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Research Article

Temporal and sequential order of nonoverlapping gene
networks unraveled in mated female Drosophila
Claude Pasquier1 , Alain Robichon2

In this study, we reanalyzed available datasets of gene expression
changes in female Drosophila head induced by mating. Mated
females present metabolic phenotypic changes and display be-
havioral characteristics that are not observed in virgin females,
such as repulsion to male sexual aggressiveness, fidelity to food
spots selected for oviposition, and restriction to the colonization
of new niches. We characterize gene networks that play a role in
female brain plasticity after mating using AMINE, a novel algo-
rithm to find dysregulated modules of interacting genes. The
uncovered networks of altered genes revealed a strong specificity
for each successive period of life span after mating in the female
head, with little conservation between them. This finding high-
lights a temporal order of recruitment of waves of interconnected
genes which are apparently transiently modified: the first wave
disappears before the emergence of the second wave in a re-
versible manner and ends with few consolidated gene expression
changes at day 20. This analysis might document an extended
field of a programmatic control of female phenotypic traits by
male seminal fluid.
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Introduction

Phenotypic plasticity is associated with changes in gene expression
and can be adaptive to fluctuating environmental conditions or
nonadaptive independent of the context of natural selection
pressure. Many acquired phenotypic traits appear irreversible in
individuals ofmany insect species (DeWitt et al, 1998; Debat & David,
2001; Braendle & Felix, 2008, 2009; Dingemanse et al, 2010; Beldade
et al, 2011). However, in insects likeDrosophila, phenotypic plasticity
operating in female after mating can produce the apparition of
behavioral and physiological traits that can be reversible in relation
to tissue specific temporal changes of transcriptome (Fedorka et al,
2007; Dalton et al, 2010; Ameku & Niwa, 2016; Delbare et al, 2017).
Briefly, the female post-mating response includes increased egg
laying and feeding (Carvalho et al, 2006), a preference for amino
acids and for salt (Walker et al, 2015), decreased receptivity to

mating (Chapman et al, 2003), decreased daytime sleep (Isaac et al,
2010; Garbe et al, 2016; Dove et al, 2017), and a diminished immune
response (Short & Lazzaro, 2010, 2013). Moreover, in Drosophila
species, mated females show an increase in activity during the light
phase compared with virgin females and the same low level activity in
the dark (Isaac et al, 2010). An increased consumption of yeast in the
post-mating period was observed that corresponds to intense oo-
genesis (Drummond-Barbosa & Spradling, 2001). Another report de-
scribes that some genes of the immune system was highly expressed
after mating, in contrast with a severely diminished efficiency of the fly
to fight infectious pathogens (Fedorka et al, 2007). These conclusions
have been completed by another observation that presents a panel of
modified genes in mated female, most of them involved in immune
system (Lawniczak & Begun, 2004). All these elements argue in favor of
complex gene networks under the control of seminal fluid that
markedly change the female destiny.

At physiological level, mating was reported to modify the gus-
tatory signaling leading to an increase in appetite and uptake of salt
and yeast by activation of Sex Peptide Receptor located in neuronal
terminals in female reproductive tract (Walker et al, 2015). In this
regard, few male seminal peptides that regulate general female
metabolism, behavior, and life span have been identified to act in
post mating period (Peng et al, 2005; Isaac et al, 2010). The strength
of female gametogenesis is regulated by environmental factors,
temperature, food abundance, and also mating. Stem cell division
in ovary was found partly under control of male-derived Sex Peptide
(SP) acting through a neuroendocrine pathway, neuromediators, and
signaling molecules (Ameku & Niwa, 2016).

Authors have equally reported time-dependent changes at
transcriptional level in mated female (Mack et al, 2006; Dalton et al,
2010). In a related study, ion channel transcripts have been found
significantly down-regulated, whereas most of up-regulated genes
reside in the head fat body (Dalton et al, 2010). Furthermore, mating
that changes the physiology and behavior of Drosophila female was
shown to affect the secretory granule release at some pre synaptic
nerve terminal spaces in reproductive female tract (Heifetz &
Wolfner, 2004). On the other side, an article reports that not only
some mRNAs but microRNAs and histone chemical modifications
are markers associated with mating leading to the idea that an
epigenetic component orchestrate the genes networks recruitment
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(Zhou et al, 2014). Moreover, strong differences in female post-
mating transcriptome has been reported depending on female/
male genetic interactions, which suggests a solid contribution of
genetic background tomodulate the post mating female physiology
(Delbare et al, 2017). The gene expression changes in female head
and central nervous system tissues that follow mating and semi-
nal acquisition has been documented in some extent. Behavior
changes induced as post mating response was shown to be de-
pendent on neuronal circuitry requiring expressing of doublesex
(dsx) gene (Rezával et al, 2012). Authors have shown that the
changes in gene expression induced by mating are influenced by
cross tissue interactions and the global effects impact sleep, food
preference, and re-mating (Newell et al, 2020). Robust changes in
mRNA patterns in tissues between virgin and mated female have
indicated integrative and coordinated functional gene networks
acting in a concerted manner upon mating (McDonough-Goldstein
et al, 2021). However, our knowledge on the integrative and coor-
dinated process involving numerous transcriptional changes trig-
gered bymating in female Drosophila have not been fully completed.
At present, we know little about the molecular mechanisms that
affect female brain gene expression after mating.

In this study, we use a new approach to analyze the tran-
scriptomic changes occurring in the female head after mating. This
approach relies on (1) a novel method, AMINE (Pasquier et al, 2021
Preprint), for the identification of dysregulated gene modules, and
(2) accurate RNA-Seq data from the head of both virgin and mated
Drosophila females at three time periods after mating, made available
by the modENCODE project. AMINE applies a greedy algorithm on a
highly informative and compact representation combining general
knowledge about gene interactions and measured gene variation. This
strategy allows us to assess both the extent of gene variation and the
topology of gene interactions, overcoming limitations of classical en-
richment analysis of themost differentially expressed genes and earlier
network-based approaches.

Our current analysis, along with many other reports, argues in
favor of a new paradigm that underlies a coordinated process of
female transcriptomemodification aftermating, which parallels the
behavioral and metabolic changes to produce offspring. The broad
transcriptional changes initiated by copulation can be followed by
the differential landscape of gene modules that vary between the
three post-mating periods (1, 4, and 20 d after mating). Assuming that
the long distance between the head and spermathecae excludes
sperm RNA contamination during the experimental process of dis-
section, the analysis uncovered waves of modified gene networks
that show marked differences between the time periods of 1, 4, and
20 d. This hints that mating triggers temporal and ordered activation
of gene networks, that is, the first wave inducing the interdependent
second wave and so on up to the end of the process.

