev Hk volume-
preserving diffeomorphisms of Tn. When equipped with the right-invariant L2

metric this group becomes a smooth Riemannian manifold with a smooth right-
invariant Levi-Civita connection, smooth right-invariant curvature tensor, and
smooth exponential map that is a diffeomorphism on a neighbourhood of the iden-
tity element [9]. In Section 5.1 we demonstrate how the L2 exponential map can
be used to represent each shape by a unique volume-preserving diffeomorphism
and how the L2 metric can be used as a metric on one dimensional shapes – an
interesting counterpoint to the L2 metric on the space of embeddings of curves
studied in [17], which was discovered to be degenerate. We note that Moser’s the-
orem implies that the space of probability densities is equivalent to the ambient
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space’s diffeomorphism group quotiented by the volumorphism group and in this
sense currents of one dimensional shapes are dual to the currents of co-dimension
one shapes.

The fact that no two divergence-free vector fields constructed via the current
map are collinear with the zero form (property (1)) implies that each closed em-
bedded curve generates a unique local geodesic that exists on an open interval
about 0 and constitutes a Lagrangian solution to the Euler equations of hydro-
dynamics on the ambient space. That is, each one-dimensional shape generates a
unique fluid flow on Tn, as is explained in Section 5.2. The fluid flows generated by
shapes, which we call “shape flows”, may also be of interest to researchers working
in the field of hydrodynamics. It could be interesting to understand what fluids
and their invariants can say about families of shapes in light of this observation.
Conversely, it might be of interest to understand what shapes can say about fluids
and to understand the kinds of flows they define.

Lastly, we mention that these ideas can be extended to the class of Hs immer-
sions, which also form a smooth manifold. The difference in this situation is that
two immersions that are not equivalent up to a reparameterisation by a diffeo-
morphism of N may still have the same point sets (consider a set of nested circles
intersecting at a single point and permute the order of traversal of each circle) and
therefore have the same current. This still produces the correct result because it
does not matter how the shape is described, only how it looks. All of our results
continue to hold with obvious alterations to take into account the difference just
described; however, Michor and Mumford’s shape space EsN/Ds(N) is no longer
homeomorphic to an open subset of probability densities since the current map is
not injective on equivalence classes for the reason given above.

2 The Current Map

This section sets out the central tools used in our construction of a framework for
shape analysis: Hilbert spaces and the Riesz Representation Theorem in general;
the particular Hilbert space of differential forms on which the Riesz Representa-
tion Theorem will be applied; the Hilbert manifold of embeddings considered as
parameterised shapes; and finally the current map that links shapes with forms.

A real Hilbert space H is a complete linear space provided with an inner
product, denoted (x, y) for x, y ∈ H, satisfying:

(ax1 + bx2, y) = a(x1, y) + b(x2, y), ∀ a, b ∈ R
(x, y) = (y, x)

(x, x) > 0 unlessx = 0.

If we fix an element y ∈ H then the expression Fy(x) = (y, x) assigns to each
x ∈ H a real number. Observe that Fy is linear in x and is bounded. We call Fy
a bounded linear functional on H. It is a theorem of Riesz that these are the only
bounded linear functionals on H, which we will denote collectively by H∗.

Theorem. For every bounded linear functional F ∈ H∗ on a (real) Hilbert space
H there exists a unique y ∈ H such that:

F (x) = (y, x), ∀x ∈ H.
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Furthermore, the Riesz operator, given by the map R : H∗ → H that sends F to
its corresponding y, is an isometric isomorphism.

The particular Hilbert space considered here is the set of Sobolev Hk differ-
ential p-forms on Tn. The main references for differential forms and their alge-
bra/analysis on which the following summary is based are [1] and [25].

Let g be the flat Euclidean metric on Tn := Rn/Zn and µ the standard
Lebesgue measure normalised so that µ (Tn) = 1, all presented in the standard
coordinates (x1, . . . , xn). If α is a 1-form on Tn then α] is the vector field defined
through α(w) = g(α], w) for every vector field w; [ is its inverse. In this way we
obtain an L2 metric on smooth differential 1-forms Λ1 (Tn) defined by:

(α, β) =

∫
Tn
g(α], β]) dµ.

For forms of degree p we first construct a point-wise metric on ΛpT ∗xTn via:

gp(σ1 ∧ · · · ∧σp, ω1 ∧ · · · ∧ωp)(x) =
∑
π

sign(π)g(σ]1, ω
]
π(1))(x) · · · · · g(σ]p, ω

]
π(p))(x),

where σi, ωi ∈ T ∗xTn, ∧ is the wedge product, and π ranges over the set of permu-
tations of {1, . . . , p}, and then define an L2 metric on smooth differential p-forms
Λp (Tn) by:

(α, β)L2 =

∫
Tn
gp(α, β) dµ.

When p = 0 (i.e., functions) we use the standard L2 metric on functions. We
have the exterior derivative d, which takes p-forms to (p + 1)-forms (with the
understanding that d of an n-form is identically zero), and its formal L2 dual δ,
which takes (p+ 1)-forms to p-forms (with the understanding that δ of a function
is identically zero). In particular, for any smooth p-form α ∈ Λp (Tn) and any
smooth (p+ 1)-form β ∈ Λp+1 (Tn), we have:∫

Tn
gp+1(dα, β)dµ =

∫
Tn
gp(α, δβ)dµ. (1)

The Hodge star operator ? maps p-forms to (n−p)-forms. It is defined through
gp (α, β)µ = α ∧ ?β, and relates d and δ by:

δ = (−1)n(p+1)+1 ? d?, (2)

while satisfying:
?? = (−1)p(n−p). (3)

Furthermore, if {e1, . . . , en} is an oriented basis for T ∗xTn we have:

?
(
ei1 ∧ · · · ∧ eip

)
= sign(π)ej1 ∧ · · · ∧ ejn−p , (4)

where {i1, . . . , ip, j1, . . . , jn−p} = {1, . . . , n} and π is the permutation mapping
the one ordered set to the other.

The positive-definite, L2 self-adjoint Hodge Laplacian is given by ∆ := dδ+ δd
and commutes with d, δ and ?. On functions, the Hodge Laplacian reduces to the
usual Laplacian:

∆ = δd = −
(
∂2
x1

+ ...+ ∂2
xn

)
,
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while for general p-forms α =
∑

1≤i1≤...≤ip≤n+1 fi1,...,ipdxi1 ∧ . . . ∧ dxip with

coefficient functions f∗, the operators d, δ, and ? can be used to show that:

∆α =
∑

1≤i1≤...≤ip≤n+1

(
∆fi1,...,ip

)
dxi1 ∧ . . . ∧ dxip . (5)

However, it should be noted that (5) relies on the Euclidean structure of the torus
and does not hold on a general Riemannian manifold (M, g) (see [25]).

