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In Mathematical Morphology, the max-tree is a region-based representation that encodes the inclusion relationship of the threshold sets of an image. This tree has proved useful in numerous image processing applications. For the last decade, work has led to improving the construction time of this structure; mixing algorithmic optimizations, parallel and distributed computing. Nevertheless, there is still no algorithm that benefits from the computing power of the massively parallel architectures. In this work, we propose the first GPU algorithm to compute the max-tree. The proposed approach leads to significant speed-ups, and is up to one order of magnitude faster than the current State-of-the-Art parallel CPU algorithms. This work paves the way for a max-tree integration in image processing GPU pipelines and real-time image processing based on Mathematical Morphology. It is also a foundation for porting other image representations from Mathematical Morphology on GPUs.

INTRODUCTION

O RIGINALLY from the mathematical morphology field, component trees are powerful and versatile structures that organize the level sets of an image as tree. The minand max-trees were first introduced in [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF], motivated by the gain in interest for connected operators. Connected filters preserve the contours of the objects of an image by merging only its flat zones. These operators have been known for quite a long time and date back to the 90s [START_REF] Vincent | Morphological grayscale reconstruction in image analysis: applications and efficient algorithms[END_REF], [START_REF] Salembier | Flat zones filtering, connected operators and filters by reconstruction[END_REF], but they are still widely used in today's image processing pipelines for efficient pre-or post-processing steps (e.g., background removal for brain lesion detection [START_REF] Xu | White matter hyperintensities segmentation in a few seconds using fully convolutional network and transfer learning[END_REF], noise removal [START_REF] Puybareau | Real-time document detection in smartphone videos[END_REF]).

Connected filters are directly linked to the min-and max-trees as these structures enable simple and efficient implementations of such filters [START_REF] Jones | Component trees for image filtering and segmentation[END_REF]. These trees facilitate the development of more advanced forms of filtering: based on attributes [START_REF]Connected filtering and segmentation using component trees[END_REF], [START_REF] Hernández | Shape ultimate attribute opening[END_REF], with non-trivial filtering rules [START_REF] Urbach | Shape-only granulometries and grey-scale shape filters[END_REF], or with new generation connectivities [START_REF] Ouzounis | Mask-based secondgeneration connectivity and attribute filters[END_REF]. Some uses of the maxtree are illustrated in figure 1.

Beyond filtering and image processing, component trees are used in computer vision-related tasks. For instance, pattern spectra and attribute profiles, that compute the distribution of sizes and shapes of image regions, have been used with success in classification of satellite and astronomical images [START_REF] Dalla Mura | Morphological attribute profiles for the analysis of very high resolution images[END_REF], [START_REF] Dalla Mura | Extended profiles with morphological attribute filters for the analysis of hyperspectral data[END_REF], [START_REF] Ouzounis | Differential area profiles: Decomposition properties and efficient computation[END_REF] and content-based image retrieval [START_REF] Bosilj | Local 2d pattern spectra as connected region descriptors[END_REF], [START_REF] Mirmahboub | Fast pattern spectra using tree representation of the image for patch retrieval[END_REF]. Maximal Stable Extremal Regions [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] are well-known descriptors used to find correspondences between images and fast linear algorithms are based on the max-tree [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF]. Region-based analysis using morphological trees have also been used in medical imaging, e.g., for blood vessel segmentation [START_REF] Xu | Connected filtering on treebased shape-spaces[END_REF] and 3D visualization [START_REF] Westenberg | Volumetric attribute filtering and interactive visualization using the max-tree representation[END_REF].

Min-and max-trees are also at the basis of other image representations. In [START_REF] Monasse | Fast computation of a contrastinvariant image representation[END_REF], a self-dual hierarchical representation, the tree of shapes (ToS), encodes the inclusion of the level lines. It is computed by merging the min-and maxtrees. Later, [START_REF] Carlinet | The tree of shapes turned into a max-tree: a simple and efficient linear algorithm[END_REF] propose a ToS construction pipeline where the last stage consists of a max-tree computation.

When it comes to deploying image processing methods, fast algorithms are required. This might be due to some real-time constraints, or because the amount of data to process is increasing steadily. A typical pipeline using the max-tree has three steps: construction of the max-tree, attribute computation and filtering, and image restitution. However, more than 90% of the pipeline duration is spent in the construction of the tree [START_REF] Souza | An overview of max-tree principles, algorithms and applications[END_REF]. Many algorithms have been developed for speeding-up the max-tree computation. So far, the proposed optimization techniques can roughly come under one of these three categories: (a) algorithmic optimizations, i.e., choosing between a top-down or a bottom-up construction with adapted data structures [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF], [START_REF] Najman | Building the component tree in quasilinear time[END_REF], [START_REF] Berger | Effective component tree computation with application to pattern recognition in astronomical imaging[END_REF]; (b) thread level parallelism, i.e., classical parallelism for multiprocessors with shared memory (SMP) [START_REF] Ouzounis | A parallel implementation of the dual-input max-tree algorithm for attribute filtering[END_REF], [START_REF] Wilkinson | Concurrent computation of attribute filters on shared memory parallel machines[END_REF], [START_REF] Matas | Parallel algorithm for concurrent computation of connected component tree[END_REF]; (c) distributed computing, i.e., joint max-tree computation between distributed memory [START_REF] Gotz | Parallel computation of component trees on distributed memory machines[END_REF], [START_REF] Gazagnes | Distributed connected component filtering and analysis in 2d and 3d tera-scale data sets[END_REF]. To the best of our knowledge, this is the first time a max-tree algorithm is proposed for massively parallel architectures and fits the SIMT paradigm of GPUs.