Results

Differential expression analysis

We considered only the RNA-Seq lists of head tissues of virgin
versus mated females aged 1, 4, and 20 d, which eliminates any
possible fertilized egg interference/contamination that occurs with

the full carcass or other tissues, such as the gut. Under these
conditions, the number of differentially expressed genes, which
was at a maximal value 1 d post-mating (334 down-regulated and
291 up-regulated genes–Fig 1A and Table S1), decreased after 4 d (32
down-regulated and 50 up-regulated genes–Fig 1B and Table S2)
until a very low number was observed after 20 d (one down-
regulated and five up-regulated genes–Fig 1C and Table S3). The
lists obtained for the three different time points mainly do not
overlap. A single gene (FBgn0283437, prophenoloxidase 1 involved
in the melanization reaction, notably in response to wounding and
produced by crystal cells, a type of hemocyte in Drosophila) that is
overexpressed at day 1 is also overexpressed at day 20 (Fig 2C). This gene
is also known to enhance the mating process and reproductive success
(Parkash et al, 2011). Only 10 genes were differentially expressed on both
days 1 and 4 in the same orientation (Fig 2A–D). Of those, three genes
were overexpressed in mated females (FBgn0030608/Lsd-2,
FBgn0259937/Nop60B, and FBgn0032538/Vajk2), six were underex-
pressed (FBgn0260653/serp, FBgn0031089/aspr, FBgn0016120/
ATPsynD, FBgn0033485/RpLP0-like, FBgn0033661/CG13185, and
FBgn0011824/CG4038) in mated females, and one gene was over-
expressed at day 1 but underexpressed at day 4 (FBgn0039670/CG7567).
Little is known about the functions of this later gene, but the other nine
genes are mainly implicated in rRNA processing and ribosome bio-
genesis. Fig 2 shows the evolution over the three time points of the
log2-fold change (log2FC) values of the genes that were identified as
differentially expressed at least at one time point.

Enrichment analysis of differentially expressed genes

Enrichment analysis is a classical process to obtain a synthetic view
of a gene list. It consists in associating to this list the most typical
annotations originating from various databases. We therefore
performed enrichment analyses for the differentially expressed
genes identified at each time point. We did this for all differentially
expressed genes, for underexpressed genes, and then for over-
expressed genes (results are listed in Table S4).

Annotations characterizing the whole list of differentially
expressed genes at day 1 are associated with relatively modest false
discovery rates (FDRs) on the order of 10 × 10−4. Among these
annotations, we find several terms related to development (in
particular cuticle development with a FDR of 1 × 10−4 and chitin-
based cuticle development with a FDR of 1.5 × 10−4) and the chemical
reactions involving carbohydrates (carbohydrate metabolic process
with a FDR of 8.7 × 10−4). By considering only overexpressed genes, we
find annotations associated with much more significant FDR. Among
them, many annotations are related to metabolic regulation and cell
cycle. Among the annotations associated with underexpressed
genes, we find again terms related to cuticle development and
carbohydrate metabolism. Regarding day 4, we find new annotations
that did not appear significantly in day 1 as rRNA processing (FDR =
2.3 × 10−7) and ribosome biogenesis (FDR = 3.19 × 10−7). We find these
same annotations, with even more significant FDR, for the under-
expressed genes, whrereas no annotation appears significantly for
the overexpressed genes. Concerning the six genes that are differ-
entially expressed at day 20, no term from Gene Ontology stands out
significantly. We only obtain an overrepresentation of the term
Oxidoreductase from UniProt Keywords.
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This transcriptome analysis highlights the observation that
mating modifies the female biology and that these modifications
affect temporal and sequential gene networks such that these show
variations among days 1, 4, and 20. The number of genes with
changes in the transcription level decreased markedly throughout
the life span of female Drosophila after mating. Moreover, the
analysis of the transcriptome at the three time periods revealed the
specificity of the modified genes for each period, as revealed by
the little overlap or conservation of these changes throughout the
female fly life span after mating. This finding argues in favor of
singular waves of gene networks acting at each time period after
mating with little, if any, interference and acting as a cascade in
which the first wave orchestrates the outcome of the second and so
on along the fly life span.

Limitations of conventional RNA-Seq data analysis pipeline

Differential gene expression analysis allows identification of the
genes that vary the most. In clinical and pharmaceutical research,
these genes can be valuable in identifying candidate biomarkers,
therapeutic targets, and genetic signatures for diagnosis. However,
the identification of specific changes in the expression of a few
genes is usually not sufficient to reveal ongoing biological activities.
The classical approach consisting in performing an enrichment
analysis of the most differentially expressed genes does indeed
hardly provide an accurate picture of the processes at stake. This is
mainly due to the fact that in this approach, genes are considered
as isolated entities. However, interactions between genes, is fun-
damentally important to understand the genetic pathways involved
and the dynamics of complex genetic systems. As pinpointed by
Rapaport et al (2007), “a small but coherent difference in the ex-
pression of all the genes in a pathway should be more significant

than a larger difference occurring in unrelated genes.” Arising from
this observation, many methods have been proposed for the
analysis of gene activity based on our knowledge about their
molecular interactions (Nguyen et al, 2019). The idea underlying
active module identification is to identify pertinent modules of
genes by simultaneously considering two criteria: one is based on a
measurement of gene activity (differential expression) and the
other reflects their molecular interactions. In their 2019 survey,
Nguyen et al (2019) identified 22 computational tools for active
module identification that they divided into six categories: greedy
algorithms (six methods), evolutionary algorithms (five methods),
diffusion-flow emulation models (five methods), random walk
algorithms (two methods), maximum clique identification (two
methods), and clustering-based methods (two methods). To this
list, we add WMAXC (Amgalan & Lee, 2014), a method belonging to
the category of maximum clique identification, GiGA (Breitling et al,
2004), which is based on a greedy algorithm and MRF (Robinson et
al, 2017), which uses a diffusion-flow emulation model. This makes
25 methods, whose basic principles and results differ, but which
also have differences from the point of view of usability; some are
easy to use by a non-expert, others are more demanding, involving
command line execution, complex setup, the need to properly
format input data in a particular layout or requiring many steps to
obtain the final result. Usability is a very important aspect for
programs intended to be used by people who are not necessarily
experts in computer science or data analysis. Difficulties may arise
during installation, data preparation, or program execution.