Define the Sobolev Hk inner product on differential p-forms by:

(α, β)Hk =

∫
Tn
gp
(
Akα, β

)
dµ, (6)

where:

Ak =
k∑
r=0

ar∆
r, (7)

with a0 and ak both strictly positive constants and a1, . . . , ak−1 all non-negative
constants. Using (5) and the definition of the L2 metric on p-forms, the induced
Hk norm of a p-form α can be understood as

‖α‖2Hk =
∑

1≤i1≤...≤ip≤n

∥∥fi1,...,ip∥∥2

Hk (8)

where ∥∥fi1,...,ip∥∥2

Hk =

∫
Tn

(
Akfi1,...,ip

)
· fi1,...,ip dµ;

that is, α is a vector whose squared Hk norm is equal to the sum of the squared Hk

norms of its component functions. Define the Hilbert space of Sobolev Hk p-forms
Hk (Λp (Tn)) with inner product (6) as the completion of Λp (Tn) in the Hk norm
(8). This space consists of all those differential p-forms on Tn whose component
functions admit square-integrable derivatives up to order k. The component func-
tions of elements of Hk (Λp (Tn)) are not necessarily classically Ck differentiable.
However, if the index k > n

2 +r, then the Sobolev Embedding Theorem guarantees
that all component functions are at least Cr differentiable (see [11]).

On Hk (Λp (Tn)) the exterior derivative d takes Hk p-forms to Hk−1 (p+ 1)-
forms while δ takes Hk (p+ 1)-forms to Hk−1 p-forms. The Hodge decomposition
[21] provides an L2-orthogonal splitting of Hk (Λp (Tn)) into exact, co-exact, and
harmonic subspaces

Hk (Λp (Tn)) = dHk+1
(

Λp−1 (Tn)
)
⊕ δHk+1

(
Λp+1 (Tn)

)
⊕Hkp , (9)

where a form h is harmonic if and only dh = δh = ∆h = 0. The Hodge Laplacian

is an isomorphism between
(
Hkp
)⊥

and
(
Hk−2
p

)⊥
with inverse ∆−1 (see [21] or

[25]) that also commutes with the operators d, δ, and ? .
Let P denote the L2 orthogonal projection onto the space δHk+1

(
Λp+1 (Tn)

)
that is given by

P = δ∆−1d. (10)

The operator P is continuous and commutes with ∆, ∆−1, δ, and d (see Ebin and
Marsden [9]).
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Lastly, given a vector field v on Tn the interior product ιv maps a p-form α
to the p − 1 form ιvα = α(v, ·, . . . , ·) that can be expressed in coordinates for a
simple form α as:

ivα =
n∑
r=1

fi1,...,ip(−1)rvrdxi1 ∧ · · · ∧ dx̂r ∧ · · · ∧ dxip , (11)

where the hat marks that dx̂r no longer appears in the wedge product.

Consider the set of Sobolev Hs embeddings of a closed p-dimensional N into
Tn:

EsN = {ϕ : N → Tn : ϕ is an embedding} ,

where s > p
2 + 1 so that each embedding is at least C1 [11]. The set EsN is a

connected open subset of the space of all Sobolev maps from N into Tn and
inherits the structure of a Hilbert manifold whose tangent space at a point ϕ
consists of Hs vector fields v : N → TTn covering ϕ.

One can think of EsN as a space of parameterised shapes. It contains a set
of descriptions of the kinds of shapes one might see in Tn, with some elements
describing the same shape. In order to understand the differences and similari-
ties between shapes, or groups of shapes, we need to observe shapes interacting
with other objects. The simplest and most natural interaction one can facilitate is
through integrating a p-form on Tn over the image of a shape description ϕ. So,
the behavioural counter-part to EsN is the set Hk (Λp (Tn)) of Sobolev Hk p-forms
on Tn introduced above.

The interaction between shape and form is best captured by the current map

C : EsN → Hk (Λp(Tn))∗ (12)

which, for any p-form α, is defined by:

C(ϕ)(α) =

∫
ϕ(N)

α. (13)

Since integration is a well-defined operation, any two descriptions ϕ and ψ of a
shape that differ by a re-parameterisation of N will define the same current. So,
for us, shape space is the set of currents associated to EsN :

SE = C(EsN ).

Remark 1 Contrast this with the approach of Michor and Mumford [17] who con-
sidered shape space as the quotient space:

Bs(N,Tn) = EsN/Ds(N), (14)

where Ds(N) the set of orientation preserving Sobolev diffeomorphisms of N . The
space Bs(N,Tn) is known to be a Hausdorff topological space, but it does not
appear to be a manifold since pre-composition with a Sobolev Hs diffeomorphism
is only continuous [12]. The current map (12) can be viewed as an alternative way
of writing the projection map onto the quotient.
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The main properties of the current map that we prove are (1) the image of the
current map consists of bounded linear functionals on Hk (Λp(Tn)); (2) the current
map depends continuously on the embedding ϕ (i.e., continuous dependence on
the domain of integration) for sufficiently large index k; and (3) the current map
depends differentiably on the embedding ϕ (i.e., differentiable dependence on the
domain of integration) for sufficiently large index k.

Proposition 1 For s > p
2 + 1 and ϕ ∈ EsN :

1. C(ϕ) is a bounded linear functional on Hk (Λp(Tn)) and C (EsN ) ⊆ Hk (Λp(Tn))∗,
whenever k > n

2 ;
2. the current map (12) is continuous whenever k > n

2 ; and
3. the current map (12) is differentiable, with derivative a bounded linear operator

given by:

(DC(ϕ) · v) (α) =

∫
ϕ(N)

ivdα ∀α ∈ Hk (Λp(Tn)) (15)

whenever k > n
2 + 1.

Proof. The current map is clearly linear in α, so it suffices to prove the statements
for simple p-forms α = f · dxi1 ∧ . . . ∧ dxip of Sobolev class Hk. Let ϕ : N → Tn
be an Hs embedding parameterised by N and A = {(Uj , ψj)} a finite atlas on
N . If xi are the usual Euclidean coordinates on Tn and yi the coordinates in a

chart (Uj , ψj), then dxi1 ∧ . . .∧ dxip transforms as
∂(xi1 ,...xip )

∂(yj1,...y
j
p)
dyj1 · · · dy

j
p = Jϕ dy.

If xr is the coordinate not appearing in Jϕ then we will declare this through the
notation Jϕr .

In addition to the above notation we shall make use of the following facts
throughout this proof:

1. the composition of the continuous functions f , ϕ, and ψj is again continuous;
2. the supremum of f over Tn is at least as big as its supremum over the image

of ϕ in a chart (Uj , ψj) so that:

‖f ◦ ϕ ◦ ψj‖C0(Uj) ≤ ‖f‖C0(Tn) ; (16)

3. the Sobolev Embedding Theorem guarantees the existence of a finite constant
Kr(k, n) such that:

‖α‖Cr(Λp(Tn)) ≤ K
r(k, n) ‖α‖Hk(Λp(Tn)) (17)

whenever k > n
2 + r.

