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Max-tree Computation on GPUs

Nicolas Blin, Edwin Carlinet, Florian Lemaitre, Lionel Lacassagne, Thierry Géraud Member, IEEE

Abstract—In Mathematical Morphology, the max-tree is a region-based representation that encodes the inclusion relationship of the

threshold sets of an image. This tree has proved useful in numerous image processing applications. For the last decade, work has led

to improving the construction time of this structure; mixing algorithmic optimizations, parallel and distributed computing. Nevertheless,

there is still no algorithm that benefits from the computing power of the massively parallel architectures. In this work, we propose the

first GPU algorithm to compute the max-tree. The proposed approach leads to significant speed-ups, and is up to one order of

magnitude faster than the current State-of-the-Art parallel CPU algorithms. This work paves the way for a max-tree integration in image

processing GPU pipelines and real-time image processing based on Mathematical Morphology. It is also a foundation for porting other

image representations from Mathematical Morphology on GPUs.

Index Terms—Mathematical morphology, hierarchical image representation, component-trees, max-tree, graph algorithms.

✦

1 INTRODUCTION

O RIGINALLY from the mathematical morphology field,
component trees are powerful and versatile structures

that organize the level sets of an image as tree. The min-
and max-trees were first introduced in [2], motivated by the
gain in interest for connected operators. Connected filters
preserve the contours of the objects of an image by merging
only its flat zones. These operators have been known for
quite a long time and date back to the 90s [3], [4], but they
are still widely used in today’s image processing pipelines
for efficient pre- or post-processing steps (e.g., background
removal for brain lesion detection [5], noise removal [6]).

Connected filters are directly linked to the min- and
max-trees as these structures enable simple and efficient
implementations of such filters [7]. These trees facilitate the
development of more advanced forms of filtering: based on
attributes [8], [9], with non-trivial filtering rules [10], or with
new generation connectivities [11]. Some uses of the max-
tree are illustrated in figure 1.

Beyond filtering and image processing, component trees
are used in computer vision-related tasks. For instance,
pattern spectra and attribute profiles, that compute the
distribution of sizes and shapes of image regions, have
been used with success in classification of satellite and
astronomical images [12], [13], [14] and content-based image
retrieval [15], [16]. Maximal Stable Extremal Regions [17]
are well-known descriptors used to find correspondences
between images and fast linear algorithms are based on the
max-tree [18]. Region-based analysis using morphological
trees have also been used in medical imaging, e.g., for blood
vessel segmentation [19] and 3D visualization [20].

Min- and max-trees are also at the basis of other image
representations. In [21], a self-dual hierarchical representa-
tion, the tree of shapes (ToS), encodes the inclusion of the
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level lines. It is computed by merging the min- and max-
trees. Later, [22] propose a ToS construction pipeline where
the last stage consists of a max-tree computation.

When it comes to deploying image processing meth-
ods, fast algorithms are required. This might be due to
some real-time constraints, or because the amount of data
to process is increasing steadily. A typical pipeline using
the max-tree has three steps: construction of the max-tree,
attribute computation and filtering, and image restitution.
However, more than 90% of the pipeline duration is spent
in the construction of the tree [23]. Many algorithms have
been developed for speeding-up the max-tree computation.
So far, the proposed optimization techniques can roughly
come under one of these three categories: (a) algorithmic
optimizations, i.e., choosing between a top-down or a bot-
tom-up construction with adapted data structures [18], [24],
[25]; (b) thread level parallelism, i.e., classical parallelism for
multiprocessors with shared memory (SMP) [26], [27], [28];
(c) distributed computing, i.e., joint max-tree computation
between distributed memory [29], [30]. To the best of our
knowledge, this is the first time a max-tree algorithm is
proposed for massively parallel architectures and fits the
SIMT paradigm of GPUs.