Installation
A local installation requires downloading a package and installing
it; it may require installing other required libraries or entering some
command lines. Applications in the form of a web service allow

Figure 1. Volcano plots of differentially expressed genes.
Volcano plots showing the significance of the differential expression of genes between mated and virgin flies at day 1, 4, and 20. Log2 FC is plotted on the x-axis, and
adjusted P-values are plotted on the y-axis. Genes with a variation of at least a factor of 1.25 (i.e., a log2-fold change greater than 0.32 or less than −0.32) and an adjusted
P-value of 0.05 or less are considered differentially expressed and are represented in red. Triangles correspond to genes with a too-high adjusted P-value to be displayed
on the plot or a P-value equal to NA. Genes appearing in the three plots are listed in Tables S1–S3. (A)Mated versus virgin females at day 1. The analysis highlighted 625
differentially expressed genes identified with high confidence (most of these genes are associated with an adjusted P-value well below 0.05). (B) Mated versus virgin
females at day 4. Eighty-two genes are considered differentially expressed. Important variations were found between replicates because most of the adjusted P-values
were higher than 0.1, as seen in the panel. (C)Mated versus virgin females at day 20. At this time period, the large variations between the quantifications performed with
the different replicates only allowed the identification of six differentially expressed genes.
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access to a program simply by accessing a web address on a
browser. A special case is represented by applications that come in
the form of a plugin for Cytoscape (Shannon et al, 2003), a popular
platform dedicated to network visualization and analysis. Cyto-
scape plugins require the use of Cytoscape but have the advantage
of being easily installed through Cytoscape app store.

Data preparation
A module identification program requires two essential data: an
interaction network and the quantification of the differential ex-
pression of genes which can be specified either by the level of
expression in each condition, by a fold change (or a log2 fold
change) or by a P-value. The interaction network is provided either
by the application or by the user. If it is included in the application,
it must be possible to link the identifiers of the genes or gene
products whose expression has beenmeasured to the identifiers of
the nodes of the network. In the case where the interaction network

is to be provided by the user, it usually takes the form of a list of
edges, that is, a list in which each line contains a connection
between the identifier of a source node and the identifier of a target
node, possibly associated with a numerical value that may rep-
resent the strength of the interaction or its plausibility. All other
requested parameters are detrimental to usability, whether they
are internal program parameters or information about the desired
results (e.g., number of modules and minimum and maximum
module size).

Program execution
The most pleasant way to execute a program is to be in front of a
graphical interface that allows us to enter the various input data.
However, an execution in the form of commands to be entered on a
command line interface, although less user-friendly, seems quite
accessible. We consider programs that require numerous pre-
processing steps, for example, for data conversion or parameter

Figure 2. Line graph showing the evolution of log2 FC values over the three time points (days 1, 4, and 20) for genes that were identified as differentially expressed.
(A) Evolution of log2 FC values for all genes identified as differentially expressed at day 1. The 11 colored lines correspond to the genes that were also differentially
expressed at day 4 or 20. (B) Evolution of log2 FC values for genes identified as differentially expressed at day 4. The colored lines represent the genes that were also
differentially expressed at any of the other time points. (C) Evolution of log2 FC values for genes identified as differentially expressed at day 20. The blue line illustrates the
log2 FC value of PPO1, which was the only gene that was also overexpressed at day 1. (C, D) Cropped version of the panel shown in (C), which allows better differentiation
among the different colored lines.
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evaluation, to be useable only by computer-literate people and
therefore not suitable for an end user.

Tables 1 and S5 show a summary of the methods emphasizing
their availability and ease of use. Our study reveals that, out of the
25 methods, three are no longer accessible (broken link), one has
problems in the installation procedure (installation failure), one
causes a runtime error, two seem to run but do not return any
results, two of the methods identified by Nguyen et al (2019) are not
suitable for processing transcriptomic data and one does not allow
the analysis of Drosophila data. There is also the case of three
methods, which are available for free but must run in the MATLAB
environment which is a commercial product. This makes a total of
13 non-useable methods which are identified by rows with white
background in Tables 1 and S5. In these tables, eight methods that
are potentially useable but not in an easy way for a non-specialist
are displayed with an orange background. The difficulties come, for
half of the cases, from the running of the applications in a software
environment that has become obsolete: two methods work with
java five which was released in 2004 (Java is currently in version 11)
with a graphical interface based on Swing whose development was
abandoned in 2014; two methods are plugins for Cytoscape two
whose latest version dates from 2012. It might be possible to run
these applications by reinstalling old versions of Java or Cytoscape,
but one can expect to face difficulties in running these programs on
recent software environments. In any case, these applications
cannot be considered easy to use, so they have not been tested in
our review. The four other programs considered as being difficult to
use require the execution of several commands or transformations
on the data which require a fair amount of work. At the end of this
filtering, there are only four methods that an end user can use:
JActiveModules (Ideker et al, 2002), the oldest method that comes as
a plugin for Cytoscape 3, GiGA (Breitling et al, 2004) an application
written in Perl, ClustEx2 (Gu et al, 2010), an application written in C++
and DIAMOnD (Ghiassian et al, 2015), an application written in
Python 2. These last three applications must be run from the
command line, but their invocation is straightforward. It should be
noted that DIAMOnD identifies only one set of genes involved,
unlike other methods that identify several modules. JActiveModules
requires specification of an additional parameter which is the
number of modules to identify. The three other methods require
indicating the maximum size of the modules to be identified.

The commonality between all the existing methods is that their
efficiency is highly dependent on the network topology. For these
methods, two genes or gene products are as likely to be part of the
same functional module as they are close on the interaction
network. This proximity is described by the existence of an inter-
action or a chain of interactions between the two molecules. Un-
fortunately, molecular interaction networks stored in public databases
are known to be noisy and incomplete (Wang et al, 2009). It has also
been shown that PPI networks are “small-world” networks, meaning
that the neighbors of a given node are likely to be neighbors of each
other, and most nodes can be reached from every other node by a
small number of hops.

Over the past few years, network embedding has emerged as a
powerful network analysis approach by generating a highly in-
formative and compact vector representation for each vertex in the
network (Cui et al, 2018). This approach maps nodes into a vector

space in which the distances between nodes accurately reflect their
proximity in the original network. We hypothesize that network
embedding methods can provide the basis for a more reliable
method by estimating distances between nodes that take into
account the entire topology of the graph and that in addition are
little affected by the proportion of missing edges. Based on this
assumption, we have developed AMINE, a new efficient method for
detecting active modules in the vector space generated by an em-
bedding of the interaction network (Pasquier et al, 2021 Preprint).

Identification of active modules

Using the web server at http://amine.i3s.unice.fr to execute the
method AMINE, we proceeded to identify active modules in an
independent manner for each of the three time points. Our method
identified seven activemodules of genes at day 1, 38 activemodules
at day 4 and four active modules at day 20 (Figs 3–5 and Tables
S6–S8).

Drawing the modules identified at the different time points on
the same picture showed few overlapping genes (only five genes,
FBgn0038252/BigH1, FBgn0260653/serp, FBgn0061492/loj, FBgn00
39805/Cpr100A, and FBgn0022770/PeriA, which belong to modules
identified at days 1 and 4) but highlights the fact thatmanymodules
interact between the different time points. Fig 6 depicts a network
that expands from seven to 38 modules from day 1–4 and then
shrinks to the four modules that are still active at 20 d.