The paper is organized as follows. In section 2, we recall the definition of the max-tree and in section 3, we provide an overview of the sequential, parallel and distributed Stateof-the-Art max-tree computation algorithms. We also make some links with the Connected Component Labeling algorithms, in particular those dedicated to GPUs as they will be the base of our proposal. In section 4, we depict our proposed max-tree algorithm with implementation details for hierarchical memory models. In section 5, we propose some optimized version taking advantages of the super-efficient max-tree algorithm for 1D-signals, and extra optimizations to handle the 8-connected grid and high-quantized images. In section 6, we compare the performance of our algorithms to the State-of-the-Art sequential and parallel ones on three ranges of architectures (desktop stations, mobile devices and servers). Last, we give perspectives in section 7 and conclude in section 8. Fig. 1: Image processing with the max-tree. (a) Background extraction for document image analysis with a morphological black top-hat. The min-tree is pruned by removing connected small peak components (< 4 pixels that do no touch the border. The residue (filtered components) forms the clean text and the background is removed. (b) Salient object detection for scene analysis [START_REF] Ôn V Ũ Ngo . C | A new minimum barrier distance for multivariate images with applications to salient object detection, shortest path finding, and segmentation[END_REF]. A morphological tree is used to compute the Dahu distance from image borders. This distance that mixes geodesic distance and gray-level distances can be computed using a tree similar to the max-tree (the tree of shapes). Fig. 2: Level set decomposition of an image and its max-tree. The connected components of

[f ≥ λ] are included in those from [f ≥ λ -1]
and form an inclusion tree.

FOREWORDS

Mathematical preliminaries

Let f : Z 2 → N be a 2D regular image of N pixels having values on a totally ordered set of G grayscale levels. Let N be a neighborhood on the 2D grid (typically the 4-or 8connectivity). Given a set of points X, we note CC (X) ⊂ P(Z 2 ) the set of the connected components of X given the neighborhood N . Let λ ∈ N be a gray level, [f ≥ λ] is the upper level set of f at level λ and CC ([f ≥ λ]) are the upper components. The upper peak component of a pixel x at level λ noted P λ

x is the upper component U ∈ CC ([f ≥ λ]) such that x ∈ U . When λ is omitted as in P x , λ is implicitly f (x), and P x is said to be the upper level component of x.

The family {CC (

[f ≥ λ])} λ is increasing, each element of CC ([f ≥ λ + 1]) being included in those of CC ([f ≥ λ]),
this family can be represented with an inclusion tree called the max-tree as shown in figure 2.

Max-tree representation

Max-trees can be represented in a compact way using the representation from [START_REF] Najman | Building the component tree in quasilinear time[END_REF]. A node of the max-tree represents a peak component and the edges stand for the inclusion of these components. A node stores only the pixels that are not already part of some "sub"-nodes. In figure 3-a, the node at level 13 represents the component {A, B, C} but only stores the pixel B (A and C already belong to some other nodes). This encoding enables one pixel to be associated to exactly one max-tree node. Then, an image parent is used to store the inclusion relationship between nodes (figure 3b). For that purpose, a node is represented by only one of its pixels, the so-called canonical element. Every other pixel that belongs to the node is linked to the canonical element (directly or indirectly by other non-canonical elements of the node). A tree is said canonical if every path is compressed, i.e., if every pixel directly links to a canonical element. Canonicalization consists in following the parent path from each pixel to the first canonical element and replacing it by a direct edge (figure 3-c). The parent image in figure 3-b is not canonical, because some pixels (namely B, D, G, I) do not point to canonical elements. Since the canonical elements are arbitrarily chosen, there may exist several valid parent images. To ensure the uniqueness of the representation, we need a total ordering between pixels, e.g. the scanning order, that designates the bottom-right most pixel as the canonical element of the component. More formally, let ≺ be the total order between pixel: p ≺ q ⇔ f (p) < f (q) or (f (p) = f (q) and p > q)

A special point null is used as the root's parent and verifies ∀p, null ≺ p (it is the infimum over ≺). The parent image should also meet the following two conditions. (a) ∀p, parent(p) ≺ p, and (b) ∀p, parent(p) is canonical (the tree is canonicalized)

STATE-OF-THE-ART

Sequential Max-tree algorithms

Immersion-based algorithms [START_REF] Najman | Building the component tree in quasilinear time[END_REF], [START_REF] Berger | Effective component tree computation with application to pattern recognition in astronomical imaging[END_REF] are based on the Tarjan's Union-Find (UF) [START_REF] Tarjan | Efficiency of a good but not linear set union algorithm[END_REF] algorithm that builds the tree from leaves to root. These algorithms start by sorting the pixels of the image w.r.t. their grayscale level. Disjoint sets are created for each pixel, and are merged in increasing order according to their gray level. The process is similar to the Union-find based connected component labeling algorithms where each connected set is encoded as a tree, but it adds a constraint on the merge order. The algorithm is sketched on algorithm 1. It relies on three operations that update the disjoint trees:

• MAKE-SET(parent, x) creates the singleton set {x}. It basically sets parent(p) ← null • FIND-ROOT(parent, x) follows the chain of parent up to the root. • UNION(parent, x, y) merge x's and y's trees and set x as the new root.