To prove the first statement of the proposition we observe that Jϕ is a polyno-
mial containing p! terms, each of degree p, involving derivatives of the component
functions of ϕ up to order at most one and therefore satisfies:

|Jϕ| ≤ p! · ‖ϕ‖pC1 ≤ p! ·
(
K1(s, n)

)p
‖ϕ‖pHs .
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Estimating in a coordinate chart using:

∣∣C(ϕ|ψj(Uj))(α)
∣∣ =

∣∣∣∣∣
∫
Uj

(f ◦ ϕ ◦ ψj) · Jϕ dy

∣∣∣∣∣
≤ ‖f ◦ ϕ ◦ ψj‖C0(Uj) · p! ·

(
K1(s, n)

)p
·Vol (N) · ‖ϕ‖pHs

≤ ‖f‖C0(Tn) · p! ·
(
K1(s, n)

)p
·Vol (N) · ‖ϕ‖pHs

≤ K0(k, n) · ‖α‖Hk(Λn(Tn)) · p! ·
(
K1(s, n)

)p
·Vol (N) · ‖ϕ‖pHs ,

and taking the supremum over ‖α‖Hk(Λp(Tn)) = 1 gives:

‖C(ϕ)‖Hk(Λp(Tn))∗ ≤ p! ·K
0(k, n) ·

(
K1(s, n)

)p
·Vol (N) · ‖ϕ‖pHs . (18)

Consequently, the current map is a bounded linear functional in the Hk (Λp(Tn))∗

topology.
Continuity of the integral requires two things: the embeddings need to be at

least C1 close so that the regions enclosed between two Hs-close embeddings are
small, and the forms need to be at least C0 continuous so that their values on
nearby embeddings are close. These two conditions are captured by the require-
ments that k > n

2 and s > p
2 + 1. Fix ϕo ∈ EsN and write the current map in the

following way: ∣∣(C(ϕo|ψj(Uj))− C(ϕ|ψj(Uj))) (α)
∣∣

=

∣∣∣∣∣
∫
Uj

(f ◦ ϕo ◦ ψj) · Jϕo − (f ◦ ϕ ◦ ψj) · Jϕ dy

∣∣∣∣∣
≤
∫
Uj

|(f ◦ ϕo ◦ ψj)− (f ◦ ϕ ◦ ψj)| · Jϕo dy

+

∫
Uj

|(f ◦ ϕ ◦ ψj)| · |Jϕo − Jϕ| dy,

(19)

where we have added and subtracted (f ◦ ϕ ◦ ψj)·Jϕo and then grouped the terms.
Consider the term |f ◦ ϕo ◦ ψj − f ◦ ϕ ◦ ψj |. Since N is compact, the compo-

sition of f with ϕ is uniformly continuous and we can write the definition of
continuity in a chart (Uj , ψj): for any εf > 0 we can find a δf > 0 such that:

|f ◦ ϕo ◦ ψj − f ◦ ϕ ◦ ψj | < εf (20)

whenever:

‖ϕo ◦ ψj − ϕ ◦ ψj‖C0 < δf . (21)

Now consider the term |Jϕo − Jϕ|. The determinant is a continuous function
with respect to the entries of the corresponding matrix, and since N is compact
and ϕ is C1 it follows that Jϕ is uniformly continuous. We can also write the
definition of continuity in a chart here: for any εJ > 0 we can find a δJ > 0 such
that:

|Jϕo − Jϕ| < εJ (22)
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whenever:
‖ϕo ◦ ψj − ϕ ◦ ψj‖C1 < δJ . (23)

Using (20) and (22) (we will specify the conditions on δf and δJ momentarily) we
have:∣∣(C(ϕo|ψj(Uj))− C(ϕ|ψj(Uj))) (α)

∣∣
≤ Vol(N) · p! · ‖ϕo‖pC1 · εf + Vol(N) · ‖f ◦ ϕ ◦ ψj‖C0 · εJ

≤ Vol(N) · p! ·
(
K1(s, p)

)p
‖ϕo‖pHs · εf + Vol(N) · ‖f‖C0(Tn) · εJ

≤ Vol(N) · p! ·
(
K1(s, p)

)p
‖ϕo‖pHs · εf + Vol(N) ·K0(k, n) ‖α‖Hk(Λp(Tn)) · εJ .

Taking the supremum over ‖α‖Hk(Λp(Tn)) = 1 gives:∥∥(C(ϕo|ψj(Uj))− C(ϕ|ψj(Uj)))∥∥Hk(Λp(Tn))∗
≤ Vol(N) · p! ·

(
K1(s, p)

)p
‖ϕo‖pHs · εf

+ Vol(N) ·K0(k, n) · εJ .

Let ε > 0; set εf = ε
2·Vol(N)·p!·(K1(s,p))p‖ϕo‖pHs

and εJ = ε
2·Vol(N)·K0(k,n) with

corresponding δf and δJ , respectively, and let δ = 1
K1(s,p) ·min{δf , δJ} with:

‖ϕo ◦ ψj − ϕ ◦ ψj‖Hs < δ.

Then, since:

‖ϕo ◦ ψj − ϕ ◦ ψj‖C0 ≤ ‖ϕo ◦ ψj − ϕ ◦ ψj‖C1

≤ K1(s, p) ‖ϕo ◦ ψj − ϕ ◦ ψj‖Hs

< min{δf , δJ}

it follows that: ∥∥(C(ϕo|ψj(Uj))− C(ϕ|ψj(Uj)))∥∥Hk(Λp(Tn))∗
< ε

whenever:
‖ϕo ◦ ψj − ϕ ◦ ψj‖Hs < δ.

To prove that the current map is differentiable for k > n
2 + 1 we will compute

the derivative formally and then justify the expression. Let ψ(t) be a C1 curve in
EsN with ψ(0) = ϕ and ∂t|t=0ψ(t) = v. Then:

(DC(ϕ) · v) (α) = ∂t|t=0C(ψ(t))(α)

=

(
∂t|t=0

∫
N

ψ(t)∗α

)
=

∫
N

ϕ∗Lvα

=

∫
ϕ(N)

ivdα

where we have used Stokes’ Theorem in the last line. We now prove that DC(ϕ)
is a bounded operator by estimating |(DC(ϕ) · v) (α)|.
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We write the expression for the derivative in a chart (Uj , ψj) as:

(DC(ϕ) · v) (α) =
n∑
l=1

n∑
r=1

(−1)r
∫
Uj

(vr ◦ ψj) ·
(
∂f

∂xl
◦ ϕ ◦ ψj

)
· Jϕr dy .

Estimating just as in the proof of Proposition 1 gives:

|(DC(ϕ) · v) (α)| ≤
∑
l

∑
r

‖vr ◦ ψj‖C0(Uj) ·
∥∥∥∥ ∂f∂xl ◦ ϕ ◦ ψj

∥∥∥∥
C0(Uj)

∫
Uj

Jϕr dy

≤ C · ‖v‖Hs(Uj) · ‖α‖Hk(Λp(Tn)) · ‖ϕ‖
p
Hs .

Choosing the constant C so that this estimate holds in every chart we obtain:

|(DC(ϕ) · v) (α)| ≤ C · ‖v‖Hs · ‖α‖Hk(Λp(Tn)) · ‖ϕ‖
p
Hs .

Taking the supremum over ‖α‖Hk(Λp(Tn)) = 1 yields:

‖DC(ϕ) · v‖Hk(Λp(Tn))∗ ≤ C · ‖v‖Hs · ‖ϕ‖pHs .

3 Riesz Representations of Currents

From here on we will assume that k > n
2 +1 so that all of our forms are at least C1

and properties 1 – 3 of Proposition 1 all hold. Property 1 of Proposition 1 allows
us to apply the Riesz Representation Theorem, which guarantees the existence of
a unique form βC(ϕ) ∈ Hk (Λp(Tn)) associated to each shape C(ϕ) that satisfies:

C(ϕ)(α) =
(
βC(ϕ), α

)
Hk (24)

for all α ∈ Hk (Λp(Tn)).

Lemma 1 No two Riesz representers that correspond to different shapes are collinear
with the zero form.