The paper is organized as follows. In section 2, we recall
the definition of the max-tree and in section 3, we provide
an overview of the sequential, parallel and distributed State-
of-the-Art max-tree computation algorithms. We also make
some links with the Connected Component Labeling algo-
rithms, in particular those dedicated to GPUs as they will
be the base of our proposal. In section 4, we depict our pro-
posed max-tree algorithm with implementation details for
hierarchical memory models. In section 5, we propose some
optimized version taking advantages of the super-efficient
max-tree algorithm for 1D-signals, and extra optimizations
to handle the 8-connected grid and high-quantized images.
In section 6, we compare the performance of our algorithms
to the State-of-the-Art sequential and parallel ones on three
ranges of architectures (desktop stations, mobile devices
and servers). Last, we give perspectives in section 7 and
conclude in section 8.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

16

6

3 2

1 8

7

4 1 1
λ < 4

16

6

3 2

1 8

7

4 1 1

Tree pruning

(a) Document image filtering. (b) Salient object detection.

Fig. 1: Image processing with the max-tree. (a) Background extraction for document image analysis with a morphological black top-hat. The min-tree
is pruned by removing connected small peak components (< 4 pixels that do no touch the border. The residue (filtered components) forms the
clean text and the background is removed. (b) Salient object detection for scene analysis [1]. A morphological tree is used to compute the Dahu
distance from image borders. This distance that mixes geodesic distance and gray-level distances can be computed using a tree similar to the
max-tree (the tree of shapes).
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Fig. 2: Level set decomposition of an image and its max-tree. The
connected components of [f ≥ λ] are included in those from [f ≥ λ−1]
and form an inclusion tree.

2 FOREWORDS

2.1 Mathematical preliminaries

Let f : Z2 → N be a 2D regular image of N pixels having
values on a totally ordered set of G grayscale levels. Let
N be a neighborhood on the 2D grid (typically the 4- or 8-
connectivity). Given a set of points X , we note CC (X) ⊂
P(Z2) the set of the connected components of X given the
neighborhood N .

Let λ ∈ N be a gray level, [f ≥ λ] is the upper level set of
f at level λ and CC ([f ≥ λ]) are the upper components. The
upper peak component of a pixel x at level λ noted Pλ

x is the
upper component U ∈ CC ([f ≥ λ]) such that x ∈ U . When
λ is omitted as in Px, λ is implicitly f(x), and Px is said to
be the upper level component of x.

The family {CC ([f ≥ λ])}λ is increasing, each element
of CC ([f ≥ λ+1]) being included in those of CC ([f ≥ λ]),
this family can be represented with an inclusion tree called
the max-tree as shown in figure 2.

2.2 Max-tree representation

Max-trees can be represented in a compact way using the
representation from [24]. A node of the max-tree represents
a peak component and the edges stand for the inclusion of
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Fig. 3: parent image encoding the max-tree of figure 2. (a) is the max-
tree to encode, some pixels appear underlined as they are randomly
chosen to be the canonical elements. The parent relation appears in
blue in (b). (b) is not path-compressed as some pixels point to non-
canonical elements. (c) is the result of the canonicalization of (b).

these components. A node stores only the pixels that are not
already part of some “sub”-nodes. In figure 3-a, the node
at level 13 represents the component {A,B,C} but only
stores the pixel B (A and C already belong to some other
nodes). This encoding enables one pixel to be associated to
exactly one max-tree node. Then, an image parent is used
to store the inclusion relationship between nodes (figure 3-
b). For that purpose, a node is represented by only one of
its pixels, the so-called canonical element. Every other pixel
that belongs to the node is linked to the canonical element
(directly or indirectly by other non-canonical elements of the
node). A tree is said canonical if every path is compressed,
i.e., if every pixel directly links to a canonical element.
Canonicalization consists in following the parent path from
each pixel to the first canonical element and replacing it by a
direct edge (figure 3-c). The parent image in figure 3-b is not
canonical, because some pixels (namely B, D, G, I) do not
point to canonical elements. Since the canonical elements
are arbitrarily chosen, there may exist several valid parent
images. To ensure the uniqueness of the representation, we
need a total ordering between pixels, e.g. the scanning order,
that designates the bottom-right most pixel as the canonical
element of the component. More formally, let ≺ be the total
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order between pixel:

p ≺ q ⇔ f(p) < f(q) or (f(p) = f(q) and p > q)

A special point null is used as the root’s parent and
verifies ∀p,null ≺ p (it is the infimum over ≺). The par-
ent image should also meet the following two conditions.
(a) ∀p, parent(p) ≺ p, and (b) ∀p, parent(p) is canonical (the
tree is canonicalized)

