
HAL Id: hal-03556306
https://hal.science/hal-03556306

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic Identifiers and DNS Names for IoT
Simon Fernandez, Michele Amoretti, Fabrizio Restori, Maciej Korczynski,

Andrzej Duda

To cite this version:
Simon Fernandez, Michele Amoretti, Fabrizio Restori, Maciej Korczynski, Andrzej Duda. Semantic
Identifiers and DNS Names for IoT. 2021 International Conference on Computer Communications and
Networks (ICCCN), IEEE, Jul 2021, Athens, Greece. pp.1-9, �10.1109/ICCCN52240.2021.9522285�.
�hal-03556306�

https://hal.science/hal-03556306
https://hal.archives-ouvertes.fr

Semantic Identifiers and DNS Names for IoT
Simon Fernandez∗, Michele Amoretti¶, Fabrizio Restori¶, Maciej Korczyński∗, Andrzej Duda∗

∗Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
¶Department of Engineering and Architecture, University of Parma, Italy

Abstract—In this paper, we propose a scheme for representing
semantic metadata of IoT devices in compact identifiers and DNS
names to enable simple discovery and search with standard DNS
servers. Our scheme defines a binary identifier as a sequence of
bits: a Context to use and several bits of fields corresponding
to semantic properties specific to the Context. The bit string
is then encoded as base32 characters and registered in DNS.
Furthermore, we use the compact semantic DNS names to offer
support for search and discovery. We propose to take advantage
of the DNS system as the basic functionality for querying and
discovery of semantic properties related to IoT devices.

We have defined three specific Contexts for hierarchical
semantic properties as well as logical and geographical locations.
For this last part, we have developed two prototypes for managing
geo-identifiers in LoRa networks, one based on Node and the
Redis in-memory database, the other one based on the CoreDNS
server.

Index Terms—Internet of Things, Semantic identifiers and
names, DNS, W3C Thing Description, LoRa, Geohashes

I. INTRODUCTION

Many IoT applications require the knowledge about the
various properties of IoT devices that provide some data about
the physical world and can act upon the environment. The
properties may for instance include the information on:

• type and unit of data, (e.g., temperature in °C),
• resolution, frequency of data (e.g., 512×512 pixels every

hour),
• possible actions performed by the device (e.g., switch on),
• raised alarms (e.g., overheating),
• geographic location of the device (e.g., (+28.61,−80.61)

WGS84/GPS coordinates),
• logical location of the device (e.g., Room 235 on Floor

14).

Several initiatives aimed at expressing and structuring
this kind of IoT and M2M metadata: Sensor Markup Lan-
guage (SenML) [1], IPSO Alliance Framework [2], and
oneM2M Base ontology [3]. The World Wide Web Consortium
(W3C) schemes for the semantic Web such as RDF,1 OWL,2

SPARQL3 also allow understanding and discovery of IoT
data. For expressing specific IoT semantics, W3C proposed
a Semantic Sensor Network (SSN) ontology4 that allows the
description of sensors and their characteristics addressing the
issue of interoperability of metadata annotations.

1http://www.w3.org/RDF
2http://www.w3.org/TR/owl-ref
3http://www.w3.org/TR/sparql11-query/
4https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

The Web of Things initiative of W3C5 aims at unifying IoT
with digital twins for sensors, actuators, and information ser-
vices exposed to applications as local objects with properties,
actions, and events. W3C Thing Description (TD)6 expressed
in JSON-LD7 covers the behavior, interaction affordances, data
schema, security configuration, and protocol bindings.

Thing Description allows for attaching rich semantic meta-
data to IoT devices, however, this format is oriented towards
processing by non-constrained applications running for ex-
ample in the Cloud or in the Edge to become the base for
sophisticated discovery and search services offered on Web
servers for IoT users and applications. However, we can
notice that discovery and search based on semantic metadata
also happens in constrained IoT environments—an IoT device
needs to discover other devices and choose the right one for
further communication or collaboration. In this case, semantic
metadata of IoT devices need to be encoded in a highly
compact way to reduce the overhead in usually bandwidth
limited networks.

In this paper, we propose a scheme for representing se-
mantic metadata of IoT devices in compact identifiers or
names to enable simple discovery and search with standard
DNS servers. The idea of the scheme is inspired by the
Static Context Header Compression (SCHC)8 approach to IP
header compression. In SCHC, two devices that exchange IP
packets compress headers based on pre-established contexts.
Instead of a full header, a device inserts the information about
the context to use and some short information required to
reconstruct the header. In this way, a 40 byte IPv6 header can
be compressed down to just a few bytes. Our scheme defines a
binary identifier as a sequence of bits composed of a Context
to use and several fields corresponding to semantic properties
specific to the Context. The bit string is then encoded as
base32 characters and registered in DNS. Thus, the DNS
name encodes in a compact form the semantic metadata of
an IoT device.

We define several Contexts of identifiers expressing differ-
ent semantic metadata to fit the most popular device charac-
teristics (other can also be defined):

1) hierarchical semantic properties,
2) logical location of the device,
3) geographic location of the device.

5https://www.w3.org/WoT
6https://www.w3.org/TR/wot-thing-description
7https://www.w3.org/TR/json-ld
8https://tools.ietf.org/html/rfc8724

ar
X

iv
:2

11
0.

11
76

6v
1

 [
cs

.N
I]

 2
2

O
ct

 2
02

1

http://www.w3.org/RDF
http://www.w3.org/TR/owl-ref
http://www.w3.org/TR/sparql11-query/
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
https://www.w3.org/WoT
https://www.w3.org/TR/wot-thing-description
https://www.w3.org/TR/json-ld
https://tools.ietf.org/html/rfc8724

The first one corresponds to the structured representation of
the attributes of Thing Description and two others cover the
geographical information about an IoT device. We instantiate
the scheme for encoding geographic location in case of LoRa
networks and show how to construct a 64 bit geo-identifier of
LoRa devices.