Proof. Suppose that βC(ϕ) = c · βC(ψ) for two different shapes C(ϕ) and C(ψ) with
c a non-zero constant. Then:

c ·
∫
ψ(N)

α = c ·
(
βC(ψ), α

)
Hk =

(
βC(ϕ), α

)
Hk =

∫
ϕ(N)

α,

and this identity must hold for all one-forms α. Since there is a point x in ψ(N)
that is not in ϕ(N) there is a neighbourhood of x that does not intersect ϕ(N)
either. Choose a one-form α that has support on this neighbourhood. Since both
ϕ and ψ are embeddings, the form α can be chosen so that the integral on the
left-hand side of the above identity is non-zero, while the right-hand side of the
identity is identically zero, which is a contradiction since c is non-zero.

Lemma 2 For any ϕ ∈ EsN , the Riesz representer βC(ϕ) of C(ϕ) satisfies:∥∥βC(ϕ)

∥∥
Hk(Λp(Tn))

≤ K0(k, n) ·
(
K1(s, n)

)p
·Vol (N) · ‖ϕ‖pHs .
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Proof. This follows directly from the Riesz Representation Theorem and (18).

Lemma 3 For ϕ ∈ EsN , the Riesz representer βC(ϕ) of C(ϕ) is given by:

βC(ϕ) = δγ + h

for some Hk+1 (p+ 1)-form γ and some harmonic p-form h.

Proof. By the Hodge decomposition, each representer βC(ϕ) takes the form:

βC(ϕ) = dσ + δγ + h, (25)

where h is some harmonic form. It will be shown that the term dσ is always zero.
Using the projection P given in (10) and the Hodge star we have:

P ? βC(ϕ) = P ? dσ + P ? δγ + P ? h.

Since the Hodge star commutes with the Hodge Laplacian the Hodge star maps
harmonic forms to harmonic forms and therefore the projection P ?h is zero. Using
formulas (2) and (3):

?δγ = (−1)n(p+2)+1 ? ?d ? γ = (−1)n(p+2)+1+p(n−p)d ? γ,

and so the projection of this term to the image of δ is also zero. Using (2) and
(3) we can write ?dσ = (−1)n(p+2)+1+p(n−p)δ ?σ and hence the projection P acts
like the identity on this term. More concretely, since δ commutes with ∆−1 and
δ ◦ δ = 0 (which is implied by formulas (2), (3), and nilpotence of the exterior
derivative d):

P ? dσ = δ∆−1d ? dσ = (−1)n(p+2)+1+p(n−p)∆−1δdδ ? σ

= (−1)n(p+2)+1+p(n−p)∆−1(δd+ dδ)δ ? σ

= (−1)n(p+2)+1+p(n−p)∆−1∆δ ? σ

= (−1)n(p+2)+1+p(n−p)δ ? σ

= ?dσ.

Therefore:
P ? βC(ϕ) = ?dσ.

On the other hand, for any (n− p)-form α:

?Pα = ?δ∆−1dα = (−1)n((n−p+1)+1)+1 ? ?d ?∆−1dα = (−1)n
2−p2+1d ?∆−1dα.

Then, using self-adjointness of the projection P and the Hodge star, we have for
any (n− p)-form α:(

P ? βC(ϕ), α
)
Hk =

(
βC(ϕ), ?Pα

)
Hk =

∫
ϕ(N)

?Pα

= (−1)n
2−p2+1

∫
ϕ(N)

d ?∆−1dα

= (−1)n
2−p2+1

∫
∂ϕ(N)

?∆−1dα

= 0,

where the penultimate equality follows from Stokes’ Theorem and the last equality
from the fact that ϕ(N) has empty boundary. As this holds for any (n− p)-form
α we have ± ? dσ = P ? βϕ = 0 so that dσ = 0.
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4 The Distribution of the Shape: Probability and a Non-Degenerate
Ḣ1 Metric on Co-Dimension One Shapes

We now demonstrate how the general results of Sections 2 and 3 may be applied
to the situation in which N is any closed (n − 1)-dimensional manifold. Using
Lemma 3 we show that each shape C(ϕ) can be uniquely represented by a positive
Hk probability density which can be calculated from the characteristic function of
the embedding and the operator (7) whenever the coefficients satisfy a simple con-
dition. Futhermore, we demonstrate that the shape space of Michor and Mumford
Bs(N,Tn) = EsN/Ds(N) is topologically embedded in the manifold of positive Hk

probability densities:

Densk (Tn) =

{
ν ∈ Hk (Λn (Tn)) : ν > 0,

∫
Tn
dν = 1

}
.

In [14], the authors studied the homogeneous space of Hk probability densities
of a closed manifold M equipped with a right-invariant Ḣ1 Riemannian metric.
With this metric they showed that the space of densities is isometrically diffeo-
morphic to a convex, open subset of an infinite-dimensional sphere in L2 (M)
whose Ḣ1 geodesic equation corresponds to a natural generalisation of the one-
dimensional Hunter-Saxton equation of nematic liquid crystals. Furthermore, they
demonstrated that: the Ḣ1 metric induces the Fisher-Rao information metric [2]
and the related Amari-Chentsov α-connections of information geometry (see [15]
for full details); the induced Riemannian distance coincides with a spherical ana-
logue of the non-degenerate Hellinger distance in probability and mathematical
statistics and admits a simple closed form expression; and the Bhattacharya coef-
ficient of two normalised densities can be realised as the L2 inner product of the
square roots of the corresponding Radon-Nikodym derivatives.

We show that the above Ḣ1 metric induces a distance metric on shapes. A
consequence of the differentiability of the current map is that, given a collection
of evolving shapes one can now construct probability measures from this set that
vary differentiably with the shapes. Furthermore, one can perform analysis on the
measures and reconstruct the shapes to inspect the results. This has important ap-
plications in the study of shape evolution and analysis. The Riemannian distance
induced by the aforementioned metric can be easily used as a quantitative mea-
sure of difference between two shapes, while the Bhattacharya distance provides
an additional measure of similarity or “affinity” between them. The significance
of our results is that all of the above statistical tools are now available for the
analysis of codimension one shapes of any genus and of any dimension. That is,
given a collection of shapes with corresponding distributions one can now employ
the traditional tools of hypothesis testing, inference, and model fitting to answer
questions of the form “are these distributions, and hence the shapes, statistically
the same or are some of them different?”. Answers to questions of this form are
regularly sought in the field of medical imaging and are relevent to the problem
of shape classification. Furthermore, shape space is now homeomorphic to a rela-
tively open set of a sphere with antipodal points excluded so that local and global
methods can be employed easily.
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4.1 Shapes and Probability Densities

The main result of this section is that from each Riesz representer βC(ϕ) we are able
to construct a unique probability density on Tn representing the unparameterised
shape C(ϕ). According to Lemma 3, each βC(ϕ) has the form:

βC(ϕ) = δ (Ωϕ · µ) + h,

where Ωϕ is an Hk+1 function, µ the Lebesgue measure, and h an harmonic (n−1)-
form. We will first show that the harmonic part of each representer βC(ϕ) is zero
and then show how one can obtain a unique n-form from each βC(ϕ). Theorem 1
below gives conditions under which this n-form is a probability measure and shows
how this probability measure can be uniquely constructed from the shape.