3 STATE-OF-THE-ART

3.1 Sequential Max-tree algorithms

Immersion-based algorithms [24], [25] are based on the
Tarjan’s Union-Find (UF) [31] algorithm that builds the tree
from leaves to root. These algorithms start by sorting the
pixels of the image w.r.t. their grayscale level. Disjoint sets
are created for each pixel, and are merged in increasing or-
der according to their gray level. The process is similar to the
Union-find based connected component labeling algorithms
where each connected set is encoded as a tree, but it adds
a constraint on the merge order. The algorithm is sketched
on algorithm 1. It relies on three operations that update the
disjoint trees:

• MAKE-SET(parent, x) creates the singleton set {x}. It
basically sets parent(p)← null

• FIND-ROOT(parent, x) follows the chain of parent up to
the root.

• UNION(parent, x, y) merge x’s and y’s trees and set x as
the new root.

Union-find based algorithms have a quasi-linear com-
plexity, provided that: (a) the pixels can be sorted in linear
time (e.g., using radix-sort); (b) FIND-ROOT implements the
path-compression technique that updates the parent pointer
of all the nodes of the chain (it also implies having two
separate structures, one encoding the compressed tree and
another one encoding the real max-tree); (c) UNION uses
the union-by-rank technique and chooses the new root so
that the tree remains balanced. Once the tree has been con-
structed, the FLATTEN procedure in algorithm 1 is responsi-
ble for canonicalizing the tree. The nodes are traversed from
root to leaves to propagate the canonical property. Indeed, at
line 4, parent(q) is ensured to be a representative node.

Flood-based algorithms [2], [18], [32], [33] proceed in
the opposite way and build the tree from root to leaves.
They start from a point (generally the root, i.e. the global
minimum) and flood the peak component located at this
point with a depth-first traversal graph pattern. The pixels at
the border of this peak component are queued in a priority
queue for later processing. Once the peak-component is
flooded, a local subtree has actually been built and is then
attached to the parent node. Then, the process continues
in a recursive way with the point at highest priority in
the queue. The process ends when the whole image is
flooded. Flood-based algorithms are generally faster than
their union-find based counterparts, especially for low-
dynamic range images [34] where stacks and hierarchical
queues are used to remove the recursion and efficiently
implement the processing queue.

Algorithm 1 Scheme of a union-find-based max-tree algo-
rithm.

1: procedure MAXTREE(f )
2: S ← sort (≺) pixels increasing
3: for all p do parent(p)← undef

4: for p in S backward do
5: MAKE-SET(parent, p)
6: for n in N (p) do
7: if parent(n) 6= undef then
8: r ← FIND-ROOT(parent, n)
9: if r 6= p then UNION(parent, p, r)

1: procedure FLATTEN(f )
2: for p in S forward do
3: q ← parent(p)
4: if q is not null and f(parent(q)) == f(q) then
5: parent(p)← parent(q)

Algorithm 2 1D-Maxtree algorithm.

1: function UNSTACK(f, r, lvl)
2: while !StackEmpty() and lvl ≤ f(StackTop()) do
3: parent(r)← StackPop()
4: r ← parent(r)

return r

5: procedure 1D-MAXTREE(f, parent)
6: r ← start index

7: for all p starting at start index+ 1 do
8: if f(r) < f(p) then
9: StackPush(r)

10: r ← p

11: else if f(r) = f(p) then parent(p)← r

12: else
13: r ← UNSTACK(f, r, f(p))
14: if f(r) > f(p) then
15: parent(r)← p

16: r ← p

17: else parent(p)← r

18: r ← UNSTACK(f, r,−∞)
19: parent(r)← null

1D-Maxtree algorithm [35] is a linear algorithm (al-
gorithm 2) dedicated to the max-tree computation of 1D-
signals. It is single pass and very memory efficient as it only
requires a constant-size stack (actually O(min(G,N))).

The algorithm iterates over the 1D image starting at
start index and acts based on the gray level difference
between the current and last pixel (p and r respectively).
Three cases can arise as depicted in figure 4. If the gray level
increases (f(r) < f(p)), last pixel is pushed into the stack,
creating a new connected component. If the gray level stays
the same (f(r) = f(p)), the current connected component

r

p

(a)

r p

(b)

r

p

(c)

Fig. 4: Three possible cases during the 1D algorithm
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Fig. 5: Merging max-trees. (A) Two disjoints trees to merge by linking
a and b. (B) The corresponding branches are followed until the nodes
to merge are found. (C) The parent pointer of b is updated, and the
connection is made recursively with the old parent.