Furthermore, we use the compact semantic DNS names to
offer support for search and discovery. In constrained envi-
ronments, providing full-fledged database search functionality
may be difficult. Instead, we propose to take advantage of
the DNS system as the basic functionality for querying and
discovering the semantic properties related to IoT devices. Our
encoding scheme of semantic metadata structures the DNS
names similarly to IP prefixes: a longer prefix represents more
specific information and shortening a prefix corresponds to
more general information, thus allowing for some range or
extended topic queries. For instance, if the name represents
a geographical location, a longer name represents a smaller
area and a shorter name corresponds to a larger zone that
encompasses the smaller area designated by the longer name.
Finally, we describe two prototypes supporting DNS queries
on geo-identifiers.

Querying DNS based on semantic names can bring in-
teresting features to many IoT applications: finding devices
corresponding to a given property, placement on a map of all
sensors belonging to a given application, sending commands to
the devices in a chosen region, or gathering data from chosen
devices based on their geographical location.

The paper makes the following contributions:
1) we define a scheme based on Contexts for compact

encoding of different types of metadata in DNS names,
2) we take advantage of geohashes to instantiate the scheme

for encoding geographic location,
3) we propose a means for simple and minimal discovery of

IoT devices and searching for their characteristics based
on standard DNS functions,

4) we explore an idea of using DNS to store and publish
IoT data,

5) we validate the proposed schemes with preliminary
prototypes supporting DNS queries on geo-identifiers.

II. RELATED WORK

We briefly review previous work related to expressing
semantic properties of IoT devices and compact encoding of
geographical location.

A. Semantic Properties of IoT Devices

As mentioned in the introduction, several initiatives con-
sidered the problem of expressing metadata of IoT de-
vices and M2M communications: Sensor Markup Language
(SenML) [1], IPSO Alliance Framework [2], and oneM2M
Base ontology [3]. Kovacs et al. proposed a system architec-
ture for achieving worldwide semantic interoperability with
oneM2M [4]. The Semantic Sensor Network (SSN) ontology
allows the description of sensors and their characteristics [5].

TABLE I
LONGITUDINAL DECIMAL DEGREE PRECISION

of figures # of bits Equator 45◦N/S

3 9 111.3200 km 78.710 km
4 12 11.1320 km 7.871 km
5 16 1.1132 km 787.100 m
6 19 111.3200 m 78.710 m
7 22 11.1320 m 7.871 m
8 26 1.1132 m 787.100 mm

An important initiative of W3C aimed at creating the
semantic Web of Things [6] to enable unambiguous exchange
of IoT data with shared meaning. Novo and Di Francesco [7]
discussed solutions that extend the Web of Things architecture
to achieve a higher level of semantic interoperability for the
Internet of Things. Nevertheless, many proposed approaches
do not address the constraints of IoT devices that do not
match the size and the form of semantic descriptions usually
developed in the traditional W3C setting. For instance, Novo
and Di Francesco [7] reported performance results coming
from a testbed composed of two computers connected to an
802.11 network.

We proposed DINAS [8], a scheme based on Bloom filters
for creating compact names from node descriptions and a
service discovery protocol for short-range IoT networks run-
ning RPL. Other work emphasizes the importance of DNS for
IoT [9].

B. WGS84 aka GPS

WGS84 is a common format for encoding geographical
coordinates used in GPS, composed of two numbers in degrees
of the form ddd.ddddddd, where d stands for a degree digit.
Degrees are expressed as numbers between −180 and +180
for longitude, and a number between −90 and +90 for latitude
(locations to the west and to the south are negative), e.g.,
(+28.61,−80.61) corresponds to the location of the Cape
Canaveral Space Center.

Expressing a given geographical location is always done
with a given precision, and when decoding a position, all
methods return the center of the square representing all
possible positions. For example, if we decode (28◦N, 80◦W),
we know the position is in the square between (28◦N, 80◦W)
and (29◦N, 81◦W), and we will return (28.5◦N, 80.5◦W) to
minimize the error.

Table I represents the longitudinal resolution at the equator
and at a latitude of 45◦N/S with an increasing number of
decimal figures and the corresponding number of bits to
represent them. The idea is to relate the size of a region to
the number of bits used for representing a given geographical
coordinate and thus relate the size of a region to the size of an
identifier. We can observe that 8 decimal figures encoded on
26 bits are sufficient to represent the location at the precision
of around 1 m.

TABLE II
COMBINING LATITUDE AND LONGITUDE ENCODED IN A UNIQUE BINARY

VALUE

Long. 0.1.1.1.1.1.0.0.0.0.0.0.0
Lat. .1.0.1.1.1.1.0.0.1.0.0.1.

Result 0110111111110000010000010

TABLE III
LONGITUDINAL DECIMAL DEGREE PRECISION AND THE SIZE OF A

GEOHASH

length lat
bits

lng
bits

lat error lng error error

1 2 3 ± 23° ± 23° ± 2500 km
2 5 5 ± 2.8° ± 5.6° ± 630 km
3 7 8 ± 0.70° ± 0.70° ± 78 km
4 10 10 ± 0.087° ± 0.18° ± 20 km
5 12 13 ± 0.022° ± 0.022° ± 2.4 km
6 15 15 ± 0.0027° ± 0.0055° ± 610 m
7 17 18 ± 0.00068° ± 0.00068° ± 76 m
8 20 20 ± 0.000085° ± 0.00017° ± 19 m
9 22 23
10 25 25 ± 59 cm
11 27 28
12 30 30 ± 1.84 cm

C. Geoprefixes, Geohashes, Plus Codes

In previous work, we defined the notion of a geoprefix for
IPv6 networks [10]: the location of each device is encoded in
its IPv6 multicast address and an application can send a packet
to all devices corresponding to a given prefix representing a
geographic area (a geocast).

Niemeyer [11] proposed geohash, an encoding of WGS84
coordinates based on Morton codes [12] that computes a 1-
dimensional value from the 2-dimensional GPS coordinates by
interleaving the binary representations of the coordinates and
further represented as ASCII characters.