Let us set some notation: for ϕ ∈ EsN , let Mϕ denote the union of ϕ (N)
with the region enclosed by it and let χMϕ

denote the characteristic (indicator)
function of Mϕ (see [16] for details on the Jordan-Brouwer Separation Theorem
for hypersurfaces).

Lemma 4 For any ϕ ∈ EsN , the Riesz representer βC(ϕ) of C(ϕ) is given by:

βC(ϕ) = δ (Ωϕ · µ) ,

where Ω is an Hk+1 function and µ is the Lebesgue measure.

Proof. Let Q denote the orthogonal projection onto the space of harmonic forms
Hkp . Then:(

QβC(ϕ), α
)
Hk =

(
βC(ϕ), Qα

)
Hk =

∫
ϕ(N)

Qα =

∫
Mϕ

dQα = 0,

where the penultimate equality follows from Stokes’s theorem and the last follows
since dQα = 0 as Qα is harmonic. Since the left hand side is zero for any α,
h = QβC(ϕ) = 0 and βC(ϕ) has the representation given in the statement.

Lemma 5 Each unparameterised codimension one shape C(ϕ) can be uniquely
represented by a differential n-form:

∆−1dβC(ϕ) = Ωϕ · µ

for some Hk+1 function Ωϕ. Furthermore, no two such n-forms corresponding to
two different unparameterised shapes are a real scalar multiple of one another.

Proof. Consider the bounded linear operator:

∆−1d : δHk+1 (Λn(Tn))→ Hk+1 (Λn(Tn)) .

This is a linear isomorphism between the indicated spaces whose inverse is given
by δ; indeed, for any δβ ∈ δHk+1 (Λn(Tn)) we have:

δ ◦∆−1d(δβ) = ∆−1δd (δβ) = ∆−1 (δd+ dδ) δβ = ∆−1∆δβ = δβ,

where we have used δ ◦ δ = 0 in the second equality. For any β ∈ Hk+1 (Λn(Tn))
we have:

∆−1d ◦ δ(β) = ∆−1 (dδ + δd)β = ∆−1∆β = β,
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where we have used the fact that d of an n-form is zero in the first equality. Thus
∆−1d is a left and right inverse to δ on the space of n-forms. Applying ∆−1d to
βC(ϕ) gives:

∆−1dβC(ϕ) = Ωϕ · µ.

Since ∆−1d is an isomorphism and the representer βC(ϕ) uniquely represents C(ϕ),
the differential n-form Ωϕ · µ uniquely represents C(ϕ).

Lemma 3 and linearity of the operators ∆−1d and δ imply the second statement
of the Lemma.

Theorem 1 Suppose that k > n
2 + 1, so that Σξ∈Zn\{0}

1
(2π|ξ|)2k < ∞, and let

2ao <
ak

Σξ∈Zn\{0}
1

(2π|ξ|)2k
. Then each shape C (ϕ) is represented by a unique H2k ⊂

Hk probability measure:

pϕ =
1∫

Tn Ωϕ · µ
(Ωϕ · µ) > 0, (26)

obtained as the normalised solution to the PDE:

AkΩϕ = χMϕ
. (27)

.

Proof. By Lemma 5 each unparameterised codimension one shape can be uniquely
represented by the differential n-form ∆−1dβC(ϕ) = Ωϕ · µ. We only need to show

that under the assumptions on Ak the function Ωϕ is strictly positive on Tn. We
first derive the PDE for Ωϕ. Let ν = Γ · µ be any smooth n-form. Then, making
use of (24), Stokes’ Theorem in the integral over ϕ (N), and the commutation of
∆ and ∆−1 with the operators d and δ we compute:(

AkΩϕ,Γ
)
L2

=
(
Ak ? Ωϕ, ?Γ

)
L2

= (Ωϕ · µ, ν)Hk

=
(

∆−1dβC(ϕ), ν
)
Hk

=
(
βC(ϕ), δ∆

−1ν
)
Hk

=

∫
ϕ(N)

δ∆−1ν

=

∫
Mϕ

dδ∆−1ν

=

∫
Mϕ

ν

=

∫
Tn
χMϕ

· Γ · µ

=
(
χMϕ

,Γ
)
L2 .

As this holds for any Γ we obtain:

AkΩϕ = χMϕ
.
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Since the right-hand side is never identically zero (ϕ is an embedding), neither is
Ωϕ and the Elliptic Regularity Theorem guarantees that Ωϕ is unique, belongs to
H2k (Tn) ⊂ Hk (Tn), and is at least C1 by the Sobolev Embedding Theorem – see
[25].

Consider the Fourier series of Ωϕ:

F (Ωϕ) =
∑
ξ∈Zn

Cξ cos (2πξ · x) +Dξ sin (2πξ · x) ,

where:
Cξ = (Ωϕ, cos (2πξ · x))L2 , Dξ = (Ωϕ, sin (2πξ · x))L2 .

The series converges in the L2 norm and Ωϕ = F (Ωϕ) almost everywhere with
respect to µ. The Fourier coefficients can be calculated directly from (4.1) and are
given by:

Cξ =

(
χMϕ

, cos (2πξ · x)
)
L2∑k

r=0 ar(2π |ξ|)2r
, Dξ =

(
χMϕ

, sin (2πξ · x)
)
L2∑k

r=0 ar(2π |ξ|)2r
.

Under the conditions on the constants a0 and ak, the Fourier series is strictly
positive on Tn. Indeed, since cos (2πξ · x) ≥ −1 and sin (2πξ · x) ≥ −1; Cξ ≤

V ol(χMϕ)∑k
r=0 ar(2π|ξ|)2r

andDξ ≤
V ol(χMϕ)∑k
r=0 ar(2π|ξ|)2r

; C0 =
V ol(χMϕ)

a0
> 0; and− 1∑k

r=0 ar(2π|ξ|)2r
≥

− 1
ak(2π|ξ|)2k , we can estimate:

F (Ωϕ) ≥
V ol

(
χMϕ

)
a0

−
∑

ξ∈Zn/0

2 · V ol
(
χMϕ

)∑k
r=0 ar(2π |ξ|)2r

≥ V ol
(
χMϕ

) 1

a0
− 2

ak

∑
ξ∈Zn/0

1

(2π |ξ|)2k


> 0.

This now implies that Ωϕ > 0 as well; since otherwise, suppose that there exists
an xo such that Ωϕ(xo) ≤ 0 < F (Ωϕ). Then, as Ωϕ is at least C1 there exists
a ball of radius ε, centred at xo, on which Ωϕ is strictly less than F (Ωϕ). This
contradicts the fact that Ωϕ agrees with F (Ωϕ) almost everywhere. Therefore:

pϕ =
1∫

Tn Ωϕ · µ
(Ωϕ · µ) > 0 (28)

is a probability measure on Tn associated to the shape C(ϕ). That this scaled
n-form continues to uniquely represent C(ϕ) follows from the second statement of
Lemma 5. Alternatively, let C(ϕ) and C(ψ) be two shapes and suppose the two
probability measures pϕ and pψ are equal. Applying Ak to each of them we must
have

1∫
Tn Ωϕ · µ

(
χMϕ

· µ
)

=
1∫

Tn Ωψ · µ
(
χMψ

· µ
)
.