Algorithm 3 Algorithm used to merge two max-trees.

1: function FIND-PEAK-ROOT(parent, x, lvl)
2: q ← parent(x)
3: while q not null and lvl ≤ f(q) do
4: x← EXCHANGE1(q, parent(q))

5: return x, q

1: function FIND-LEVEL-ROOT(parent, x)
2: return FIND-PEAK-ROOT(parent, x, f(x))

1: procedure CONNECT(a,b)
2: while b not null do
3: if f(b) < f(a) then SWAP(a, b)

4: a, ← FIND-LEVEL-ROOT(parent, a)
5: b, ← FIND-PEAK-ROOT(parent, b, f(a))
6: if b ≺ a then SWAP(a, b)

7: if a = b then return
8: b← EXCHANGE(parent(b), a) ⊲ merge-set

is extended. The last case, when the gray level decreases,
is divided into three scenarios: If the stack is empty, no
intermediate component exists between p and r, thus p

directly becomes r parent’s. If the stack is not empty, the
parent of p might be in the stack. The UNSTACK() function
pops the stack as long as the levels are greater than the
current level, linking components in the stack along the way.
If a lower gray level is found at the top, p is the intermediate
component between the last and current stack top thus r

becomes parent of p. Else, the stack has been emptied, there
is no intermediate component (and thus f(r) > f(p)), p can
be set as parent of r. Finally, if there are elements left in the
stack we can directly link them together using UNSTACK()
and set the last element as the root of the tree.

3.2 Parallel and distributed max-tree algorithms

Merge-based algorithms rely on a divide-and-conquer strat-
egy to compute the max-tree. The image is split into tiles for
which local max-trees are computed. Then, the local max-
trees are merged hierarchically with a reduction pattern
by connecting the pixels on the tile boundaries. Figure 5
illustrates the merge of two max-trees that have to be con-
nected through the edge (a, b). The corresponding algorithm
is given in algorithm 3. First, FIND-PEAK-ROOT follows up
the chains of a and b to reach the nodes that have to be
updated. Supposing f(a) < f(b), it requires reaching the
level-root of a (because it may not be the canonical element),

1. x←EXCHANGE(p,q) := old← p; p← q;x← old;

and then, reaching the root of the peak component P f
b (a)

(i.e., the highest node with level not greater than f(a)). The
procedure returns the canonical node and its parent (which
is not used for now). If nodes have both the same level, the
merge applies on flat-zones, we need to select the “smallest”
representative in terms of ≺ to be the new root. The parent
of b is updated and CONNECT is called recursively on the
parent until reaching the root.

This process is well-adapted to the parallel construction
of the max-tree because each tile computation is indepen-
dent. The first parallel algorithms [26], [27], [28] were using
this algorithm on shared-memory systems with scalable
results (almost linear in the number of threads). As images
grew in size, the same strategies were adopted for a dis-
tributed computation of the max-tree [29], [36] with the extra
burden of minimizing memory exchanges between (cluster)
nodes using border max-trees. This idea is even pushed fur-
ther in [30], [37] with a distributed max-tree representation
based on border max-trees that avoids storing the final tree
in shared-memory and enables distributed tree processing.

3.3 Connected Component Labeling on GPU

As Max-Tree computation is close to Connected Component
Labeling (CCL), it is interesting to look at the State-of-the-
Art for CCL algorithms. The first algorithms for CCL on
GPU date back to the late 00s [38] and were repeating a
label propagation until stability. However, they have been
superseded in image processing by concurrent algorithms
based on the Union-find (UF) structure to compute the
equivalences between pixels.