In this method, to encode a given location, we proceed by
a dichotomy. Starting with the full interval ([−180;+180] for
longitude, [−90;+90] for latitude), we split the interval in
two ([−90; 0] and [0; +90] for latitude), then, if the location
is in the higher half, we add bit 1 to the encoding of the
coordinate, or else, we add bit 0, and we repeat the operation
with the new interval, building the encoding bit by bit, until
we reach the desired precision. When decoding, once the last
bit is reached, the decoded location is at the center of the
remaining interval (for latitude, if we have only one bit with
value 1, we would decode that the latitude is +45). With this
method, each additional bit halves the size of the interval.

Once both latitude and longitude are represented this way,
their binary codes are intermingled to produce a unique value:
odd bits represent latitude and even bits represent longitude as
presented in Table II. For example, the resulting encoding of
latitude 1011 1100 1001 and longitude 0111 1100 0000
is 0110 1111 1111 0000 1000 0010.

Geohash-36,9 originally developed for compression of
world coordinate data, divides the area into 36 squares and

9http://en.wikipedia.org/wiki/Geohash-36

EUI64

Identifier

IPv6

Address

Device
name

DNS nameKp, Ks

Device
characteristics

Semantic
name

DNS nameFeatures

TLSA CNAMEAAAA

SRV

CNAME

DNSKEY

Derived from
Stored in DNS
Signed by

Self-cerifying
name

DNS name

CNAME

Fig. 1. General scheme for identifiers and names.

generates a full character describing which sub-square contains
the position.

Google Maps uses Plus Codes [13], [14] made up of a
sequence of digits chosen from a set of 20. The digits in the
code alternate between latitude and longitude. The first four
digits describe a one degree latitude by one degree longitude
area, aligned on degrees. A Plus Code is 10 characters long
with a plus sign before the last two:

1) The first four characters are the area code describing a
region of roughly 100 × 100 kilometers.

2) The last six characters are the local code, describing the
neighborhood and the building, an area of roughly 14 ×
14 meters.

As an example, let us consider the Parliament Buildings in
Nairobi, Kenya located at the 6GCRPR6C+24 plus code: 6GCR
is the area from 2S 36E to 1S 37E. PR6C+24 is a 14-meter
wide by 14-meter high area within 6GCR. The + character is
used after eight digits, to break the code up into two parts and
to distinguish codes from postal codes.

III. COMPACT ENCODING OF IOT METADATA

The main objective of this paper is to design a scheme
for encoding semantic properties in DNS names so that IoT
devices could discover relevant nodes using with DNS name
resolution. Figure 1 gives an example of how it can be done in
the context of LoRa devices. Note that DNSSEC guarantees
the information integrity.

We propose to assign self-certifying names to IoT devices:
the name derives from a public key to enable secure establish-
ing of the identity of a device without relying on an external
PKI infrastructure. The self-certifying name is constructed as
a hash of public key Kp similarly to Bitcoin addresses:

A = ripemd160(sha256(Kp))

then A is encoded with base32 (20 characters) giving
the DNS name N . base32 encoding represents a binary
string with 0-9 digits and some lower case letters (excluding
characters hard to distinguish like i, l, o). We cannot use
base58check like in Bitcoin because of capital/low case let-
ters in base58check (DNS names do not distinguish between

http://en.wikipedia.org/wiki/Geohash-36

Context Level 1 Level 2 Level 3 Level 4

5 bits 5 bits 5 bits 5 bits 5 bits 5 bits

…

Encoded semantic properties

Fig. 2. Structure of a binary semantic identifier (fields of 5 bits or a multiple
of 5 bits).

1

3 41 12

7 86 9

15

11 1210 13

00 1101 10

00 1101 10 00 1101 10

0001 0010 1101 11101100 1111

Fig. 3. Semantic attributes encoded as a quadtree.

capital/low case letters). The nice feature of this scheme is
that devices can check whether a public key from the TLSA
DNS record corresponds to the name and if authentication
is enforced (signature with the private key Ks) to be sure a
device communicates with the right peer.

Then, we can derive an 8 byte EUI64 identifier from A with
SHA-3(A). EUI64 identifiers are required in some networks
like LoRa—we can obtain the LoRa DevEUI identifier derived
from Kp and then use it to construct an IPv6 address. We
will also show below that the DevEUI of a LoRa device can
represent its geographical location.

In addition to the self-certifying name, we define other
names (DNS aliases) that represent device properties encoded
in a compact way. Moreover, we want the encoding scheme to
take advantage of some discovery functionalities of DNS by
requiring that a name is structured as an IP prefix—smaller
prefix means a more general query.

A. Encoding Hierarchical Semantic Properties

Figure 2 presents the structure of an identifier encoding a
semantic tree of several levels presented below. A Context
defines how to interpret the encoded semantic properties. The
first type of Contexts we define is a hierarchical representa-
tion of properties in a form of a semantic tree with leaves
corresponding to properties (see example in Figure 3). The
identifier encoding the semantic properties is the binary code
generated when traversing the tree. To be able to express the
binary identifier of a level with one or more base32 letters,
each field is 5 bits or a multiple of 5 bits (e.g., the Level 3
field composed of 10 bits). In this way, we avoid problems of
dealing with padding if the size of the binary identifier is not a
multiple of 5 bits. Note that the structure of a given identifier
(the size of each field) is defined by a given Context.

Figure 3 presents an example of a semantic quadtree of
degree n = 4 for simplicity. In fact, we use n = 32 for 5 bits
assigned to each level of the tree, which gives the possibility
of representing 322 = 1024 attributes at Level 2 or more, e.g.,

32, 768 at Level 3 with the field of 10 bits. We may have trees
with different numbers of nodes at each level depending on the
need of representing more or less properties (e.g., n = 1024,
if we assign 10 bits to a level), the only limitation being that
the level degree should be a power of 2. Circles correspond
to non-terminal nodes and squares to leaves.