Union-find based algorithms have a quasi-linear complexity, provided that: (a) the pixels can be sorted in linear time (e.g., using radix-sort); (b) FIND-ROOT implements the path-compression technique that updates the parent pointer of all the nodes of the chain (it also implies having two separate structures, one encoding the compressed tree and another one encoding the real max-tree); (c) UNION uses the union-by-rank technique and chooses the new root so that the tree remains balanced. Once the tree has been constructed, the FLATTEN procedure in algorithm 1 is responsible for canonicalizing the tree. The nodes are traversed from root to leaves to propagate the canonical property. Indeed, at line 4, parent(q) is ensured to be a representative node.

Flood-based algorithms [START_REF] Salembier | Antiextensive connected operators for image and sequence processing[END_REF], [START_REF] Nistér | Linear time maximally stable extremal regions[END_REF], [START_REF] Hesselink | Salembier's min-tree algorithm turned into breadth first search[END_REF], [START_REF] Wilkinson | A fast component-tree algorithm for high dynamic-range images and second generation connectivity[END_REF] proceed in the opposite way and build the tree from root to leaves. They start from a point (generally the root, i.e. the global minimum) and flood the peak component located at this point with a depth-first traversal graph pattern. The pixels at the border of this peak component are queued in a priority queue for later processing. Once the peak-component is flooded, a local subtree has actually been built and is then attached to the parent node. Then, the process continues in a recursive way with the point at highest priority in the queue. The process ends when the whole image is flooded. Flood-based algorithms are generally faster than their union-find based counterparts, especially for lowdynamic range images [START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF] where stacks and hierarchical queues are used to remove the recursion and efficiently implement the processing queue.

Algorithm 1 Scheme of a union-find-based max-tree algorithm. if r = p then UNION(parent, p, r)

1: procedure FLATTEN(f ) 2:
for p in S forward do 3:

q ← parent(p) 4:
if q is not null and f (parent(q)) == f (q) then 5:

parent(p) ← parent(q)
Algorithm 2 1D-Maxtree algorithm. Algorithm 3 Algorithm used to merge two max-trees.

1: function FIND-PEAK-ROOT(parent, x, lvl)

2:
q ← parent(x)

3:
while q not null and lvl ≤ f (q) do 4:

x ← EXCHANGE 1 (q, parent(q)) 5:

return x, q

1: function FIND-LEVEL-ROOT(parent, x) 2:
return FIND-PEAK-ROOT(parent, x, f (x))

1: procedure CONNECT(a,b) 2:
while b not null do

3: if f (b) < f (a) then SWAP(a, b) 4: a, ← FIND-LEVEL-ROOT(parent, a) 5: b, ← FIND-PEAK-ROOT(parent, b, f (a)) 6: if b ≺ a then SWAP(a, b) 7: if a = b then return 8: b ← EXCHANGE(parent(b), a)
⊲ merge-set is extended. The last case, when the gray level decreases, is divided into three scenarios: If the stack is empty, no intermediate component exists between p and r, thus p directly becomes r parent's. If the stack is not empty, the parent of p might be in the stack. The UNSTACK() function pops the stack as long as the levels are greater than the current level, linking components in the stack along the way.

If a lower gray level is found at the top, p is the intermediate component between the last and current stack top thus r becomes parent of p. Else, the stack has been emptied, there is no intermediate component (and thus f (r) > f (p)), p can be set as parent of r. Finally, if there are elements left in the stack we can directly link them together using UNSTACK() and set the last element as the root of the tree.

Parallel and distributed max-tree algorithms

Merge-based algorithms rely on a divide-and-conquer strategy to compute the max-tree. The image is split into tiles for which local max-trees are computed. Then, the local maxtrees are merged hierarchically with a reduction pattern by connecting the pixels on the tile boundaries. Figure 5 illustrates the merge of two max-trees that have to be connected through the edge (a, b). The corresponding algorithm is given in algorithm 3. First, FIND-PEAK-ROOT follows up the chains of a and b to reach the nodes that have to be updated. Supposing f (a) < f (b), it requires reaching the level-root of a (because it may not be the canonical element),

1.

x ←EXCHANGE(p,q) := old ← p; p ← q; x ← old;

and then, reaching the root of the peak component P f b (a) (i.e., the highest node with level not greater than f (a)). The procedure returns the canonical node and its parent (which is not used for now). If nodes have both the same level, the merge applies on flat-zones, we need to select the "smallest" representative in terms of ≺ to be the new root. The parent of b is updated and CONNECT is called recursively on the parent until reaching the root.

This process is well-adapted to the parallel construction of the max-tree because each tile computation is independent. The first parallel algorithms [START_REF] Ouzounis | A parallel implementation of the dual-input max-tree algorithm for attribute filtering[END_REF], [START_REF] Wilkinson | Concurrent computation of attribute filters on shared memory parallel machines[END_REF], [START_REF] Matas | Parallel algorithm for concurrent computation of connected component tree[END_REF] were using this algorithm on shared-memory systems with scalable results (almost linear in the number of threads). As images grew in size, the same strategies were adopted for a distributed computation of the max-tree [START_REF] Gotz | Parallel computation of component trees on distributed memory machines[END_REF], [START_REF] Kazemier | Connected morphological attribute filters on distributed memory parallel machines[END_REF] with the extra burden of minimizing memory exchanges between (cluster) nodes using border max-trees. This idea is even pushed further in [START_REF] Gazagnes | Distributed connected component filtering and analysis in 2d and 3d tera-scale data sets[END_REF], [START_REF] Gazagnes | Distributed component forests in 2-D: Hierarchical image representations suitable for tera-scale images[END_REF] with a distributed max-tree representation based on border max-trees that avoids storing the final tree in shared-memory and enables distributed tree processing.