Concurrent Union-Find is an old problem [39], [40],
but until recently, it was not used for CCL. The first CCL
implementation on GPU came in 2015 from Komura [41]
using a concurrent Union-Find. The paper also introduces
the Komura Equivalence (KE) that modifies the initialization
step of the UF to resolve some equivalences on-the-fly and
avoids the creation of temporary single-node equivalence
trees. In 2018, the Playne algorithm [42] improves upon KE
by analyzing pixel patterns in order to avoid redundant
merge operations. In 2018, the HA algorithm [43] sped up
the Playne algorithm by using small segments (32-pixel
wide, the warp size) of pixels and CUDA intrinsics. Later, in
2019, the BKE algorithm [44] (Block-based Komura Equiva-
lence) improves the Playne algorithm by exploiting a prop-
erty of 8-connected components to process pixels in 2 × 2
blocks. In 2021, the Full-Length Segment Labeling is able
to tackle segment longer than the warp size, and advanced
algorithmic optimizations reduce the voting bottleneck of
Connected Component Analysis algorithms [45].

The concurrent Union-Find consists in retrying to link
two roots in a CAS-loop. If the higher root is updated by
another thread, the link is retried with the new parent of
the formerly higher root. This algorithm is in fact wait-free
as the work of a thread is bounded by the height of the
resulting tree. It is detailed in algorithm 4. While the original
concurrent Union-Find was using a CAS for the retry, [41]
used an ATOMICMIN to leverage the natural ordering of
labels and reduce the practical number of retries.

Figure 6 is a timeline example that demonstrates how
multiple threads can concurrently modify the Union-
Find structure. It also shows the difference between the
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Algorithm 4 Concurrent Union-Find on GPU for Connected
Component Labeling.

1: procedure FIND-ROOT(L, a)
2: while a 6= L[a] do
3: a← L[a]

4: return a

1: procedure UNION(L, a, b)
2: a← FIND-ROOT(L, a)
3: b← FIND-ROOT(L, b)
4: while a 6= b do
5: if b < a then SWAP(a, b)

6: c← ATOMICMIN(L[b], a)
7: if c = b then return
8: b← c
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Fig. 6: Example of a lock-free Union-Find. Four threads (A, B, C and
D) process the following unions: 4 ≡ 3, 4 ≡ 2, 4 ≡ 1 and 4 ≡ 2. The
schemas are a timeline of the states of each thread and the operations
in memory. A circle corresponds to a read, while an arrow corresponds
to a write, the end of the arrow being the value written. An arrow with
a circle is a read-modify-write atomic, and the cross stands for a failure
(only for CAS). The solid lines for labels represent root labels, while
dashed ones correspond to labels whose parent have been set. For the
sake of demonstration, threads follow a round-robin scheduling.

ATOMICCAS-based function and the ATOMICMIN-based
one (respectively figure 6a and figure 6b). We can clearly
see that the ATOMICMIN version have one less read-modify-
write atomic, and that the final tree is flatter (label 4 points
to label 1 directly).

4 A MAX-TREE ALGORITHM FOR GPUS

4.1 Sort-less max-tree algorithm

The first step of algorithm 1 consists in sorting the pixels
so that merging the disjoints subtrees with the union-find
occur from the leaves to the root of the max-tree. Using the

Algorithm 5 Sort-less max-tree algorithm.

1: procedure MAXTREE(f)
2: for all pair of neighbors (p, q) do
3: CONNECT(p,q)

1: procedure FLATTEN(f)
2: for all p do
3: q ← parent(p)
4: parent(p)← FIND-LEVEL-ROOT(parent, q)

Algorithm 6 Concurrent lock-free version of algorithm 3

1: procedure CONNECT(a,b)
2: while b not null do
3: if f(b) < f(a) then SWAP(a, b)

4: a, ← FIND-LEVEL-ROOT(parent, a)
5: b, ← FIND-PEAK-ROOT(parent, b, f(a))
6: if b ≺ a then SWAP(a, b)

7: if a = b then return
8: b← ATOMICMAX≺(parent(b), a)) ⊲ union

parallel strategies depicted in section 3.2, we can actually
build a max-tree using only tree merges. It consists in
calling CONNECT for every edge in the image as shown
in algorithm 5. The complexity of this algorithm is O(G ·N)
and thus highly depends on the number of levels G.

4.2 Concurrent computation of the max-tree

As it stands, the current algorithm cannot be run concur-
rently as there may be data races when updating the parent
pointer in algorithm 3 in line 8. Even if read and write
operations were atomic, an update might not be seen by the
other threads (lost-update problem). The solution lies in the
same technique used for the concurrent labeling algorithm
exposed in section 3.3. A read-modify-write operation is
used when updating the parent pointer. The situation is a
bit more complex as we need to select the right node if a
conflict occurs. In algorithm 4, ATOMICMIN is used because
the representative is chosen to be the lowest label. Choosing
the minimum (or the maximum) prevents the creation of
cycle that could occur with concurrent updates.