The position in the tree determines the code of a property,
for instance, the property at leaf 11 has the code of 1101
corresponding to the traversal of the 11 branch and then, the
01 one. One identifier (so one DNS name) corresponds to one
leaf in the tree.

The encoding scheme structures the DNS names similarly
to IP prefixes: a longer prefix represents more specific infor-
mation and shortening a prefix corresponds to more general
information, thus allowing for some range or property queries,
e.g., the shorter code of 11 represents all properties with 1100
1101 1110 1111 identifiers.

Below, we present an example of creating a semantic name
for a temperature sensor with metadata expressed in the
following W3C Thing Description:10

"@context": [
"https://www.w3.org/2019/wot/td/v1",

...],
"@type": "saref:TemperatureSensor",
...
"properties": {

"temperature": {
"description": "Weather Station Temperature",
"type": "number",
"minimum": -32.5,
"maximum": 55.2,
"unit": "om:degree_Celsius",
"forms": [...]

},
...

},
...

where some attributes refer to external vocabularies such as
SAREF (Smart Appliances REFerence Ontology)11 and OM
(Ontology of Units of Measure)12.

The encoded binary identifier is composed of the following
fields (base32 encoding in parenthesis13.):

• 00001 — Context-1 (1)
• 01100 — properties (d)
• 00001 — temperature (1)
• 00101 — unit (5)
• 00010 — degree Celsius (2)
We assume that Context-1 corresponds to the semantic tree

generated according to the TD context with 5 bits per level,
properties is the 12th attribute, temperature the 1st one,
and the value of the unit degree_Celsius is the 2nd possible
value. The binary identifier of 00001 01100 00001 00101
00010 results in the 1d152 DNS name.

10https://www.w3.org/TR/wot-thing-description
11https://ontology.tno.nl/saref/
12http://www.ontology-of-units-of-measure.org/page/om-2
13In all our encoding examples, we use the base32 version defined

for geohashes that encode geographical coordinates instead of the version
described by RFC 4648, https://tools.ietf.org/html/rfc4648

https://www.w3.org/TR/wot-thing-description
https://ontology.tno.nl/saref/
http://www.ontology-of-units-of-measure.org/page/om-2
https://tools.ietf.org/html/rfc4648

B. Encoding Logical Location

In many use cases, an IoT application may benefit from
metadata about localization in a logical form. For instance,
when defining group communication for the Constrained Ap-
plication Protocol (CoAP), RFC 739014 considered a building
control application that wants to send packets to a group of
nodes represented by the following name:
all.bu036.floor1.west.bldg6.example.com.

Logically, the group corresponds to ”all nodes in office bu036,
floor 1, west wing, building 6”. Such hierarchical groups of
fully qualified domain naming (and scoping) provide a logical
description of places that may complement other precise
geographical information that we consider in the next section.

We can observe that there is an inclusion relationship
between elements of the description: office bu036 is on the
floor 1, at the west wing of building 6. A specific
Context can represent the inclusion relationship in a semantic
tree, so we can express a given logical location with a binary
identifier and an encoded DNS name.

Let us assume that we have up to 32 buildings, 32 floors,
and 1024 rooms. To encode the location of Room 214 on Floor
19 in Building 7, we define the binary identifier composed of
the following fields (base32 encoding in parenthesis):

• 00010 - Context-2 (2)
• 00111 - Building 7 (7)
• 10011 - Floor 19 (m)
• 01011 - Room 376 - first part (c)
• 11000 - Room 376 - second part (s)
We assume that Context-2 corresponds to the semantic tree

with 5 bits at the 1st and 2nd levels, and 10 bits at the 3rd level
as in Figure 2. The binary identifier 00010 00111 10011
01011 11000 results in the 27mcs DNS name.

IV. ENCODING GEOGRAPHIC LOCATION

Many IoT applications require precise information on the
geographical location of IoT devices—when a sensor provides
some measurement data, one of the most important additional
information is the localization of the data source, usually
stored as metadata. We can use GPS for localization, however,
adding GPS to an IoT device increases its cost and energy
consumption, which may make their cost prohibitive for many
large scale IoT applications.

We take the example of LoRa networks to consider the
problem of representing geographical locations in identifiers
and DNS names. We propose a scheme to define the geo-
identifier of a LoRaWAN device in a way that encodes its
geographical location. Figure 4 presents its structure with
two fields: 5 bits for the Context and 59 bits for encoding
geographical coordinates of different forms. The Context gives
the information about the type of encoding.

LoRaWAN defines DevEUI, a unique 64 bit identifier in the
IEEE EUI-64 [15] configured on a device. In the activation
process of the device, it obtains DevAddr, a 32 bit identifier
in the current network allocated by the Network Server. We

14https://tools.ietf.org/html/rfc7390

Context geohash, geoprefix, or Plus Code

5 bits 59 bits

Fig. 4. Structure of a geo-identifier on 64 bits.

TABLE IV
PRACTICAL EXAMPLE OF A GEOHASH

geohash Latitude Longitude

dr5r7p4rx6kz 40.689167 -74.044444
dr5r7p4 40.69 -74.04
dr5r111 40.61 -74.13

propose to use a geo-identifier as DevEUI, store DevEUI as a
DNS name, and provide a lookup service-based DNS service
discovery that returns names corresponding to a geographical
region.

Then, we can encode a binary string in the geohash variant
of base32 giving us a name. For instance, the binary value of
01101 11111 11000 00100 00010 (25 bits) results in the
ezs42 geohash composed of 5 characters, the representation
having a location error of ± 2.4 km.

With 59 bits for encoding the latitude and the longitude,
a geoprefix or a geohash result in a resolution of a few cm.
Table III presents the size of the base32 encoded geohash,
the number of bits representing longitude and latitude, and the
precision of the decoded value.

Geohashes offer interesting features: i) similar geohashes
represent nearby positions and ii) a longer geohash represents
a smaller area and shortening it reduces the precision of both
its coordinates to represent a larger region.