Connected Component Labeling on GPU

As Max-Tree computation is close to Connected Component Labeling (CCL), it is interesting to look at the State-of-the-Art for CCL algorithms. The first algorithms for CCL on GPU date back to the late 00s [START_REF] Hawick | Parallel graph component labelling with gpus and cuda[END_REF] and were repeating a label propagation until stability. However, they have been superseded in image processing by concurrent algorithms based on the Union-find (UF) structure to compute the equivalences between pixels.

Concurrent Union-Find is an old problem [START_REF] Anderson | Wait-free parallel algorithms for the union-find problem[END_REF], [START_REF] Jayanti | A randomized concurrent algorithm for disjoint set union[END_REF], but until recently, it was not used for CCL. The first CCL implementation on GPU came in 2015 from Komura [START_REF] Komura | GPU-based cluster-labeling algorithm without the use of conventional iteration: Application to the swendsen-wang multi-cluster spin flip algorithm[END_REF] using a concurrent Union-Find. The paper also introduces the Komura Equivalence (KE) that modifies the initialization step of the UF to resolve some equivalences on-the-fly and avoids the creation of temporary single-node equivalence trees. In 2018, the Playne algorithm [START_REF] Playne | A new algorithm for parallel connected-component labelling on GPUs[END_REF] improves upon KE by analyzing pixel patterns in order to avoid redundant merge operations. In 2018, the HA algorithm [START_REF] Hennequin | A new direct connected component labeling and analysis algorithms for GPUs[END_REF] sped up the Playne algorithm by using small segments (32-pixel wide, the warp size) of pixels and CUDA intrinsics. Later, in 2019, the BKE algorithm [START_REF] Allegretti | Optimized block-based algorithms to label connected components on GPUs[END_REF] (Block-based Komura Equivalence) improves the Playne algorithm by exploiting a property of 8-connected components to process pixels in 2 × 2 blocks. In 2021, the Full-Length Segment Labeling is able to tackle segment longer than the warp size, and advanced algorithmic optimizations reduce the voting bottleneck of Connected Component Analysis algorithms [START_REF] Lemaitre | Taming voting algorithms on GPUs for an efficient connected component analysis algorithm[END_REF].

The concurrent Union-Find consists in retrying to link two roots in a CAS-loop. If the higher root is updated by another thread, the link is retried with the new parent of the formerly higher root. This algorithm is in fact wait-free as the work of a thread is bounded by the height of the resulting tree. It is detailed in algorithm 4. While the original concurrent Union-Find was using a CAS for the retry, [START_REF] Komura | GPU-based cluster-labeling algorithm without the use of conventional iteration: Application to the swendsen-wang multi-cluster spin flip algorithm[END_REF] used an ATOMICMIN to leverage the natural ordering of labels and reduce the practical number of retries.

Figure 6 is a timeline example that demonstrates how multiple threads can concurrently modify the Union-Find structure. It also shows the difference between the Algorithm 4 Concurrent Union-Find on GPU for Connected Component Labeling. The schemas are a timeline of the states of each thread and the operations in memory. A circle corresponds to a read, while an arrow corresponds to a write, the end of the arrow being the value written. An arrow with a circle is a read-modify-write atomic, and the cross stands for a failure (only for CAS). The solid lines for labels represent root labels, while dashed ones correspond to labels whose parent have been set. For the sake of demonstration, threads follow a round-robin scheduling.

ATOMICCAS-based function and the ATOMICMIN-based one (respectively figure 6a and figure 6b). We can clearly see that the ATOMICMIN version have one less read-modifywrite atomic, and that the final tree is flatter (label 4 points to label 1 directly).

A MAX-TREE ALGORITHM FOR GPUS

Sort-less max-tree algorithm

The first step of algorithm 1 consists in sorting the pixels so that merging the disjoints subtrees with the union-find occur from the leaves to the root of the max-tree. Using the Algorithm 5 Sort-less max-tree algorithm.

1: procedure MAXTREE(f)

2:

for all pair of neighbors (p, q) do 3:

CONNECT(p,q)

1: procedure FLATTEN(f)

2:

for all p do 3:

q ← parent(p)

4:
parent(p) ← FIND-LEVEL-ROOT(parent, q)

Algorithm 6 Concurrent lock-free version of algorithm 3 

Concurrent computation of the max-tree

As it stands, the current algorithm cannot be run concurrently as there may be data races when updating the parent pointer in algorithm 3 in line 8. Even if read and write operations were atomic, an update might not be seen by the other threads (lost-update problem). The solution lies in the same technique used for the concurrent labeling algorithm exposed in section 3.3. A read-modify-write operation is used when updating the parent pointer. The situation is a bit more complex as we need to select the right node if a conflict occurs. In algorithm 4, ATOMICMIN is used because the representative is chosen to be the lowest label. Choosing the minimum (or the maximum) prevents the creation of cycle that could occur with concurrent updates.