With the max-tree, the same problem arises if there is no
total order imposed on pixels. In algorithm 6, line 8 uses
ATOMICMAX based on ≺ to select the right parent when
concurrent updates occur. Suppose that the parent of a node
has to be updated concurrently with q1, q2 and q3. The new
root will be the “lowest” one (i.e., the one with the highest
level). If there are several “lowest” nodes, we then need to
select the right representative which is the most bottom-
right node. In case of conflict, two cases occur:

• The ATOMICMAX updates the value and makes
progress. In this case, the old value of parent(b) is held
in b, we need to merge the old parent node with a.

• The ATOMICMAX does not update the value and fails to
make progress. parent(b) has been updated by another
thread and is stored in b. We still have a ≺ b (otherwise
it would have succeeded), thus it retries to connect the
updated parent (b) with a.

Algorithm 6 uses an ATOMICMAX based on a non-trivial
relation that involves comparing gray levels and pixel in-
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Algorithm 7 Concurrent lock-free CONNECT with a CAS

1: procedure CONNECT(a,b)
2: while b not null do
3: if f(b) < f(a) then SWAP(a, b)

4: a,A← FIND-LEVEL-ROOT(parent, a)
5: b, B ← FIND-PEAK-ROOT(parent, b, f(a))
6: if b ≺ a then SWAP(a, b) SWAP(A,B)

7: if a = b then return
8: old← ATOMICCAS(parent(b), B, a) ⊲ Try
9: if old = B then ⊲ If false→ retry

10: b← old

dexes, but most GPUs support atomic operation on trivial
types only. To overcome this limitation, the parent image is
used to store 32-bit records such that comparing the records
with ≺ is equivalent to comparing the binary representation
of the record. Using the LSB 0 bit numbering, parent(x) stores
in 32 bits:

x’s current level x’s parent level x’s parent index

32 24 16 0

Supposing the pixel are 1-based indexed, the null value
is thus encoded with 0 (0 for all fields). In algorithm 6, line
8 becomes:

8: newB ← [f(b), f(a), a]
9: [ , , b]← ATOMICMAX(parent(b), (uint32_t)newB)

When parent(x) is updated, the current level always
remains the same, but the parent level and the parent index
might be updated by this new parent if they are greater
than the original ones.

This representation works for images with at most
216 − 1 pixels because the parent index is 1-based and
encoded in 16 bits. To handle 32-bit indexes, this represen-
tation can be extended to 64 bits at the cost of doubling
the shared memory usage. Alternatively, an ATOMICCAS
(see algorithm 7) can be used instead of this representation
but leads to more retries. Indeed, in case of conflicts, only
one thread makes progress with a CAS; while using an
ATOMICMAX, several threads may update the same parent
in the same turn.

4.3 Concurrent max-tree computation pipeline

The algorithm has been adapted to fit the hierarchical mem-
ory model of CUDA and minimize global memory loads
and stores. It has three main parts depicted in figure 7.

Local max-tree construction. The image is tiled into
blocks with as many threads as pixels in the block. (a) All
the threads start with loading the input image values into
the field current level of the parent image in shared memory;
– the size of the block is small enough for using 16-bit
local indexes – (b) CONNECT is called for every pair of
neighbors (twice per thread if using the 4-connectivity) as
shown in figure 7b; (c) the parent image is flattened to make
the local max-tree canonical; (d) the parent image block is
copied from shared memory to global memory, converting
local indexes to 32-bit global indexes.

Global max-tree merging (figure 7c). The local max-
trees have to be merged along the block boundaries. With

(a) Tiling (b) Local max-trees

(c) Max-tree merging on boundaries

Fig. 7: Hierarchical computation of the max-tree. (a-b) Local max-trees
are first computed on tiles by thread blocks in shared memory and then
merged in global memory (c). Each red edge leads to concurrent calls
to CONNECT with the corresponding endpoints.