Table IV presents a practical example of the prefix property
of a geohash. In the table, the second geohash is a prefix of the
first one, so it is more precise and is contained in the second
one. The second and the third geohash have a common prefix,
so they are in the same region (easily computable with the
common prefix) but do not overlap.

Plus Codes can be shortened relative to a reference location,
which reduces the number of digits to use and we can define
the reference location in a given Context. They have similar
properties to geohashes and geoprefixes—they represent areas
and the size of the area depends on the code length.

We can store a string version of the geohash and Plus Code
in DNS as the names of an IoT device and enable some
geographical/proximity searches using the geohash.org site
or Google Maps (Plus Code required).

The only constraint of using geo-identifiers for DevEUI
is the fact that DevEUI does not have the EUI-64 format
anymore, which may be an obstacle for some applications. On
the other hand, we gain the possibility of linking the device
location with its identifier.

V. DEVICE DISCOVERY WITH DNS QUERIES

In this section, we discuss the issue of how we can query
the DNS system to discover some properties of IoT devices

https://tools.ietf.org/html/rfc7390

and find relevant devices corresponding to those properties.
We propose to use the defined semantic identifiers and DNS
names to offer support for search and discovery. In constrained
environments, providing full-fledged database search function-
ality may be difficult. Instead, we propose to take advantage
of the DNS system as the basic functionality for querying and
discovering the semantic properties related to IoT devices.

A. DNS Service Discovery

DNS-Based Service Discovery (DNS-SD) [16] is a function-
ality of DNS to discover services in a network. Information
about a given service is stored in the DNS database as an SRV
record of the form:

<Instance>.<Service>.<Domain> IN SRV <data>

and gives the target host and the preassigned port at which
the service instance can be reached. The TXT record for the
same name gives additional information about this instance in
a structured form using key/value pairs.

A DNS client can discover the list of available instances of a
given service type using a query for a DNS PTR record with a
name of the form <Service>.<Domain> which returns a set
of zero or more PTR records giving the <Instance> names
of the services that match the queried <Service>. Each PTR
record is structured as such:

<Service>.<Dom> IN PTR <Instance>.<Service>.<Dom>

The <Instance> portion of the PTR data is a user-friendly
name consisting of UTF-8 characters, so rich-text service
names and subdomains are allowed and encouraged, for in-
stance:

LoRa temp sensor.Room 7._iot._udp.example.com.

The <Service> portion of the query consists of a pair
of DNS labels, following the convention already established
for SRV records, for instance, the PTR entry for name
_http._tcp.local.:

_http._tcp.local. PTR web-page._http._tcp.local.

advertises a “web-page” accessible over HTTP/TCP.
We propose to use this mechanism for querying DNS to

find devices relevant to properties or locations expressed in as
our semantic names. For example, the following query:

_dr5r7p4r._iot._udp.iot.org IN PTR

would look for IoT devices near the Statue of Liberty.

B. Structuring Queries as Subdomains

The DNS system stores resource records in a hierarchi-
cal tree in which servers can delegate the management of
subdomains. For example, DNS Server A, authoritative for
example.fr can delegate the management of the records for
data.example.fr to DNS Server B. In a similar way, we
can delegate the management of a given geographical region to
a specific server whose region is included in the encompassing
region of the delegating domain. For instance, if we want to

delegate the management of the New York area to a city-
managed DNS server, we need to configure a “New York area”
subdomain and delegate it.

The in-addr.arpa domain, in charge of reverse DNS
lookups already uses this kind of method to delegate
the management of an IPv4 address to the owner: when
making a reverse DNS query on 1.2.3.4, we query
4.3.2.1.in-addr.arpa that corresponds to the chain of
delegations of the 1.in-addr.arpa subdomain for the
1.0.0.0/8 and so on.

We can use a similar method to split semantic names
into multiple subdomains to easily delegate some properties
or locations to other servers. Here is an example for geo-
identifiers: instead of having to encode all possible geo-
identifiers under the _iot._udp.iot.org domain, we create
the dr._iot._udp.iot.org subdomain and let it handle all
areas with the dr geoprefix (encompassing the east coast of
the USA). This subdomain can delegate subdomains to other
servers if needed. Similarly, the server in charge of the dr
prefix (east coast) can delegate the dr5r area (encompassing
New-York) to another server (a city managed server for
example). Then, the administrator of this server can choose
to handle the 7p.5r.dr subdomain, as it represents an area
of 600 meters around the Statue of Liberty. As a result, instead
of querying dr5r7p._iot._udp.iot.org, we can query
for instance 7p.5r.dr._iot._udp.iot.org and let each
subdomain administrator choose if she wants to delegate some
areas to other servers.

There are several ways to split a given semantic name into
multiple subdomains so the user has to know the number of
characters in a given subdomain to use it in a query. The
number of bytes in each subdomain also influences the kind
of queries a user can do. For example, setting 2 characters
per subdomain, like in 34.12._iot._udp.iot.org, makes
it impossible to query directly for devices with the 123
prefix, so the user has to either query the whole prefix
12._iot._udp.iot.org and then filter the relevant results,
or query all 3[0-f].12._iot._udp.iot.org domains (16
queries). Thus, we need to choose the subdomain size care-
fully. We propose three schemes for splitting geo-identifiers:
a static subdomain length, a dynamic subdomain length, and
multiple subdomain lengths.

Static subdomain length. We set size S for all subdomains.
In this way, the user can split the geo-identifier in several
groups of size S (rounded up or down, depending on the
preference of a query on the encompassing zone and then
filtering, or making multiple sub-queries) without any addi-
tional knowledge. The drawback is the lack of flexibility and
the arbitrary choice of S that may be suitable for a given area
but not for another one.