Similar to the findings from the differential analysis, the genes
highlighted at each of the three time points were mostly different.
This observation reinforces the hypothesis of successive waves of
gene activation. To highlight interactions between modules at dif-
ferent time points, we used the same data for an exhaustive
search: for each module we determined whether the interactors
of the genes they contain are included in other modules (1-hop
neighbors) or whether they interact with genes in other modules
(2-hop neighbors). Fig 7 shows a visualization of the intermodule
interactions in the form of a network in which each node is a
module and each link represents an interaction between one or
more genes of the corresponding modules. One can thus visu-
alize a cascade of interactions in which most of the modules are
involved.

Enrichment analysis of active modules

The identification of active modules allows us to gain a clearer view
of the studied process. On day 1, we retrieved a group of under-
expressed genes enriched in functions related to cuticle devel-
opment and chitin metabolic processes. The functions were already
identified through a traditional enrichment analysis of differen-
tially expressed genes, but in this study, we focused on a group of 22
genes in comparison to the 335 genes detected as underexpressed
by DESeq2 (Love et al, 2014). We noted that despite its limited size,
this module contains genes that cannot be detected via a standard
differential analysis. FBgn0040582/BomBc3, FBgn0031940/CG7214,
FBgn0032507/CG9377, and FBgn0033869/Cpr50Cb are indeed as-
sociated with FDR ranging from 0.10 to 0.90, which are well above
the commonly used minimum threshold of 0.05.
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Based on data collected by FlyAtlas, FBgn0040582/BomBc3 is
very highly expressed in the adult head, heart, fat body, and carcass.
This gene is also very highly expressed in female spermathecae of
both virgin and mated females (Chintapalli et al, 2007). BomBc3 is
known to control the Toll pathway, which plays a key role in the
innate immune system. FBgn0031940/CG7214 has been implicated
in the immune response (Pal et al, 2008). FBgn0032507/CG9377 is
up-regulated in the brains of Drosophila melanogaster courting
males compared with noncourting males (Ellis & Carney, 2011). All of
these genes are highly expressed in the head fat body. Changes in

expression in the fat body have been highlighted by a previous
study in which the authors demonstrated that matingmodifies fatty
acid metabolism in the male brain (Ellis & Carney, 2010).

Among the other detected active modules, we found onemodule
that contains overexpressed genes involved in the cell cycle and
developmental processes, which are functions that have already
been highlighted by the standard enrichment analysis procedure.
This enrichment is also mostly related to the mitotic cell cycle and
germ cell development and has been implied in metabolic pro-
cesses. The third module was related to protein processing in the

Figure 3. Representation of active modules identified at day 1.
On the networks, the nodes correspond to genes, and the edges correspond to interactions reported in the String database with an evidence score ≥0.7. The number
associated with each module corresponds to the module ID specified in Table S6. Each module is annotated with a representative enrichment. The complete lists of the
enrichments of all the modules are shown in Table S9. The node colors represent the log2 FC values of the corresponding gene on a scale varying from blue (for the most
underexpressed genes) to red (for the most overexpressed genes). The diamond-shaped nodes represent genes that are considered differentially expressed based on
the DESeq2 method.
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endoplasmic reticulum; the fourth module was involved in vitelline
membrane formation; the fifth module was involved in the receptor
signaling process; the sixth module was related to RNA polymerase
II pretranscription events; and the seventh module was related to

COPI-dependent Golgi-to-ER retrograde trafficking (Fig 3 and Table
S9).

At day 4, we retrieved a large module (module 1 of Fig 4) con-
taining overexpressed genes linked to rRNA processing and

Figure 4. Representation of active modules identified at day 4.
On the networks, the nodes correspond to genes, and the edges correspond to interactions reported in the String database with an evidence score ≥0.7. The number
associated with each module corresponds to the module ID specified in Table S7. Each module is annotated with a representative enrichment (when available). The
complete lists of the enrichments of all the modules are shown in Table S10. The node colors represent the log2 FC values of the corresponding gene on a scale varying
from blue (for the most underexpressed genes) to red (for the most overexpressed genes). The diamond-shaped nodes represent genes that are considered
differentially expressed based on the DESeq2 method.
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ribosome biogenesis. We found 37 other active modules enriched in
genes with implied functions investigated in other studies, such as
changes in the immune response (Kapelnikov et al, 2008a, 2008b –
modules 6 and 13), lowering the expression of genes implied in the
perception of smell (Lebreton et al, 2014 – module 14), midgut
development (White et al, 2021 – module 29), and other processes
that have been uncovered (Fig 4 and Table S10). At 20 d, the
transcriptomes of virgin and mated females were quite similar
because only four active modules were highlighted. Among
these modules, we found genes involved in chitin metabolism
that were also identified as being differentially expressed at day
1 (Fig 5 and Table S11). Surprisingly, the bioinformatically
extracted modules were very specific for each considered pe-
riod. Rare overlaps were observed between periods. However,
when all the genes within the different modules at the three
periods were assembled, significant interconnected modules
were found. This finding suggests that a chronological and
temporal order of activation/inhibition occurs after mating and
continues during the female life span. At day 1, numerous early
genes were affected, and the vast majority of these early genes
returned to normal at day 4. These temporal and sequential gene
networks that are manipulated by mating hint at internetwork
regulation: the first wave orchestrates the second wave and so
on down the cascade. Because the analysis was restricted to
head tissue, the predicted genes involved in egg development,
processing food uptake, and general metabolism were not
considered “a priori.” However, the changes in the brain, which
are likely related to changes in behavior, can be seen as con-
siderable at days 1 and 4, although these changes appear to
evaporate at the end of the life span.

Comparison between AMINE, JActiveModules, ClustEx, DIAMOnD,
and GiGA

The different programs were used to analyze the same data set,
namely, the differential expression of genes at day 1. The execution
of AMINE was performed as presented above. JActiveModules was
executed using default parameters. ClustEx2 asks to specify the size
of the largest module. There is a procedure to follow, described in
the documentation, to determine the most appropriate size. Fol-
lowing the instructions, we have specified this size as 100. DIAMOnD
generates a unique and ordered list of themost involved genes. The
program asks for the size of this list which we set to 100. GiGA also
uses the maximummodule size as a parameter. The default value is
20; we have left it unchanged. On this dataset, AMINE finds seven
modules ranging from 4 to 29 genes (Table S6), ClustEx2 finds 86
modules, of which some are very small and not really informative
(Table S12). By keeping only the modules containing more than
three genes, we obtain a list of 30 modules of size 4–100 (the
maximum specified size). JActiveModules finds five modules (the
number of modules specified in parameter) with size ranging from
23 to 228 (Table S13). DIAMOnD outputs an ordered list of 100 genes
(Table S14). GiGA finds 21 modules of which two contain only two
genes (Table S15). By keeping only the modules containing more
than three genes, we obtain a list of 19 modules of size 4–19 (just
below the specified maximum size).