From this it is clear that:

1∫
Tn Ωϕ · µ

· χMϕ
=

1∫
Tn Ωψ · µ

· χMψ
,

which is true if and only if ϕ = ψ ◦ η for some diffeomorphism η of N so that
C(ϕ) = C(ψ).
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With Theorem 1 we are able to get a little more information about co-dimension
one shapes than the general case. A positive probability density is associated to
each embedding ϕ via the composition:

Φ(ϕ) := N ◦∆−1d ◦ R ◦ C(ϕ) = pϕ, (29)

where R is the Riesz operator of the Riesz Representation Theorem given in Sec-
tion 2 and N denotes the operation of normalising a volume form. In particular,
EsN is mapped by Φ to the manifold of positive Hk probability densities:

Densk (Tn) =

{
ν ∈ Hk (Λn (Tn)) : ν > 0,

∫
Tn
dν = 1

}
.

Lemma 6 Suppose that the conditions of Theorem 1 are satisfied and let Φ (EsN ) ⊂
Densk (Tn) be endowed with the subspace topology. Then Φ : EsN → Φ (EsN ) ⊂
Densk (Tn) is a continuous, relatively open map.

Proof. In view of Lemma 5 and Theorem 1, Φ successively maps across the fol-
lowing closed spaces

Φ : EsN → δHk+1 (Λn(Tn))∗ → δHk+1 (Λn(Tn))→ Hk+1 (Λn (Tn))→ Densk (Tn)

We first show that the current map is a relatively open map between EsN and
δHk+1 (Λn(Tn))∗ by showing that the image of any open set is relatively open. We
will then show that each remaining map appearing in the composition defining Φ
is open between the image of the preceding map and its own, where each successive
image has the subspace topology.

Let U be an open set in EsN . For any f ∈ C (U) there exists a ϕ ∈ U with
C(ϕ) = f . Let Tr be a tubular neighbourhood of ϕ(N) with constant radius r
and volume v. Since U is open there exists an r sufficiently small so that the
open ball B(ϕ, r

K0(s,n) ) of radius r
K0(s,n) centred at ϕ, where K0(s, n) is the

Sobolev embedding constant of Hs into C0, is contained in U . Now, ‖ϕ− ψ‖C0 < r
so that the maximum distance between the image of ϕ and the image of any
ψ ∈ B(ϕ, r

K0(s,n) ) is less than r and, therefore, the images of all embeddings in

B(ϕ, ε
K0(s,n) ) are contained in Tr. Moreover, the volume of the region between

ϕ(N) and ψ(N), for any ψ ∈ B(ϕ, r
K0(s,n) ), is strictly less than v. First:∥∥χMϕ
− χMψ

∥∥2

L2(Tn)
< v (30)

for all ψ ∈ B(ϕ, r
K0(s,n) ). Indeed:

∥∥χMϕ
− χMψ

∥∥2

L2(Tn)
=

∫
Tn
χ2
Mϕ

+ χ2
Mψ
− 2χMϕ

· χMψ
dµ

=

∫
Mϕ

dµ+

∫
Mψ

dµ−
∫
Mϕ∩Mψ

dµ−
∫
Mϕ∩Mψ

dµ

=

∫
Mϕ∪Mψ

dµ−
∫
Mϕ∩Mψ

dµ

< v,



18 James Benn, Stephen Marsland

since the penultimate line is precisely the volume of the region between ϕ(N) and
ψ(N). Second, recalling that C(ϕ) = f , (30) implies that:

‖f − C(ψ)‖Hk(Λn−1(Tn))∗ <
√
v (31)

for all ψ ∈ B(ϕ, r
K0(s,n) ). Indeed, let α be any Hk (n−1)-form and write dα = g ·µ

for some Hk−1 function g. Then, using Stoke’s Theorem and Holder’s inequality:

|f(α)− C(ψ)(α)| =

∣∣∣∣∣
∫
ϕ(N)

α−
∫
ψ(N)

α

∣∣∣∣∣
=

∣∣∣∣∣
∫
Mϕ

dα−
∫
Mψ

dα

∣∣∣∣∣
=

∣∣∣∣∫
Tn
χMϕ

· dα−
∫
Tn
χMψ

· dα
∣∣∣∣

≤
∫
Tn
|χMϕ

− χMψ
| · |g| dµ

≤
∥∥χMϕ

− χMψ

∥∥
L2(Tn)

· ‖g‖L2(Tn)

<
√
v · ‖α‖Hk(Λn−1(Tn)) .

Taking the supremum over ‖α‖Hk(Λn−1(Tn)) = 1 gives the inequality. Now we can
choose r, and hence v, small enough so that:

C
(
B(ϕ,

r

K0(s, n)
)

)
=: Brel(f,

√
v) ⊂ C (U) .

Moreover, Brel(f,
√
v), whose elements satisfy (31), can be written as:

Brel(f,
√
v) = BH

k(Λn−1(Tn))
∗

(f,
√
v) ∩ C (EsN )

and is therefore open in the subspace topology, where BH
k(Λn−1(Tn))

∗

denotes an
open ball in the Hk

(
Λn−1 (Tn)

)∗
topology. As this holds for any point in C (U)

we can cover C (U) with balls of the form Brel(f,
√
v) and write:

C (U) =
⋃

f∈C(U)

Brel(f,
√
v) =

⋃
f∈C(U)

BH
k(Λn−1(Tn))

∗

(f,
√
v) ∩ C (EsN )

=

 ⋃
f∈C(U)

BH
k(Λn−1(Tn))

∗

(f,
√
v)

 ∩ C (EsN )

so that C (U) is open in the subspace topology.
Now we show that R : C (EsN ) → R ◦ C (EsN ) is open. Note that the Riesz

mapping R is an isometric isomorphism between any Hilbert space and its dual
and is therefore an open map by the Open Mapping Theorem [23] (Theorem
3.18); in particular it is an isomorphic open mapping between δHk+1 (Λn (Tn))∗

and δHk+1 (Λn (Tn)). Let V be open in C (EsN ) with V = O ∩ C (EsN ) for some
open set O in δHk+1 (Λn (Tn))∗. Then:

R(V ) = R(O ∩ C (EsN )) ⊆ R(O) ∩R(C (EsN ))
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by general properties of mappings. On the other hand, if α ∈ R(O) ∩ R(C (EsN ))
then since R is an isomorphism there exists a unique fα ∈ O∩C (EsN ) = V so that
α = R(fα) ∈ R(O ∩ C (EsN )) which gives the reverse inclusion. Therefore:

R(V ) = R(O) ∩R(C (EsN ))

so that R(V ) is open in R ◦ C (EsN ) ⊂ δHk+1 (Λn (Tn)) since R(O) is open in
δHk+1 (Λn (Tn)).

As was shown in the proof of Lemma 4, the bounded linear operator ∆−1d :
δHk+1 (Λn(Tn))→ Hk+1 (Λn(Tn)) between the two closed spaces has an inverse
given by δ and is therefore an isomorphism. So ∆−1d is also an open map by
the Open Mapping Theorem and using similar arguments as above we get that
∆−1d(W ) is open in ∆−1d ◦ R ◦ C (U), where W is any open set in R ◦ C (EsN ).

Finally, the map N is a rescaling map and rescales a relatively open set to
a relatively open set so that Φ (U) = N ◦ ∆−1d ◦ R ◦ C (U) open in Φ (EsN ) ⊂
Densk (Tn).