Dynamic subdomain length. Each domain has a TXT
record that gives the size of the subdomains related to
a given area. For example, 12._iot._udp.iot.org IN
TXT "len=3" informs the user that under the 12 subdo-
main, each subdomain has length 3, so one can query
345.12._iot._udp.iot.org. This scheme supports the

right subdomain length for each region: in a dense area
where we need multiple precise subdomain delegations, we
can set a small length to obtain precise subdivision and in
sparse areas where we do not need small subdivisions (seas,
fields), we can use a larger length (3 or 4). The scheme
supports multiple subdomain lengths in the same query like
in 6.345.12._iot._udp.iot.org as each subdomain can
set its size. The drawback is the need for recursively querying
different subdomains for their TXT records to know the length
of each field before splitting the query the right way.

Multiple subdomain lengths. There are multiple
ways to get to a given subdomain, so multiple ways
of splitting the geo-identifier are possible and valid.
For example, both 345.12._iot._udp.iot.org and
5.34.12._iot._udp.iot.org are valid and point to the
same area. In this way, the users do not have to query for TXT
records and can split their queries as they want. However, it
may be hard to encode all ways of splitting the geo-identifier
into subdomains in a resource record.

We can simplify this method with CNAME records, the same
way the in-addr.arpa domain handles the delegation of
subnetworks with arbitrary size15 by defining multiple CNAME
records. For example, if two different servers need to handle
the prefixes 12a and 12b but the 12._iot._udp.iot.org
domain only defines subdomains of length 2, we can insert
the following records:
a NS server.handling.a.12.area
a0 CNAME 0.a.12._iot._udp.iot.org
a1 CNAME 1.a.12._iot._udp.iot.org
a2 CNAME 2.a.12._iot._udp.iot.org
...
af CNAME f.a.12._iot._udp.iot.org

We can apply the same approach to all 16 bX.12
records. Once the CNAME records are created, a user
querying a2.12._iot._udp.iot.org will be redirected to
2.a.12._iot._udp.iot.org, so she will try to resolve the
a.12 part and will receive an NS entry pointing to the server
in charge of the 12a area. Therefore, with these records, the
user does not have to know how the delegation in the 12 area
works, the query does not change from her point of view,
but with CNAME and NS records, we can transparently delegate
parts of the subdomain. Moreover, this method allows for easy
modification of the server in charge of (authoritative for) a.12
because changing the NS entry is easy and the CNAME records
remain the same. The method may generate many CNAME
entries but they are simple to generate automatically and do
not need to change often.

We can use the subdomain splitting for different contexts
like for logical localizations. In this particular case, we can
easily encode the properties in different subdomains because
they are naturally ordered (a room on a given floor in a given
building). For example, if the Context for Logical Localization
is 2, the position of a device in Building 1 on Floor 5 in Room
56 is as follows (with base32 geohash in the parenthesis):

• Context-2: 2 - (2)

15https://tools.ietf.org/html/rfc2317

Network Server

App Server

DNS Server

Redis DB

Fig. 5. Prototype for LoRa geo-identifiers based on DNS-SD.

• Building: 1 - (1)
• Floor: 5 - (5)
• Room: 56 - (1s)
So, to get the sensors in this room, we send the following

query:
_1s._5._1._2._iot._udp.iot.org IN PTR

C. Use of AXFR for the Result Set

Another way of obtaining the result set from a DNS server
is to use the DNS Zone Transfer Protocol (AXFR) [17] that
returns all records in a zone. When a client sends an AXFR
query message to an authoritative server, it answers with all
resource records stored in the zone. This feature can be used
to return the results of a query on subdomains describing a
property or a geographical area of the interest. For instance,
to get all devices and the corresponding data stored in the zone
in 123456, the user can use the following command:
dig @server AXFR 56.34.12._iot._udp.iot.fr

VI. PROTOTYPE IMPLEMENTATION OF SEMANTIC
DISCOVERY

We have implemented two prototypes for geo-identifiers of
LoRa devices. Their extension to consider other types of se-
mantic names is undergoing. The prototypes for geo-identifiers
are available to the public to encourage reproducibility. We
show below some examples of their utilization with commands
using the dig tool. These prototypes only consider geohashes
encoded in the domain name without the use of the Context
described in Section III.

The first prototype,16 which takes advantage of the Node-
based dns2 module [18] and the Redis in-memory database,17

allowed us to quickly deploy and test the concepts based on
hardcoded data.

The second prototype18 uses the CoreDNS DNS server
written in Go.19 CoreDNS is highly flexible thanks to plugins
that perform different functions: DNS, Kubernetes service
discovery, Prometheus metrics, rewriting queries, and many
more. We have modified the file plugin that enables serving
zone data from an RFC 1035-style master file.

In our prototypes, Applications or Network Servers that
want to discover the location of LoRa devices can query a

16https://github.com/dsg-unipr/geo-dns
17https://redis.io
18https://github.com/fabrizior/coredns
19https://coredns.io

https://tools.ietf.org/html/rfc2317
https://github.com/dsg-unipr/geo-dns
https://redis.io
https://github.com/fabrizior/coredns
https://coredns.io

DNS server to find the devices matching some criteria based on
their location. In other types of networks, devices themselves
can directly query a DNS server.

In a LoRa network with geo-identifiers, when registering a
device, the Network or Join Server register several records in
the DNS database. First, an SRV record giving the domain and
ports where the Network Server managing a given device can
be queried. Then, PTR records that allows finding the device
based on its geo-identifier or name:
<name>._iot._udp.<Domain> IN SRV <port> <domain>
_<geo-i>._iot._udp.<Domain> IN PTR <name>

name being the semantic name like described in Section III.
This name of the given domain is unique and describes
the properties of the device. geo-i is the geo-identifier of
the device encoded in multiple subdomains as described in
Section V-B. When an application needs to find all devices in
a given area, it can query DNS for all devices in the matching
subdomain by sending a query like:
_<geo-i>._iot._udp.<Domain> IN PTR,

where geo-i can be split into multiple subdomains if
needed.

The DNS server answers with the list of all PTR records
in the queried subdomain, and therefore, in the represented
area. Each PTR record gives the semantic name of a device in
the area. Once the application knows the name of the devices
in the area, it can query the DNS server for an SRV record
with the different semantic name and get the Network Server
managing the devices.