With the max-tree, the same problem arises if there is no total order imposed on pixels. In algorithm 6, line 8 uses ATOMICMAX based on ≺ to select the right parent when concurrent updates occur. Suppose that the parent of a node has to be updated concurrently with q 1 , q 2 and q 3 . The new root will be the "lowest" one (i.e., the one with the highest level). If there are several "lowest" nodes, we then need to select the right representative which is the most bottomright node. In case of conflict, two cases occur:

• The ATOMICMAX updates the value and makes progress. In this case, the old value of parent(b) is held in b, we need to merge the old parent node with a. • The ATOMICMAX does not update the value and fails to make progress. b ← old dexes, but most GPUs support atomic operation on trivial types only. To overcome this limitation, the parent image is used to store 32-bit records such that comparing the records with ≺ is equivalent to comparing the binary representation of the record. Using the LSB 0 bit numbering, parent(x) stores in 32 bits:

x's current level x's parent level x's parent index 32 24 16 0

Supposing the pixel are 1-based indexed, the null value is thus encoded with 0 (0 for all fields). In algorithm 6, line 8 becomes:

8: newB ← [f (b), f (a), a] 9: [ , , b] ← ATOMICMAX(parent(b), (uint32_t)newB)
When parent(x) is updated, the current level always remains the same, but the parent level and the parent index might be updated by this new parent if they are greater than the original ones.

This representation works for images with at most 2 16 -1 pixels because the parent index is 1-based and encoded in 16 bits. To handle 32-bit indexes, this representation can be extended to 64 bits at the cost of doubling the shared memory usage. Alternatively, an ATOMICCAS (see algorithm 7) can be used instead of this representation but leads to more retries. Indeed, in case of conflicts, only one thread makes progress with a CAS; while using an ATOMICMAX, several threads may update the same parent in the same turn.

Concurrent max-tree computation pipeline

The algorithm has been adapted to fit the hierarchical memory model of CUDA and minimize global memory loads and stores. It has three main parts depicted in figure 7.

Local max-tree construction. The image is tiled into blocks with as many threads as pixels in the block. (a) All the threads start with loading the input image values into the field current level of the parent image in shared memory; -the size of the block is small enough for using 16-bit local indexes -(b) CONNECT is called for every pair of neighbors (twice per thread if using the 4-connectivity) as shown in figure 7b; (c) the parent image is flattened to make the local max-tree canonical; (d) the parent image block is copied from shared memory to global memory, converting local indexes to 32-bit global indexes.

Global max-tree merging (figure 7c). The local maxtrees have to be merged along the block boundaries. With as many threads as the number of pixel pairs on the block boundaries, CONNECT is called with the pair of pixels along vertical and horizontal boundaries. The merge acts on global memory with 32-bit indexes (so using algorithm 6).

Flattening. The parent image is tiled into blocks and each block is flattened.

ALGORITHMIC VARIATIONS

Optimized local max-tree

As depicted in section 4.1, to build a max-tree on GPU, one could just call the concurrent CONNECT for every edge in the image. This has the drawback of generating many concurrent writes which hurts performance [START_REF] Lemaitre | Taming voting algorithms on GPUs for an efficient connected component analysis algorithm[END_REF] even when issued in shared memory. To reduce the number of calls to CONNECT, local max-trees are first built column-wise using the 1D algorithm depicted in algorithm 2 (see figure 8a). This algorithm is inherently fast because there are no data dependencies between threads. Inside each tile, each thread inside each thread block starts by fetching the first pixel of its column i.e. the first line of the tile. As each thread unravels its execution path, the thread block keeps on fetching, in a coalesced manner, the lines of the tile. Since each thread is working on its own column max-tree, no atomic nor syncing operations are required. There are also no bank-conflict as each thread works on its own bank.

Once local max-trees are built inside the tile, each thread (besides the last one) sweeps again top to bottom, calling the concurrent CONNECT on each of the remaining edges (figure 8-b). This effectively cuts by half the number of CONNECT needed and significantly improves performance.

Grid simplification for 8-connection

The extension to 8-connectivity is straightforward. When merging columns or tiles, one just needs to call CONNECT in the diagonal directions (see figure 9a). It follows that the number of CONNECT calls doubles during the local construction of the Base algorithm and triples when merging columns or at tile boundaries. This is experimentally confirmed in section 6.2, showing that the processing time of the base algorithm increases by 120% on average, while the time of the 1D-optimized algorithm is multiplied by a factor 2.5. Again, it confirms that CONNECT is an expensive operation, and we should minimize its use. Let f be an image with two disjoints rectangular regions that connect over the boundary pixels

U = {u 1 , u 2 , • • • u n } and V = {v 1 , v 2 , • • • v k }. Let E be the set of edges that connects U to V . Considering the 4-connected grid G 4 , E = 1≤k≤n E k where E k = {(u k , v k )}, i.e, there are n calls to CONNECT. With the 8-connected grid G 8 , E k = {(u k , v k ), (u k-1 , v k ), (u k , v k-1 )} (for k > 1)
, so there are three calls to CONNECT for each k. To reduce the number of calls to CONNECT, we rely on the following propositions.