Since Φ is a composition of the continuous maps above, it is itself continuous.

Theorem 2 The map Φ is a topological embedding of the shape space Bs(N,Tn) in
Densk (Tn); that is, Φ maps Bs(N,Tn) homeomorphically onto its image Φ (Bs(N,Tn)) ⊂
Densk (Tn).

Proof. Observe that the current map C is constant on left cosets of Bs(N,Tn)
and is therefore well-defined as a map from Bs(N,Tn). The current map is injec-
tive on left cosets by Lemma 1. By Proposition 1, the current map descends to
a continuous, injective map on Bs(N,Tn). The remaining maps appearing in the
composition Φ are also continuous, injective maps so that Φ descends to a con-
tinuous injective mapping of Bs(N,Tn) into Densk (Tn). Finally, Lemma 6 also
guarantees the continuity of the inverse map between EsN and Φ (EsN ). That is,
Bs(N,Tn) is mapped homeomorphically onto Φ (Bs(N,Tn)) ⊂ Densk (Tn).

4.2 A Non-Degenerate Ḣ1 Metric on Co-Dimension One Shapes

LetDk(M) denote the group of SobolevHk diffeomorphisms of a closed n-dimensional
Riemannian manifold M and Dkµ the subgroup consisting of those diffeomorphisms

preserving the volume form µ on M . When r > n
2 + 1, both Dk(M) and Dkµ(M)

become smooth Hilbert manifolds. The projection π : Dk(M) → Dk(M)/Dkµ(M)
is a C0 principal bundle whose base is diffeomorphic to the space Dens (M) of
normalized Hk positive densities:

Densk (M) =

{
ν ∈ Hk (Λn (M)) : ν > 0,

∫
M

dν = 1

}
. (32)

Equivalently, if Ω = dν
dµ is the Radon-Nikodym derivative of ν with respect to µ

then the base can be regarded as a convex subset of the space of Hk functions on
M :

P =

{
Ω ∈ Hk (M,R>0) :

∫
M

Ω dµ = 1

}
. (33)
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In the latter case the projection π : Dk(M) → P can be written as π (η) =
Jacµ (η), where Jacµ (η) is determined by η∗µ = Jacµ (η) · µ. The fact that
(η ◦ ξ)∗ µ = ξ∗η∗µ implies that:

Jacµ (η ◦ ξ) = (Jacµ ◦ ξ) · Jacµ (ξ) .

Consequently, π (η ◦ ξ) = π (η) whenever ξ ∈ Drµ(M), so that the projection is con-
stant on the left cosets; that π descends to an isomorphism between the quotient
space of left cosets to the space of densities is the contents of Moser’s Theorem [22]
in the Sobolev category (E and M). In [14] the authors consider the homogeneous
space of densities Dens (M) equipped with the right-invariant metric induced by
the Ḣ1 inner product:

(u ◦ η, v ◦ η)Ḣ1 =
1

4

∫
M

divu · divv dµ (34)

for any u, v ∈ TeDr(M) and η ∈ Dr(M). They found that, when equipped with
(34), the space Dens (M) is isometric to an open subset of the infinite-dimensional
sphere of radius µ(M):

S∞µ(M) =

{
f ∈ L2 (M,dµ) :

∫
M

f2 dµ = µ(M)

}
.

In particular, the Ḣ1 geometry of the space of positive Hr densities is spherical
and the Riemannian distance between measures λ and ν in Dens (M) is given by:

distḢ1 (λ, ν) =
√
µ(M) arccos

(
1

µ(M)

∫
M

√
dλ

dµ
· dν
dµ

dµ

)
. (35)

The authors of [14] note that their construction could be usefully applied to shapes;
our results can be seen as doing precisely that in full generality with only the Hodge
Laplacian rather than mollification.

Theorem 3 For any two shapes λ and ν in O = Φ (EsN ) ⊂ Dk(Tn)/Dkµ(Tn), the
function:

d(λ, ν) = inf
ρ(t)∈O: ρ(0)=λ, ρ(1)=ν

∫ 1

0

‖ρ̇(t)‖Ḣ1 dt

is a distance metric on O, where ‖·‖Ḣ1 is the norm induced by (34).

Proof. Symmetry and the triangle inequality are both obvious from the definition.
It remains to prove that d(λ, ν) = 0 if and only if λ = ν. If ρ(t) is any C1 curve
with ρ(0) = λ and ρ(1) = ν then∫ 1

0

‖ρ̇(t)‖Ḣ1 dt ≥ distḢ1 (λ, ν) .

Constraining ρ(t) to lie in O and taking the infimum over all such curves gives the
result.
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5 The Wave of the Shape: Hydrodynamics and a Non-Degenerate L2

Metric on One-Dimensional Shapes

From co-dimension one shapes we now turn our attention to one dimensional
shapes in which p = 1 and N = S1. In this section we apply the work of Arnold [3]
and Ebin and Marsden [9] to show that each one-dimensional shape generates a
unique solution to the Euler equations of hydrodynamics on Tn. Since Lagrangian
solutions of the fluid equations are geodesics of the L2 metric on the volume-
preserving diffeomorphism group Dkµ (Tn) of Tn we may represent each shape by
a unique volume-preserving diffeomorphism and use the L2 metric to define a
distance metric on shapes.

Recall that each co-dimension one shape was uniquely represented by an el-
ement of Dk (Tn) /Dkµ (Tn) so in this sense co-dimension one shapes are dual to
one-dimensional shapes.

5.1 The L2 Riemannian Metric on Dkµ(Tn) and Hydrodynamics

Recall the musical isomorphisms of ] and [ given in section 2: if β is a 1-form,
then β] is the vector field such that β(w) = g(β], w) for every vector field w; [
is its inverse. The divergence of a vector field u, which is defined through the Lie
derivative of the volume form µ along the field u as divu ·µ = Luµ, can be written
as an operator on 1-forms: divu = −δu[; to see this in the particular case of Tn
first observe that

ιuµ = ιudx1∧· · ·∧dxn =
n∑
r=0

(−1)rurdx1∧· · ·∧dx̂r∧· · ·∧dxn = ?
n∑
r=0

urdxr = ?u[

where we have used the standard coordinates (x1, . . . , xn) on Tn, the interior
product (11), and the Hodge star (4). Then:

divu = ? (divu · µ) = ?Luµ = ?dιuµ = ?d ? u[ = −δu[,

where we have used Cartan’s “magic formula”, the fact that the exterior derivative
of an n-form is zero, and (2). The derivation of this formula on a general manifold
M is more involved but see [1] for complete details. Now the Hodge decomposition
(9) says that any Hk divergence-free vector field u may be written as u[ = δγ+h,
where γ is an Hk+1 2-form and h is a C∞ 1-form, since δ ◦ δ = 0 and δh = 0 for
any harmonic form h.

If ϕ ∈ EsS1 then, according to Lemmas 2 and 3, the shape C(ϕ) is represented
by a unique divergence-free vector field:

vC(ϕ) = β]C(ϕ) = (δγ)] + h]

for some Hk+1 2-form γ and harmonic 1-form h, whose Hk norm satisfies:∥∥vC(ϕ)

∥∥
Hk ≤ K

0(k, n) ·
(
K1(s, n)

)p
·Vol (N) · ‖ϕ‖pHs .