The first thing we notice about jActiveModules is that although
the method is able to identify several modules, they are very
overlapping. Modules 1–3 contain a very similar group of genes. The
content of modules 4 and 5 is more different, but mainly because
these modules are larger. An Euler diagram displaying the five

Figure 5. Representation of active modules
identified at day 20.
On the networks, the nodes correspond to genes, and
the edges correspond to interactions reported in the
String database with an evidence score ≥0.7. The
number associated with each module corresponds to
the module ID specified in Table S8. Each module is
annotated with a representative enrichment. The
complete lists of the enrichments of all the modules
are shown in Table S11. The node colors represent the
log2 FC values of the corresponding gene on a scale
varying from blue (for the most underexpressed
genes) to red (for the most overexpressed genes). The
diamond-shaped nodes represent genes that are
considered differentially expressed based on the
DESeq2 method.
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Figure 6. Union of the active modules identified at each time point.
The network combines the active modules identified at days 1 (in blue), 4 (in red), and 20 (in green). The module numbers correspond to those specified in Figs 3–5.
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modules found by JActiveModules is shown in Fig S1. The GO en-
richment with biological process terms corresponding to the genes
within the identified modules are presented in Table S16. Not
surprisingly, the first three modules identified by JActiveModules
correspond to the same function which is “chitin-based cuticle
development.” The two othermodules correspond to “carbohydrate
metabolic process.” The 100 genes highlighted by DIAMOnD cor-
respond to the very generic function “cell cycle.” By selecting only
the first genes appearing in the list, we obtain more specific
functions: “cell cycle process” for the top 50 genes and “mitotic cell
cycle process” for the top 25 genes. ClustEx2 and GiGA, like AMINE,
generate non-overlapping genemodules. AMINE, ClustEx2, and GiGA

identify a different number of modules but it is difficult to decide
which is better for the user. We can gain an idea of the relevance of
the modules by looking at which ones are significantly enriched in
terms from GO biological process. Among the seven modules
identified by AMINE, six are enriched with GO Biological Process
with a FDR of less than 0.05 (which accounts for 85% of the total). It
is also the case for 15 of the 30 modules identified by ClustEx2 (50%
of the total) and 9 of the 19 modules identified by GiGA (47%). These
ratios are not proof in themselves, but the fact that the identified
modules correspond to known processes is rather a sign that
coherent and functional modules have been identified. If we adopt
a more global view by looking at the high-level GO terms, we obtain,

Figure 7. Interactions between modules at different time points.
Visualization of the intermodule interactions in the form of a network in which each node is a module and each link represents an interaction between one or more
genes of the corresponding modules. The modules are labeled with the time point followed by the number of modules. Thus, the module name “d4_m1” refers to module
number 1 identified at day 4.
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Figure 8. Workflow of the AMINE method.
(A) Input data are composed of a table storing the significance of the expression variation of genes between two conditions and a network representing known gene
interactions. Gene variations must be provided by the user, whereas data concerning gene interactions are included in the application. (B) Data about gene interactions
and gene variations are merged to generate an attributed gene network. (C) Nodes belonging to the attributed gene network are mapped to a low-dimensional space
through the use of a biased Node2Vec method. (D) Sets of genes that are both cohesive and differentially expressed are identified in the embedded space by
maximizing both the scores of the nodes and the cosine distance between the vectors representing the nodes. (E) Each gene from the gene network is associated with the
cluster that maximizes the z-score. (F) Redundancy in the content of modules is ruled out by combining sets of nodes obtained in the previous step while ensuring that the
result remains spatially cohesive.

Nonoverlapping gene networks regulated by mating Pasquier et al. https://doi.org/10.26508/lsa.202101119 vol 5 | no 2 | e202101119 11 of 19

https://doi.org/10.26508/lsa.202101119


for AMINE, modules corresponding to “cuticle development,” “cell
cycle,” “transport,” “reproduction,” and “signaling.” For clustex2, 8 of
the 15 modules found are associated with these same annotations
except for “cell cycle,” for JActiveModules, three modules are as-
sociated with “cuticle development.” The set of genes highlighted
by DIAMOnD are associated with “cell cycle” and GiGA reports
modules associated with three annotations found by AMINE, 1 by
ClustEx2, and 1 by DIAMOnD. In addition to the six main biological
processes highlighted by AMINE, ClustEx2 identifies modules

corresponding to “cell organisation,” “cellular metabolic process,”
and “cell differentiation.” The two large modules identified by
JActiveModules correspond to “carbohydrate metabolic process”
and GiGA finds modules associated with: “cellular metabolic pro-
cess,” “small molecule metabolic process,” “response to radiation,”
and “system development.” Overall, all processes revealed by
amine are shared with at least one other method. Two other an-
notations were identified only by ClustEx2, one only by JActive-
Modules and three only by GiGA (Fig S2). If we look at the set of

Table 1. Computational tools for active module identification.