Proposition 1. Considering the 8-connectivity, the max-tree of f with edges E is equivalent to the max-tree of f with the set of edges E ′ = ∪E ′

k where E ′ 1 = E 1 and for k > 1:

E ′ k =          {(u k , v k )} if f (u k ) > f (u k-1 ) ∧ f (v k ) > f (v k-1 ) {(u k-1 , v k )} if f (u k ) ≤ f (u k-1 ) ∧ f (v k ) > f (v k-1 ) {(u k , v k-1 )} if f (u k ) > f (u k-1 ) ∧ f (v k ) ≤ f (v k-1 ) ∅ otherwise
Proof. It is worth mentioning that an edge (u, v) is only involved in the construction of P α u and By recursively removing the useless edges for all k (in whichever order), proposition 1 holds. Note that the edge (u k-1 , v k-1 ) might be missing for some k. Nevertheless, the equivalence holds as there still exists an equivalent path. Proposition 2. Considering the 8-connectivity, the max-tree of f with edges E ′ is equivalent to the max-tree of f with the set of edges E ′′ = ∪E ′′ k where E ′′ n = E ′ n and for k < n:

P α v with α ≤ min(f (u), f (v)). Let k ∈ N, 1 ≤ k ≤ n and (a, A) = (u k , u k-1 ) if f (u k ) < f (u k-1 ) else (u k-1 , u k ) (b, B) = (v k , v k-1 ) if f (v k ) < f (v k-1 ) else (v k-1 , v k )
E ′′ k = E ′ k \ {(u k , v k )} if f (u k ) < f (u k+1 ) ∨ f (v k ) < f (v k+1 ) E ′ k otherwise
Proof. Similar to the previous proof. There exists an alternative path that do not pass by (u k , v k ).

From proposition 1 and proposition 2, it follows that

|E ′′ k | ≤ 1.
In the context of the merging tile boundaries, it follows that there is at most one CONNECT per thread. The grid simplification can also be applied with the 4-connected grid using proposition 3 which also makes it possible to remove some unnecessary calls to CONNECT. Proposition 3. Considering the 4-connectivity, the max-tree of f with edges E is equivalent to the max-tree of f with the set of edges E ′′′ = ∪E ′′′ k where:

E ′′′ k =      ∅ if min(f (u k-1 , f (v k-1 )) < min(f (u k ), f (v k )) ∅ if min(f (u k+1 , f (v k+1 )) < min(f (u k ), f (v k )) E k otherwise
In figure 9c, we illustrate the grid simplification of the fully connected grid depicted in figure 9a and show that they lead to the exact same max-trees. The dashed edges for 8-connected simplified grid represent the edges removed from E ′ to E ′′ .

High dynamic range (HDR) images

As it stands, nothing prevents the current algorithm from running on high-quantized data. However, as described in [START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF], CONNECT is not efficient for those data as its GPU Tesla V100 -5120 cores @ 1.3GHz performance depends on the length of the branch (that drastically increases with the number of grayscale levels).

In [START_REF] Gotz | Parallel computation of component trees on distributed memory machines[END_REF], the authors suggest duplicating the tile boundaries (called halo, see figure 10) so that CONNECT is called in global memory on two nodes with the same levels. The CONNECT procedure could be seen as two stages. The first step consists in traversing the chain to reach the nodes to merge, while the second step consists in merging the linkedlists of nodes. The halo technique enables us to reduce the amount of work done by the first step.

PERFORMANCE EVALUATION

Base benchmark

We compare the performance of our GPU implementation to the State-of-the-Art CPU ones. For the CPU part, the sequential Salembier's algorithm (Salembier ST) implemented without recursion and pre-allocated priority queues are used. The parallel version (Salembier MT) uses a divide-andconquer strategy. It runs Salembier's algorithm on tiles and merges the trees hierarchically as described in [START_REF] Carlinet | A comparative review of component tree computation algorithms[END_REF]. The two GPU versions are the algorithm described in section 4 (Base) and its 1D-optimization from section 5.1 (Optim 1D). They are benchmarked with and without the memory transfer from and to the host memory. We have benchmarked on three profiles: embedded systems, desktop computers, and compute servers. Their descriptions are shown in table 1. The benchmark also includes several image types shown in figure 11 (satellite images, medical images, and documents) to consider the variability of real image contents.

As one can see on figure 12, our GPUs versions outperform the sequential and the parallel version running on CPUs on comparable devices by at least a factor 5 on a single image. However, when processing a stream of images, the transfer latency from the host memory can be hidden and only the GPU kernel time has to be taken. Then, performance of 1D Optimized is one order of magnitude higher than those on CPU.

When comparing the GPU algorithms, the 1Doptimization improves the performance by about 30% on average. Table 2 shows the kernel time distribution for the base algorithm and for the local max-tree optimized version. As one can see, the relative time spent by kernels depends on the image content, but the latter does not change the overall "kernel ordering". Also, while the timings are for the Desktop 1 configuration, the time distribution on the other architectures varies by ±10%, but this is still representative to all test configurations. As depicted in table 2, the local max-trees computation time that represents more than half the GPU compute time is reduced by 50%. Several factors may explain this performance gain. First, the work per thread is much higher, because a single thread processes a full column (16× higher, because the columns are 16 pixels high). While it reduces the theoretical occupancy of the Streaming Multiprocessor (SM) and the number of active warps per SM, it actually leads to less contention between threads, because it reduces the number of concurrent atomic writes trying to update the same parent. From our experiment, the stall of individual warps (mostly due to atomics) and the thread divergence (mostly due to the FIND-PEAK-ROOT loop) are reduced by 25%.

It is worth mentioning that to speed up column merging and flattening of our 1D-optimized, another work organization was tried. We tried running one thread per pixel, only using one thread per column during the 1D-construction part (yielding many idle threads) and then, using all the threads for column merging and flattening (more parallel work). However, this approach reduced the performance and showed that augmenting the work-per-thread to decrease the contention when merging was better. 