We have implemented this method in our prototypes and
both of them can be queried with the dig tool.20 Upon
receiving a PTR query for a specific <Service>, the server
returns all instances of that service type in the subdomain:
dig @127.0.0.1 -p 53 _dr._iot._udp -t PTR
;; QUESTION SECTION:
;_dr._iot._udp. IN PTR

;; ANSWER SECTION:
_dr._iot._udp. 100 IN PTR humidity.dr12._iot._udp.
_dr._iot._udp. 100 IN PTR temperature.dr34._iot._udp.
_dr._iot._udp. 100 IN PTR temperature.dr56._iot._udp.

Then, once the application has obtained the semantic name
of the device (for example, temperature.dr56), it can query
the server for an SRV record with this name, which will contain
the domain and ports at which access the device. It can also
ask for TXT records to get additional data about the device.
For example, still using dig:
dig @127.0.0.1 -p 53 temperature.dr56._iot._udp -t ALL
;; QUESTION SECTION:
;temperature.dr56._iot._udp. IN ALL

;; ANSWER SECTION:
temperature.dr56._iot._udp. 100 IN SRV
10 20 8080 dr56.unipr.it.
temperature.dr56._iot._udp. 100 IN TXT "temperature=14"

Finally, when an A query for the <Domain> managing
a device is received, the server returns the IP address of

20The address 127.0.0.1 used in the following examples should be replaced
with the actual IP address of the DNS server.

the Network Server the LoRa device is associated with. For
example, if the following dig command is executed:
dig @127.0.0.1 -p 53 dr56.unipr.it -t A
;; QUESTION SECTION:
;dr56.unipr.it. IN A

we obtain the following answer:
;; ANSWER SECTION:
dr56.unipr.it. 100 IN A 160.78.28.203

VII. DNS AS A SOURCE OF IOT DATA

In the previous sections, we have presented the schemes
for encoding device properties in domain names to discover
devices by querying the DNS infrastructure. Once the user
discovers some relevant devices, she still needs to contact
them with different protocols to obtain data or set up data
delivery process with the COAP Observe option for instance.
We can also take advantage of the DNS infrastructure as a
public store for IoT data in a similar way to the Cloud. Many
IoT applications store data in the Cloud for further processing
and access by clients.

The idea of DNS as a source of IoT data is to use a TXT
record associated with a name of an IoT device to store its data
so that a large number of users can access the data in DNS
instead of getting them directly from the device. As a TXT
record linked to a domain is usually already filled with human
readable data related to the domain, we can add dynamically
created records. Once the IoT data is stored in the TXT record,
users will benefit from the DNS caching infrastructure efficient
dissemination: recursive resolvers will cache its content and
keep the data until the time-to-live (ttl) of the record expires.
Then, the recursive resolvers will query the authoritative server
to get the new record and the updated data from the device.
With this method, the end users do not need to know what
kind of a protocol should be used to contact the device, as
data are stored in a standard TXT record and no direct contact
between the user and the device is required.

A. Encoding Data in TXT Records

RFC 695021 describes under what conditions an application
can use DNS to store data and provides several recommen-
dations and warnings indicated by other RFCs. RFC 146422

formalized the <key>=<value> format for storing data in
TXT records, so in the case of the example of a temperature
sensor, the DNS entry should be <domain> IN <ttl> TXT
"temperature=14".

Not all types of data should be placed in DNS: records with
a large size can be used by attackers as an amplifier to generate
a lot of traffic [19] (this is why .com records are limited to
1460 bytes). Therefore, this solution may not be suitable for
all kinds of sensors. For example, a device taking periodic
512×512 pictures would generate data that should not be put
on DNS, instead, the user will have to find a way to contact
the device directly, or its Network Server to get the data from
a suitable source.

21https://tools.ietf.org/html/rfc6950
22https://tools.ietf.org/html/rfc1464

https://tools.ietf.org/html/rfc6950
https://tools.ietf.org/html/rfc1464

B. Updating Data in TXT Records

To keep data in the DNS record updated, there should be
a process or an entity that gets the data from the device and
updates the corresponding TXT record. For non-constrained
devices, an IoT device could update its own record, but for
most constrained devices, this kind of operation may be too
costly, so another entity can update data. For LoRa networks,
all data from the devices go through the Network Server. As
this server is not constrained, it can update the TXT record on
behalf of the device using, for example, secure Dynamic DNS
Update protocol extension [20] and a standard Unix nsupdate
command to insert the new values in the zone file of the
authoritative DNS server.

Because the data are not updated in real time, it is important
to choose a suitable ttl value of the TXT record, so that
the data are “marked” as out of date when new values are
available. The ttl value must take into account the frequency
at which the Network Server retrieves the new data from
the device and updates the corresponding DNS record. For
example, if the Network Server retrieves the temperature data
and dynamically updates TXT records every hour, then the ttl
value should be “synchronized” and also set to one hour so
that the information stored in caches of local DNS resolvers,
which request the data on behalf of local clients, is also up to
date.

We can also use the Incremental Transfer mechanism
(IXFR)23 designed to transfer only a modified part of a
zone, for example, the updated TXT records with the changed
temperature. Each time the zone is dynamically updated by,
for example, the Network Server, the serial number of its
zone is increased. Therefore, after the initial AXFR transfer,
the client should keep record of the Start of Authority (SOA)
serial number of the transferred zone. Next, the client can send
an IXFR request with the registered version number so that
the authoritative name server responds only with the deleted
and added resource records since the version known by the
IXFR client up to the current version of the zone stored by the
authoritative server. For example, to get new data related to the
123456 location, the client can use the following command:
dig @server IXFR=[old-ser] 56.34.12._iot._udp.iot.fr

VIII. CONCLUSION

In this paper, we have proposed a scheme for representing
semantic metadata of IoT devices in compact identifiers and
DNS names to enable simple discovery and search with
standard DNS servers. Our scheme defines a binary identifier
as a sequence of bits composed of a Context and several bits
of fields encoding semantic properties specific to the Context.
The bit string is then encoded as a character string, stored
in DNS. In this way, we may take advantage of the DNS
system as the basic functionality for querying and discovery
of semantic properties related to IoT devices.