name Year Reference Type Note

JActiveModules 2002 Ideker et al (2002) Cytoscape plugin OK

GiGA 2004 Breitling et al (2004) cmd OK

SAMBA 2004 Tanay et al (2004) gui/cmd Execution error

GXNA 2007 Nacu et al (2007) cmd Broken link

MATISSE 2007 Ulitsky and Shamir (2007) gui Difficult to usea

PinnacleZ 2007 Chuang et al (2007) Cytoscape plugin Difficult to useb

CEZANNE 2009 Ulitsky and Shamir (2009) gui Difficult to usea

BioNet 2010 Beisser et al (2010) cmd Difficult to usec

RegMOD 2010 Qiu et al (2010) cmd Not free to used

ClustEx2 2010 Gu et al (2010) cmd OK

RME 2011 Miller et al (2011) cmd Not for transcriptomics datae

COSINE 2011 Ma et al (2011) cmd Difficult to usef,g

EnrichNet 2012 Glaab et al (2012) cmd Unable to run on drosophila data

MEMo 2012 Ciriello et al (2012) cmd Difficult to useh

BMRF-net 2013 Chen et al (2013) Cytoscape plugin Difficult to useb

Walktrap-gm 2013 Petrochilos et al (2013) cmd Installation failure

TimeXNet 2014 Patil and Nakai (2014) web/gui/cmd No resultsi

WMAXC 2014 Amgalan and Lee (2014) cmd Broken link

DIAMOnD 2015 Ghiassian et al (2015) cmd OKg

Hotnet2 2015 Leiserson et al (2015) cmd Difficult to usej

GLADIATOR 2017 Silberberg et al (2017) cmd Not for transcriptomics datak

MOEA 2017 Chen et al (2017) cmd Not free to used

MRF 2017 Robinson et al (2017) cmd Not free to used

ModuleDiscoverer 2018 Vlaic et al (2018) cmd Broken link

ResponseNet 2019 Basha et al (2019) web No resultsi

AMINE 2021 Pasquier et al (2021) Preprint web OK
aProgram written in Java 5 with a graphical interface based on Swing whose development was abandoned when Java 8 appeared in 2014.
bNot available for Cytoscape 3.
cRequire to execute a dozen of lines to process the example data included with the program.
dNeed MATLAB which is not free.
eThe method identifies patterns of recurrent genomic aberration in tumor samples.
fRequires to execute multiple commands in R language, in particular it is necessary to compute a matrix containing the differential correlation between each
pair of connected nodes on the network.
gIdentifies only one module.
hThe documentation contains the following warning: Generating the files needed by the programmay require a fair amount of work, as several of them are the
results of other algorithms.
iThe program ran for several hours without providing any results.
jRequires to execute multiples commands ; the script used to analyze data of the associated paper is 68 lines long.
kThe aim of the program is to identify relationship between diseases modules ; user need to suply known genes associated with diseases.
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genes considered, by each of the methods, as being important in
the process studied, we notice that there is no gene in common
between the five methods and that a significant proportion of
genes is only found by only one method (Fig S3A). However, this
proportion of genes only identified by onemethod differs; it is 32%
for amine, 36% for GiGA, 62% for JActiveModules, 69% for ClustEx2,
and 86% for DIAMOnD. Overall, we note that the AMINE method
identifies the fewest genes but has the most genes found in
common with each of the other methods. If we compare with the
genes identified by differential expression analysis using a P-
value less than 0.05 and a log2FC greater than 0.32 or less than
−0.32, we find that most of the genes with significant variation are
not highlighted by either of the module detection methods.
Conversely, 443 genes are only identified by module detection
methods (Fig S3B). This means that all the reviewed module
detection methods have the ability to pinpoint genes that may
have an influence on the studied process but whose expression
variations are very small (a log2FC of 0.32 corresponds to a var-
iation of ±25%).

The Biological Process “chitin-based cuticle development” is an
important process occurring at day 1. This annotation has been
highlighted both by differential gene analysis and by four out of five
module detection methods. AMINE found a cluster of 22 genes
implied in this process, ClustEx2 highlighted a cluster of 100 genes,
JActiveModules detected three overlapping modules representing a
total of 37 genes, and GiGA found a cluster of 19 genes. Fig S4A
shows the overlap between the modules associated with “chitin-
based cuticle development” for the four different methods. Dif-
ferential expression analysis reveals 625 genes with a log2FC greater
than 0.32 or less than −0.32. Of these 625 genes, 63 (representing
10%) were also identified by one or more of the module detection
methods. However, even when using a log2FC threshold as low as
0.32, 45 genes were only revealed using module detection methods.
This again emphasizes that searching for groups of genes working
together can pick out important genes that move very little during
the experiment. The overlap between differentially expressed
genes and modules associated with “chitin-based cuticle devel-
opment” for AMINE, ClustEx2, JActiveModules, and GiGA is shown in
Fig S4B. This illustrates that only using methods that combine both
the differential expression of genes and their interactions can
relate the process under study to particular genes that vary only
slightly.

This comparative analysis on a real-world dataset highlights the
advantages of AMINE over the few other easy-to-use methods. First
of all, it does not require installation because it can be run via a web
interface. It does not require any special formatting of the input
data because it is sufficient to provide tabulated or Excel files
generated by differential analysis pipelines. The use of AMINE is
particularly simple because no parameters are required, unlike the
other four tested methods which requires either the number of
modules to search or the maximum size of the modules. In terms of
results, they are rather more concise than the other methods
because the modules are less numerous or contain fewer genes.
This conciseness allows biologists to focus on a smaller number of
genes that appear to be highly relevant to the process being
studied because a large proportion of them are also identified by
other methods.

Discussion

Changes in gene expression in the female head appear unique at
different time scales after mating that fills spermathecae with
sperm and other molecules in the seminal fluid. These changes
appear to be a continued developmental program occurring in
adulthood. The Drosophila female phenotypic plasticity after
mating is remarkable, as stimuli released and/or contained in
sperm might orchestrate a programmatic outcome that underlies
the transcriptomic temporal changes in mated female flies.
Changes in the behavior of mated versus virgin female flies could
be seen as an extension of phenotypic plasticity, and from this
point of view, caste distribution in eusocial insects could be
considered as the most spectacular and achieved modality. Sperm
acquisition, as any environmental change that faces the Drosophila
female, can alter some physiological functions and behavior over
short and long time scales. Our analysis unraveled the tran-
scriptomic modifications in the Drosophila model through which
the genome shapes diverse physiological functions in relation to
metabolism needed for fertilized egg laying. Unrelated to the ge-
netic coding of spermatozoids, the effect of male seminal fluid
proteins on the post-mating physiology and behavior of females
has been documented in the past. The implicated molecules likely
include peptides, proteins, small molecules, and RNAs that act to
promote profound behavioral changes regarding oviposition
choices, changes in feeding behavior and mating refractoriness in
females (McGraw et al, 2004, 2008).

Mating-induced transcriptome changes in females have been
also reported in diverse tissues or the entire body of many insects,
including D. melanogaster (Lawniczak & Begun, 2004; McGraw et al,
2004, 2008; Innocenti & Morrow, 2009; Short & Lazzaro, 2013), Apis
mellifera (Kocher et al, 2008), Ceratitis capitate (Gomulski et al,
2012), and Anopheles gambiae (Rogers et al, 2008). To this regard,
the transcriptomic changes in the oviduct of D. melanogaster and
Aedes aegypti have been extensively studied (Kapelnikov et al,
2008a, 2008b; Alfonso-Parra et al, 2016). The kinetics of the
published RNA-Seq lists show that in these later species, few
genes are affected after a few hours of copulation, whereas
maximal gene expression changes are observed at 6 h (Heifetz et al,
2001, 2014; Heifetz & Wolfner, 2004; Carmel et al, 2016). In honeybee,
the mating process induce marked changes in the expression of
genes related to vision, chemoreception, metabolism, and immu-
nity (Fahrbach et al, 1995; Richard et al, 2007; Kocher et al, 2009). In
contrast, reverting the transcriptome from mated females back to
virgin females has not been observed in honeybee species in which
distinct phenotypes emerge from the same genotype, giving caste
attributes to individuals (Page & Peng, 2001). The gene expression
levels in the full-scale genome of eusocial insects like honeybees
and aunts has provided the evidence for the irreversible pro-
grammatic changes associated with mating in mated versus the
virgin queen. (Whitfield et al, 2003; Grozinger et al, 2007; Simola et al,
2016). The transcriptomic changes map known behavioral and
physiological traits that characterize the transition from a virgin
queen to a newly mated queen. If most queens start laying eggs
after one mating flight, others will engage in multiple mating flights
with a new set of multiple males at each time, which enrich the
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seminal male compounds in relation to their genetic background
(Woyke, 1964; Tarpy & Page, 2000). More interestingly, virgin queens
are photophilic (Kocher et al, 2010) and aggressive towards other
virgin queens (Manfredini et al, 2015). In contrast, mated queens are
photophobic, lack aggressiveness, andmove protected by clustered
workers (Kocher et al, 2010; Manfredini et al, 2015). In social Hy-
menoptera (ants, some bees, and wasps), mated queens that
present extended lifespans compared with nonreproductive
workers or virgin queen show the same physiological and be-
havioral changes, which triggers a nest-bound egg-laying status
(Page & Peng, 2001; Heinze & Schrempf, 2008; Castella et al, 2009;
Simola et al, 2016). However, for most of insect species for which this
phenomenon has been reported, the molecular mechanisms re-
main unelucidated because of the lack of powerful genetic tools for
silencing genes.