Impact of the 8-connected grid

Figure 13 shows the impact of the 8-connectivity on the processing time. The processing time of the base algorithm increases by 120% on average, while the time of the 1Doptimized algorithm is multiplied by a factor 2.5. Indeed, we have twice as many edges for the local max-tree computation but three times as many edges in the global max-tree merging step. Figure 13 also shows the effect of the grid simplification on the performance. In particular, the grid simplification for the 8-connectivity is always beneficial, and we get back to the same running times as with the 4-connectivity baselines. With a 4-connected neighborhood, the grid simplification benefits are less obvious. This exhibits an interesting trade-off to have between "more work, more contention but better work balancing and better parallelism" and "less work but unbalanced work and less parallelism opportunity". Indeed, in the extreme case where all boundary edges are replaced by a single link, a single thread has to merge the whole branch while the other threads are idle. The level of work done in parallel eventually drops while the branch could have been merged by several threads concurrently. 

Impact of the HDR

To figure out the performance penalty of the quantization on our algorithm, we have transformed the original 24-bit RGB test images into 16-bit images. Following the protocol in [START_REF] Moschini | A hybrid sharedmemory parallel max-tree algorithm for extreme dynamic-range images[END_REF], the luminance of RGB values is computed by 0.2126R+0.7152G+0.0722B, and the value is quantized on 16 bits. In table 3, the second column shows the performance of our Base algorithm on 16-bit images and highlights a drastic slow-down (about 30 times slower). Actually, this slow-down is mostly due to the merge of max-trees in global memory that takes 90% of the total compute time. Indeed, with 16-bit images, there are more (canonical) nodes and the chain are longer. It follows that we hit the global memory at more random location (the L2 cache hit rate

• • • • • • Thread 1 Thread 2
Fig. 14: Unbalanced merge work between threads. If two threads of the same warp merge two trees but have a low common ancestor, one thread is stalled and waits for the other to finish.

is less than 40%) and the memory latency is the leading cause of the thread stalls. Longer chains also induce less workload balancing between threads. Indeed, suppose that threads have to merge branches from two disjoint trees, but the branches meet soon in the hierarchy. One thread is going to be elected to merge the whole chain, while the others are being stalled waiting for the elected thread to finish. This problem is illustrated on figure 14. This thread divergence causes a low number of active threads per warp (less than 3 actives thread/warp on some images).

With the halo technique, the cost of the first FIND-PEAK-ROOT in global memory is lower and compensates the extrawork induced to process the halo as shown in the third column of table 3 (adding and removing the halo counts only for 2% of the total time). Even if it improves slightly the performance, processing 16-bit images is still much slower than 8-bit images (up to 20 times slower). Some interesting approaches have been proposed in [START_REF] Moschini | A hybrid sharedmemory parallel max-tree algorithm for extreme dynamic-range images[END_REF], where the max-tree construction is "stratified" by buckets. An extension of our algorithm for high-dynamic images could probably benefit from these ideas, running the maxtree construction at different low-quantized bucket and eventually, merging them.

FUTURE WORK

3D images. The presented algorithm can easily be extended to 3D images. The max-tree algorithm depicted in section 5.1 could build the max-trees of the 2D slices. Then, the maxtrees of the slices would be merged depth-wise just like we did for merging the 2D tiles vertically and horizontally. However, adding those z-connections would drastically reduce performance. Indeed, the maximal 26-connectivity would lead to a large amount of CONNECT issued in global memory during global max-tree merging. Even if the grid simplification trick could probably be extended in 3D, managing such a high amount of connection in global memory remains challenging.

Tree of Shapes (ToS) and Alpha-tree. As depicted in [START_REF] Carlinet | The tree of shapes turned into a max-tree: a simple and efficient linear algorithm[END_REF] the ToS can be computed using a max-tree algorithm. As stated, this approach benefits from efficient componenttree implementation. The newly presented max-tree GPU algorithm could serve as a foundation for efficient ToS computation. However, the method from [START_REF] Carlinet | The tree of shapes turned into a max-tree: a simple and efficient linear algorithm[END_REF] requires that we first transform the input images with 3 steps, namely interpolation, immersion and propagation. The first two steps can be trivially parallelized on GPU. Nevertheless, porting the propagation (that as the name suggests, uses a propagation flow) remains challenging on GPU.

Our algorithm seems to be also adapted to computing the α-Tree (a.k.a. the quasi-flat zone hierarchy). In this representation, the flat-zones are the leaves of the tree while the internal nodes are the edges of minimum spanning tree (MST) ordered by altitude. The most common α-tree algorithm [START_REF] Ouzounis | The alpha-tree algorithm[END_REF], [START_REF] Najman | Playing with kruskal: algorithms for morphological trees in edge-weighted graphs[END_REF] is based on Kruskal's MST algorithm and relies on the Union-Find. In [START_REF] Soille | On morphological hierarchical representations for image processing and spatial data clustering[END_REF], it has been observed that the α-tree is closely related to computing the min-tree on the edge graph of an image, and as a consequence, the adaptation looks straightforward.

CONCLUSION

In this work, the first massively parallel GPU algorithm for the computation of the max-tree has been presented. By taking advantages of the non-ending growth of the GPU computing performance, our algorithm is at least 5 times faster than the current State-of-the-Art CPU parallel algorithm and one order of magnitude faster when the memory transfer latency can be hidden. Moreover, we have proposed algorithmic variants that handle the 8-connectivity with no overhead and no added complexity. This work will especially benefit the recent researches dedicated to a distributed max-tree computation for terabyte images where each cluster node could compute a local max-tree of some subsection of data with the advantages of our GPU algorithm. Then, max-trees could be combined with some wider distributed algorithm. Finally, not only does this new algorithm enable the integration of the max-tree computation in GPU pipelines, but it also paves the way to port to GPUs many max-tree related structures as the Tree of Shapes.