We have defined specific Contexts for hierarchical properties
as well as logical and geographic locations. For this last part,

23https://tools.ietf.org/html/rfc1995

we have developed two prototypes that manage geo-identifiers
in LoRa networks to show that the proposed scheme can take
advantage of the standard DNS infrastructure.

Regarding future work, we will thoroughly assess the pro-
posed approach using deployed LoRaWAN devices. Further-
more, we plan to further investigate the idea of DNS as a
source of IoT data, with particular attention to the problem of
getting data from the devices and updating the TXT records.

ACKNOWLEDGMENTS

This work has been partially supported by the French
Ministry of Research projects PERSYVAL-Lab under contract
ANR-11-LABX-0025-01 and DiNS under contract ANR-19-
CE25-0009-01.

REFERENCES

[1] C. Jennings, Z. Shelby, and J. Arkko, “IETF Draft - Media Types for
Sensor Markup Language,” IETF, draft-jennings-core-senml-10, 2012.

[2] IPSO, “IPSO Alliance Framework,” http://www.ipso-alliance.org/wp-
content/media/draft-ipso-app-framework-04.pdf.

[3] M. B. Alaya, S. Medjiah, T. Monteil, and K. Drira, “Toward Semantic In-
teroperability in oneM2M Architecture,” IEEE Commun. Mag., vol. 53,
no. 12, pp. 35–41, 2015.

[4] E. Kovacs et al., “Standards-Based Worldwide Semantic Interoperability
for IoT,” IEEE Communications Magazine, vol. 54, no. 12, pp. 40–46,
2016.

[5] A. Haller et al., “The Modular SSN Ontology: A Joint W3C and OGC
Standard Specifying the Semantics of Sensors, Observations, Sampling,
and Actuation,” Semantic Web, vol. 10, no. 1, pp. 9–32, 2019.

[6] D. Pfisterer et al., “SPITFIRE: Toward a Semantic Web of Things,”
IEEE Communications Magazine, vol. 49, no. 11, pp. 40–48, 2011.

[7] O. Novo and M. D. Francesco, “Semantic Interoperability in the IoT:
Extending the Web of Things Architecture,” ACM Trans. Internet Things,
vol. 1, no. 1, pp. 6:1–6:25, 2020.

[8] M. Amoretti, O. Alphand, G. Ferrari, F. Rousseau, and A. Duda,
“DINAS: A Lightweight and Efficient Distributed Naming Service for
All-IP Wireless Sensor Networks,” IEEE Internet of Things Journal,
vol. 4, no. 3, pp. 670–684, 2017.

[9] C. Hesselman et al., “The DNS in IoT: Opportunities, Risks, and
Challenges,” IEEE Internet Computing, vol. 24, no. 4, pp. 23–32, 2020.

[10] P. Brunisholz, F. Rousseau, and A. Duda, “DataTweet for user-centric
and geo-centric IoT communications,” in Proc. of the MobiCom Work-
shop on Experiences in the Design and Implementation of Smart
Objects,. ACM Press, 2016, pp. 29–34.

[11] G. Niemeyer, “Geohash,” 2008. [Online]. Available: http://en.wikipedia.
org/wiki/Geohash

[12] G. M. Morton, A Computer Oriented Geodetic Data Base and a New
Technique in File Sequencing. IBM, 1966.

[13] Google, “Plus Codes: Addresses for Everyone,” 2020. [Online].
Available: https://plus.codes

[14] ——, “Open Location Code,” 2020. [Online]. Available: https:
//github.com/google/open-location-code

[15] IEEE Standards Association, “Guidelines for Use of Extended Unique
Identifier (EUI), Organizationally Unique Identifier (OUI), and Company
ID (CID),” 2018.

[16] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery,” 2013.
[Online]. Available: https://tools.ietf.org/html/rfc6763

[17] M. Skwarek, M. Korczyński, W. Mazurczyk, and A. Duda, “Characteriz-
ing Vulnerability of DNS AXFR Transfers with Global-Scale Scanning,”
in Proc. of the IEEE Security and Privacy Workshops, 2019.

[18] L. Song, “dns2 - A DNS Server and Client Implementation,” 2020.
[Online]. Available: https://github.com/song940/node-dns

[19] C. Rossow, “Amplification Hell: Revisiting Network Protocols for DDoS
Abuse,” in In Proc. of NDSS, 2014.

[20] M. Korczyński, M. Król, and M. van Eeten, “Zone Poisoning: The How
and Where of Non-Secure DNS Dynamic Updates,” in Proc. of IMC,
2016, p. 271–278.

https://tools.ietf.org/html/rfc1995
http://en.wikipedia.org/wiki/Geohash
http://en.wikipedia.org/wiki/Geohash
https://plus.codes
https://github.com/google/open-location-code
https://github.com/google/open-location-code
https://tools.ietf.org/html/rfc6763
https://github.com/song940/node-dns

	I Introduction
	II Related Work
	II-A Semantic Properties of IoT Devices
	II-B WGS84 aka GPS
	II-C Geoprefixes, Geohashes, Plus Codes

	III Compact Encoding of IoT Metadata
	III-A Encoding Hierarchical Semantic Properties
	III-B Encoding Logical Location

	IV Encoding Geographic Location
	V Device Discovery with DNS Queries
	V-A DNS Service Discovery
	V-B Structuring Queries as Subdomains
	V-C Use of AXFR for the Result Set

	VI Prototype Implementation of Semantic Discovery
	VII DNS as a Source of IoT Data
	VII-A Encoding Data in TXT Records
	VII-B Updating Data in TXT Records

	VIII Conclusion
	References