In terms of the Riesz mapping R given by the Riesz Representation Theorem in
section 2, which sends C(ϕ) to βC(ϕ), we are able to view (R ◦ C(EsS1))] as a subset

of the vector space of Hk divergence-free vector fields on Tn.
In parallel with Lemma 4 we have:
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Lemma 7 For any ϕ ∈ EsS1 the Riesz representer βC(ϕ) of C(ϕ) corresponds to an
exact divergence free vector field:

vC(ϕ) = β]C(ϕ) = (δγ)]

for some Hk+1 2-form γ.

Proof. Let Q denote the orthogonal projection onto the space of harmonic 1-forms
Hk1 . If S is any surface whose boundary is ϕ(S1) then Stokes’ Theorem gives:(

QβC(ϕ), α
)
Hk =

(
βC(ϕ), Qα

)
Hk =

∫
ϕ(S1)

Qα =

∫
S

dQα = 0,

where the final equality follows from the fact that Qα is harmonic. Since this holds
for any 1-form α we must have QβC(ϕ) = 0. This, in conjunction with Lemma 3,

implies that βC(ϕ) = δγ for some Hk+1 2-form γ and hence βC(ϕ) corresponds to
an exact divergence free vector field, as stated in the Lemma.

Although given in the particular case of the torus Tn here, the following ref-
erenced definitions, constructions, and results hold for arbitrary closed manifolds
M .

Definition 1 The volumorphism group Dkµ consists of those diffeomorphisms η of

Sobolev class Hk of Tn such that η∗µ = µ. When k > n
2 +1, Dkµ is a smooth Hilbert

manifold whose tangent space at the identity TeDkµ consists of Hk divergence-free
vector fields on Tn.

When equipped with the right-invariant L2 metric on vector fields:

(v, w)L2 =

∫
Tn
g(v, w) dµ, (36)

Dkµ(Tn) becomes a smooth Riemannian manifold with a smooth right-invariant
Levi-Civita connection∇µ, smooth right-invariant curvature tensorRµ, and smooth
exponential map expe, which is a diffeomorphism on a neighbourhood of the iden-
tity e. The importance of these facts resides in an observation of Arnold that η(t)
is a geodesic of the L2 metric if and only if the vector field v(t) = η̇(t) ◦ η−1(t)
solves the Euler equations of hydrodynamics:

∂tv +∇vv = −∇p
divv = 0

v(0) = vo,

where ∇ is the covariant derivative on Tn and p the pressure of the fluid filling
Tn. Ebin and Marsden ([9], Theorem 9.2) showed that geodesics of the weak L2

metric on Dkµ exist, are unique, and depend smoothly on the initial conditions for
any closed Riemannian manifold of dimension n. This allows us to define a smooth
exponential map:

expe : TeDkµ → Dkµ (37)

given, for small t, by:
expe(tvo) = η(t),
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where η is the unique geodesic issuing from the identity with initial velocity vo.
The exponential map (37) is a local diffeomorphism on a neighbourhood of zero
in TeDkµ; this follows from the fact that its derivative at t = 0 is the identity and
the inverse function theorem. The derivative of the exponential map at vo is a
linear map D expe (vo) : TeDkµ → Texpe(vo)

Dkµ, which is bounded for as long as
expe is defined and is both injective and surjective when expe is a diffeomorphism.
We refer the reader to [9] and [18] for basic facts regarding the L2 geometry of
diffeomorphism groups.

The next theorem is observational and shows that each shape generates a
unique fluid flow on the torus. Hydrodynamics is a well developed field in mathe-
matics and it could be interesting to understand what fluids and their invariants
can say about families of shapes in light of this observation. Conversely, it might
be of interest to understand what shapes say about fluids and to understand the
kinds of flows they define. We refer the reader to Arnold and Khesin [4] for an
overview of the geometry of hydrodynamics and fluid invariants.

Theorem 4 For s > 3
2 and k > n

2 + 1, each shape C(ϕ) generates a unique fluid
flow ηϕ(t) on the torus Tn defined on a sufficiently small time interval around 0.

Proof. Let r denote the injectivity radius of expe so that expe : B(0, r) ⊂ TeDkµ(Tn)→
Dkµ(Tn) is a diffeomorphism. Let C(ϕ) be a shape with representing divergence-free
vector field vC(ϕ) Then C(ϕ) generates a fluid flow on the torus Tn given by:

ηϕ(t) = expe

(
t

vC(ϕ)∥∥vC(ϕ)

∥∥
Hk

)

which is defined for t ∈ (−r, r). Since no two representing divergence-free vector
fields corresponding to two different shapes are collinear with the zero vector field
(by Lemma 1) and since the exponential map is a local diffeomorphism the fluid
flow is unique.

Remark 2 Instead of an L2 metric, one can also define an Hr Riemannian metric
on Dkµ(Tn) for 0 ≤ r ≤ k. Such metrics are also weak in that they do not generate

the Hk topology (unless r = k), but nevertheless carry smooth Levi-Civita con-
nections, curvature tensors, and exponential maps that are local diffeomorphisms
(cf. Misio lek and Preston [19]). Although uninteresting from the physical point of
view, these higher-order metrics may be of value in the analysis of shapes. In the
future we will consider global existence of such shape flows.

In the next section we demonstrate how the the L2 metric can be used to define
an intrinsic, non-degenerate distance metric on one dimensional shapes.

5.2 A Non-Degenerate L2 Metric on One-Dimensional Shapes

We are interested in an intrinsic distance metric that measures the distance be-
tween two representing vector fields using curves that are constrained to lie in the
set of vector fields g]R ◦ C(EsS1). We give the following definition of an intrinsic
distance metric:
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Definition 2 The intrinsic distance between two shapes C(ϕ) and C(ψ) with rep-
resenting vector fields vϕ and vψ is defined as the infimum over all lengths of C1

paths c(t) in g]R ◦ C(EsS1) connecting vϕ with vψ:

d(C(ϕ), C(ψ)) := inf
c(t)∈g]R◦C(Es

S1 ):c(0)=vϕ,c(1)=vψ

∫ 1

0

‖ċ(t)‖L2 dt

Theorem 5 The intrinsic distance metric d is a non-degenerate L2 distance met-
ric on shape space C(EsS1).

Proof. Symmetry and the triangle inequality are obvious from the definition so
we prove non-degeneracy. For a curve γ : [0, 1] → g]R ◦ C (EsS1) ⊂ TeDkµ, let

L(γ) =
∫ 1

0
‖γ̇(t)‖L2 dt and suppose there exist distinct vϕ and vψ in g]R◦C (EsS1)

such that

dI (C(ϕ), C(ψ)) = inf
c(t)∈R◦C(Es

S1), c(0)=vϕ, c(1)=vψ

L(c) = 0.

Then, for all ε > 0 there exists a curve c̃(t) in g]R ◦ C (EsS1) ⊂ TeDkµ joining vϕ
and vψ such that

L(c̃(t)) < ε.

However, c̃ is also a curve in TeDkµ joining the same endpoints and since the L2

norm is a non-degenerate distance metric choosing 0 < ε < ‖vϕ − vψ‖L2 gives

L(c̃(t)) < ‖vϕ − vψ‖L2

which contradicts the fact that the shortest path joining any two points in a linear
space is a straight line. Thus

d (C(ϕ), C(ψ)) > 0

which proves non-degeneracy.
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