As a matter of reproducible research, the source code of the GPU max-tree algorithm is available at https://gitlab. lrde.epita.fr/nblin/max-tree.

  Document image filtering. (b) Salient object detection.

Fig. 3 :

 3 Fig. 3: parent image encoding the max-tree of figure 2. (a) is the maxtree to encode, some pixels appear underlined as they are randomly chosen to be the canonical elements. The parent relation appears in blue in (b). (b) is not path-compressed as some pixels point to noncanonical elements. (c) is the result of the canonicalization of (b).
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 67 for n in N (p) do if parent(n) = undef then 8:r ← FIND-ROOT(parent, n) 9:
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 145 Fig. 4: Three possible cases during the 1D algorithm
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 16 Fig.6: Example of a lock-free Union-Find. Four threads (A, B, C and D) process the following unions: 4 ≡ 3, 4 ≡ 2, 4 ≡ 1 and 4 ≡ 2. The schemas are a timeline of the states of each thread and the operations in memory. A circle corresponds to a read, while an arrow corresponds to a write, the end of the arrow being the value written. An arrow with a circle is a read-modify-write atomic, and the cross stands for a failure (only for CAS). The solid lines for labels represent root labels, while dashed ones correspond to labels whose parent have been set. For the sake of demonstration, threads follow a round-robin scheduling.

1 : 2 :b not null do 3 : 6 : 7 :a = b then return 8 :

 123678 procedure CONNECT(a,b) while if f (b) < f (a) then SWAP(a, b) 4:a, ← FIND-LEVEL-ROOT(parent, a)5: b, ← FIND-PEAK-ROOT(parent, b, f (a)) if b ≺ a then SWAP(a, b) if b ← ATOMICMAX ≺ (parent(b), a))⊲ union parallel strategies depicted in section 3.2, we can actually build a max-tree using only tree merges. It consists in calling CONNECT for every edge in the image as shown in algorithm 5. The complexity of this algorithm is O(G • N ) and thus highly depends on the number of levels G.

Algorithm 7 2 :b not null do 3 : 6 : 7 : 9 :

 723679 parent(b) has been updated by another thread and is stored in b. We still have a ≺ b (otherwise it would have succeeded), thus it retries to connect the updated parent (b) with a. Algorithm 6 uses an ATOMICMAX based on a non-trivial relation that involves comparing gray levels and pixel in-Concurrent lock-free CONNECT with a CAS 1: procedure CONNECT(a,b) while if f (b) < f (a) then SWAP(a, b) 4: a, A ← FIND-LEVEL-ROOT(parent, a) 5: b, B ← FIND-PEAK-ROOT(parent, b, f (a)) if b ≺ a then SWAP(a, b) SWAP(A, B) if a = b then return 8: old ← ATOMICCAS(parent(b), B, a) ⊲ Try if old = B then ⊲ If false → retry 10:
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 78 Fig. 7: Hierarchical computation of the max-tree. (a-b) Local max-trees are first computed on tiles by thread blocks in shared memory and then merged in global memory (c). Each red edge leads to concurrent calls to CONNECT with the corresponding endpoints.

Fig. 9 :

 9 Fig. 9: Connecting columns and tile boundaries. The 4-connected and 8-connected neighborhood (a) and the corresponding max-trees in 4connectivity (b-left) and 8-connectivity (b-right). The simplified connectivity grids for 4-connectivity (c-left) and 8-connectivity (c-right) give the same max-trees.
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 10 Fig. 10: Tile border duplication with tiles of size 4×3. (a) Original image (b) Image with halo. Note that small tiles are used for illustration purposes, but the ratio of duplicated pixels is actually much lower in real cases.
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 11 Fig. 11: The dataset used for benchmarking and the gray-level distribution of these images.

  -with mem. tranfers) 1D-optimized (GPU -with mem. tranfers) Base (GPU -kernels time only) 1D-optimized (GPU -kernels time only) (b) Embedded systems (performance on the microscopy image are missing due to the memory limit).

Fig. 12 :

 12 Fig. 12: Performance comparison of the max-tree computation with CPUs and GPUs on many hardware configurations and various image types. Benchmarks have been run 10 times and error bars represent the standard deviation of the measures.

Fig. 13 :

 13 Fig.13: Impact of the 8-connected neighborhood and the optimized connectivity grid. The processing time of the 4-connectivity kernels is used as a baseline. The processing time of each variant is expressed as a factor of the baseline time and averaged over the hardware configurations from table 1 (lower is better).

TABLE 1 :

 1 Hardware devices in the benchmark setup.

TABLE 2 :

 2 Processing time (in milliseconds) of each kernel with the Desktop 1 configuration on test images.

table 1 (

 1 lower is better).

	Image	Base (8b)	Base (16b)	Halo (16b)
	#1	804 MPix/s 29.7 MPix/s 47.9 MPix/s
	#2	588 MPix/s 18.4 MPix/s 29.6 MPix/s
	#3	539 MPix/s 15.7 MPix/s 26.7 MPix/s

TABLE 3 :

 3 Desktop 1 performance on 16-bit HDR test images compared to 8-bit images.
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