In contrast, significant advances have been obtained with the
Drosophila model for which the seminal fluid protein sex peptide
(SP) was found to activate an identified receptor in female fly, which
constitutes one rare known pathway in insect world (Yapici et al,
2008). Defects in this seminal fluid signaling process are hy-
pothesized to provoke reproductive disorders in females, which
eventually results in reduced offspring output or unhealthy off-
spring or, in an ultimate scenario, a reproductive barrier that might
guide or lead to speciation (Delbare et al, 2017). Among the other
known molecules in Drosophila, the seminal fluid proteins (Acps)
produced by male accessory glands were found partly responsible
for the post-mating transcriptomic changes (Kubli, 2003; Swanson,
2003; McGraw et al, 2004; Peng et al, 2005; Isaac et al, 2010). More
than 100 potential Acps have been identified in male Drosophila
sperm as potential candidates to induce changes in tissue specific
transcriptome and a lack of one of them, SP (Acp70A), in seminal
fluid is correlated with a reduced number of laid eggs (Kubli, 2003;
Swanson, 2003), which triggers female remating (Chapman et al,
1996, 2003; Liu & Kubli, 2003) and lowers female food uptake
(Carvalho et al, 2006). The same way, Acp29AB and Acp62F were
found responsible for a large panel of modified genes in mated
female (McGraw et al, 2004).

Although modified gene expression is expected to refer to egg
formation and is observed in ovaries and reproductive tracts, re-
searchers have noted that marked transcriptional changes occur in
the brain, fat body, or other tissues (McGraw et al, 2008; Mack, et al,
2006; Kapelnikov et al, 2008a, 2008b; Prokupek et al, 2009). Data
obtained using microarray techniques have revealed a transcrip-
tional response to mating with a peak of intensity after 3 h and a
sharp decline at later time points (McGraw et al, 2008). Other re-
searchers using the same technology have confirmed a peak at 6 h
with changes that involve more than 500 genes (Mack, et al, 2006;
Kapelnikov et al, 2008a, 2008b; Prokupek et al, 2009). Genetic
manipulation that causes defects in ejaculation have allowed to
identify molecules involved in post-mating modifications and the
role of individual seminal factors for each specific female physi-
ological trait (Chapman et al, 2003, 1996; Liu & Kubli, 2003; Wigby &
Chapman, 2005; Wigby et al, 2011).

A comprehensive review outlines the seminal proteins that have
been identified in many insect species for which the physiological
functions in relation with female post-mating responses remain
elusive (Avila et al, 2011). However, to disentangle the roles of

spermatozoid component, the seminal Acps and other active
molecules in seminal fluid will be a very challenging task formost of
insect species.

In Drosophila, integrative signalingmolecules present in seminal
fluid coordinate global homeostasis and physiology involving the
female nervous system, fat body, endocrine cells, gut/microbiome,
and reproductive tissues. The role of seminal fluid as a contributor
to the fine regulation in a continuum with the action of the couple
juvenile hormone/ecdysone in young adult females has been in-
vestigated in the past on the basis of genetic screen of mutants
(Toivonen & Partridge, 2009; Rajan & Perrimon, 2011; Droujinine &
Perrimon, 2013, 2016).

In this report, we have restrained our analysis to female brain
transcriptional modification induced by mating. We found that only
two post-mating time periods presented considerable scale
changes at 1 d (625 genes), which declined at 4 d (82 genes) to end at
20 d, when only a few genes showed lasting expression changes.
Amazingly, most of the identified genes showing modified ex-
pression at each stage were unique with little, if any, overlap with
those identified at other stages. This finding argues in favor of time-
specific activation/inhibition of gene expression organized by the
recruitment of successive waves of interconnected genes that
occurs after mating. Obviously, the first cascade of changes induces
specific changes in the second cascade, and so on up to the end of the
process. Themost striking fact is that each wave presents a unique set
of implicated genes. Unfortunately, it is difficult to characterize these
interaction cascades more precisely given the data used in the study.
Indeed, we only have data obtained at 1, 4, and 20 d, butmany changes,
including the activation of other gene modules that cannot be de-
tected, can occur between these time points.

It is clear that signaling molecules in seminal liquid and/or
within spermatozoid cells act at distance through unknown pro-
cesses, such as the hemolymph transport of soluble compounds or
microvesicles traveling with RNA and lipids, to regulate egg pro-
duction, homeostasis, and behavior. Many reports in the literature
have described the molecular transport between tissues as inter-
tissue dialogue, which attributes credibility to the present scenarios
(Rajan & Perrimon, 2011; Droujinine & Perrimon, 2013, 2016). In this
regard, this field of investigation has achieved solid advances in
mammals where extracellular vesicles containing RNA molecules
have been shown to be transported through the blood–brain barrier,
which results in the delivery of functional RNAs to brain neurons, the
origin of these RNAs being far remote, mainly located in peripheral
tissues such as the genital tractus (Rassoulzadegan et al, 2006; Gapp
et al, 2014; Skinner et al, 2015; Chen et al, 2016a, 2016b).

Recent findings have proven that RNAs are capable of conferring
information regarding interphase environment/germline interac-
tions to guide, to some extent, the destiny of offspring through
modification of developmental processes (Rassoulzadegan et al,
2006; Gapp et al, 2014; Skinner et al, 2015; Chen et al, 2016a, 2016b).
Recently, robust experimental data have documented a direct
causal role of sperm RNAs in transferring deleterious phenotypic
traits across generations in mammals, which adds a new paradigm
to an already well documented heredity driven by chromosomal
DNA mutation insertions/deletions that generate allele catalogs
(Rassoulzadegan et al, 2006; Gapp et al, 2014; Skinner et al, 2015;
Chen et al, 2016a, 2016b). These studies in mammals might suggest
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that similar scenario might occur in insects like Drosophila where
seminal compounds including RNAs could manipulate the pheno-
types of offspring in parallel with their action onmated female brain.
If “memorized” sperm RNA or other molecules turn to be epigenetic
markers, wemight hypothesize that the femaleDrosophila responses
to sperm signals could be co-substantial to phenotypic changes in
some offspring traits in a non-Mendelian manner as a response to
life history and environmental cues experienced by parents.

Understanding how mating during Drosophila reproduction
triggers a developmental program extension in the female life span
constitutes conceptual and experimental challenges to understand
the insect reproduction biology.

Materials and Methods

Mating protocol and fly maintenance

Flies were raised at 25° under 16:8 h light–dark cycle and kept in
bottles with standard cornmeal food media. For the mating pro-
tocol, the emerged flies were collected on short period of time (1 h)
immediately after eclosion. Males and females at 1:1 ratio were left
for 24 h together in fresh bottles of food to achieve 100% mating.
Females were then removed and placed in fresh bottle for 1, 4, and
20 d. Fly heads were isolated and anesthetized by C02 and flash
frozen in liquid nitrogen for 1 min. Male and female were separated.
The frozen heads were cut off with a dissecting forceps. A group of
100 flies were processed for each determination. The biological
material were stored at −80°C until the RNA was purified. See Brown
et al (2014) and Graveley et al (2011) for more details.

Differential expression analysis

Data of gene expression in the head of both virgin and mated
Drosophila females made available by the modENCODE project
were downloaded as FASTQ files from the Sequence Read Archive
with the accession ID: PRJNA75285. For the RNA isolation, Illumina
RNA-Seq library construction and sequencing, Read mapping and
filtering, Differential Gene Expression Analysis, and Statistical
methods are developed in supplemental information of the two
related canonical articles (Graveley et al, 2011; Brown et al, 2014).
The data contain the results from RNA-Seq experiments performed
at three different time points: 1, 4, and 20 d. Details of these datasets
are presented in Table S17.

The transcript abundance was quantified with Salmon (Patro et
al, 2017), and the differential gene expression at each time point
was calculated using DESeq2. Genes were considered differentially
expressed if they showed a variation of at least a factor of 1.25 (i.e., a
log2-fold change greater than 0.32 or less than −0.32) associated
with an adjusted P-value of at most 0.05.

Enrichment analysis of differentially expressed genes

Functional enrichments for Gene Ontology terms, KEGG and
Reactome Pathways, protein domains and UniProt Keywords were
retrieved using Cytoscape (Shannon et al, 2003) and the StringApp

plugin (Doncheva et al, 2018). The annotations identified with an
FDR of less than 0.05 are listed in Table S4.

Identification of active modules

The search for active modules has been performed with AMINE
(Pasquier et al, 2021 Preprint). The AMINE method was designed to
identify the modules of genes that are triggered in a biological
experiment. It uses as input the background knowledge on the
interactions between genes and measurements representing, in
the specific context of a given experiment, indicators of the in-
volvement of genes in the studied process. Gene interactions data
are retrieved from the String database (Szklarczyk et al, 2017) with a
combined evidence score ≥0.7 and included in the application.
Measurements on the activity of genes must be supplied by the
user. They are represented by the P-value, adjusted P-values, or
FDR associated with the fold changes of the genes. At a minimum,
the data are composed of a tabular file consisting of two columns:
one containing the name of the gene and the other, the associated
P-value. A more convenient way to specify the data to be used is to
simply input the result file produced by differential expression
analysis methods such as DeSeq2 or EdgeR (Robinson et al, 2010).
The input file can be in csv (comma-separated values) or xlsx
format (Fig 8A).

The interaction data are merged with gene associated P-values
to generate an attributed gene network in which vertices represent
genes, edges represent interactions between genes, and each
vertex is annotated with a numeric attribute reflecting its associ-
ated P-value (Fig 8B).

The method relies on Node2vec (Grover & Leskovec, 2016) to
generate a highly informative and compact vector representation for
each vertex in the network. This transformation is called network
embedding (Fig 8C). In the resulting vector space, the cosine distance
between the vectors representing the nodes accurately reflect their
proximity in the original network. AMINE, then, uses a greedy approach
to build, from each vertex, groups of vertices of increasing size based
on the aggregation of the closest vertices; the closeness being cal-
culatedwith the cosine distance of the vertices' encoding vectors. Each
group of vertices is then evaluated using Stouffer’s Zmethod (Ideker et
al, 2002). To do this, we first transform the P-value associatedwith each
vertex into a z-score. The z-score z(vi) corresponding to the vertex vi
associated with the P-value pi, is calculated with z(vi) = Φ−1(1 − pi),
where Φ is the standard normal cumulative distribution function. Let
lov(vi) be the list of vertices in the network sorted by their cosine
distance from vi (closest vertices fist, which implies that v0 = vi), the
aggregate z-score z(vi, k) for a set of nodes composed of the k closest
vertices of vi in the vector space is computed with:

zðvi; kÞ = 1
ffiffiffiffiffiffiffiffiffiffi

k + 1
p �

j < k+1

j = 0
zðlovðviÞ½j�Þ

We get the best cluster associated to each vertex by selecting k
such that it allows us to obtain the best z-score (Fig 8D and E).

The last phase of the method consists in combining the different
clusters while ensuring that new merged clusters remain spatially
cohesive (Fig 8F). We say that two clusters Mi and Mj are spatially
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cohesive whenMi\Mj ≠∅. Starting from themodule with the higher
z-score, the process consists in evaluating all possible clusters
formed by Mi [ }(Mj/j≠i) using the z-score, with }(Mi) denoting the
powerset of Mi and keeping the modules with the highest z-score.
The workflow of the AMINE method is presented in Fig 8.

The details of the method and the demonstration of its effec-
tiveness are described in an article by Pasquier et al (2021) Preprint.
The great advantage of AMINE is that it does not require any
settings; it is not even necessary to indicate the number of modules
to be identified or the size of the modules.

Data access

The transcriptomic datasets were retrieved from the Sequence
Read Archive: https://www.ncbi.nlm.nih.gov/sra with accession
numbers SRR070436, SRR070437, SRR100281, SRR070430, SRR100278,
SRR100282, SRR070388, SRR070419, SRR100275, SRR070434, SRR070435,
SRR100279, SRR070414, SRR070415, SRR111882, SRR070420, SRR116383,
and SRR100274.
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Supplementary Information is available at https://doi.org/10.26508/lsa.202101119.
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