(a) (b)

Fig. 8: 1D-optimized max-tree building. Two thread warps first build
the column max-trees (a) then merge concurrently by iteratively calling
CONNECT on the both side of the boundaries (b).

as many threads as the number of pixel pairs on the block
boundaries, CONNECT is called with the pair of pixels along
vertical and horizontal boundaries. The merge acts on global
memory with 32-bit indexes (so using algorithm 6).

Flattening. The parent image is tiled into blocks and each
block is flattened.

5 ALGORITHMIC VARIATIONS

5.1 Optimized local max-tree

As depicted in section 4.1, to build a max-tree on GPU,
one could just call the concurrent CONNECT for every edge
in the image. This has the drawback of generating many
concurrent writes which hurts performance [45] even when
issued in shared memory. To reduce the number of calls to
CONNECT, local max-trees are first built column-wise using
the 1D algorithm depicted in algorithm 2 (see figure 8-
a). This algorithm is inherently fast because there are no
data dependencies between threads. Inside each tile, each
thread inside each thread block starts by fetching the first
pixel of its column i.e. the first line of the tile. As each
thread unravels its execution path, the thread block keeps
on fetching, in a coalesced manner, the lines of the tile.
Since each thread is working on its own column max-tree,
no atomic nor syncing operations are required. There are
also no bank-conflict as each thread works on its own bank.

Once local max-trees are built inside the tile, each thread
(besides the last one) sweeps again top to bottom, calling
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Fig. 9: Connecting columns and tile boundaries. The 4-connected and
8-connected neighborhood (a) and the corresponding max-trees in 4-
connectivity (b-left) and 8-connectivity (b-right). The simplified connec-
tivity grids for 4-connectivity (c-left) and 8-connectivity (c-right) give the
same max-trees.

the concurrent CONNECT on each of the remaining edges
(figure 8-b). This effectively cuts by half the number of
CONNECT needed and significantly improves performance.

5.2 Grid simplification for 8-connection

The extension to 8-connectivity is straightforward. When
merging columns or tiles, one just needs to call CONNECT

in the diagonal directions (see figure 9a). It follows that
the number of CONNECT calls doubles during the local
construction of the Base algorithm and triples when merg-
ing columns or at tile boundaries. This is experimentally
confirmed in section 6.2, showing that the processing time
of the base algorithm increases by 120% on average, while
the time of the 1D-optimized algorithm is multiplied by a
factor 2.5. Again, it confirms that CONNECT is an expensive
operation, and we should minimize its use.

Let f be an image with two disjoints rectangular regions
that connect over the boundary pixels U = {u1, u2, · · ·un}
and V = {v1, v2, · · · vk}. Let E be the set of edges
that connects U to V . Considering the 4-connected grid
G4, E =

⋃
1≤k≤n Ek where Ek = {(uk, vk)}, i.e, there

are n calls to CONNECT. With the 8-connected grid G8,
Ek = {(uk, vk), (uk−1, vk), (uk, vk−1)} (for k > 1), so there
are three calls to CONNECT for each k. To reduce the number
of calls to CONNECT, we rely on the following propositions.

Proposition 1. Considering the 8-connectivity, the max-tree of
f with edges E is equivalent to the max-tree of f with the set of
edges E′ = ∪E′

k where E′
1
= E1 and for k > 1:

E
′

k =



















{(uk, vk)} if f(uk) > f(uk−1) ∧ f(vk) > f(vk−1)

{(uk−1, vk)} if f(uk) ≤ f(uk−1) ∧ f(vk) > f(vk−1)

{(uk, vk−1)} if f(uk) > f(uk−1) ∧ f(vk) ≤ f(vk−1)

∅ otherwise

Proof. It is worth mentioning that an edge (u, v) is only
involved in the construction of Pα

u and Pα
v with α ≤

min(f(u), f(v)). Let k ∈ N, 1 ≤ k ≤ n and

(a,A) = (uk, uk−1) if f(uk) < f(uk−1) else (uk−1, uk)

(b, B) = (vk, vk−1) if f(vk) < f(vk−1) else (vk−1, vk)

a b c d e f g h

i j k l m n o p

q r s t u v w x

y z a b c d e f

(a)

a b c d d e f g g h

i j k l l m n o o p

q r s t t u v w w x

q r s t t u v w w x

y z a b b c d e e f

(b)

Fig. 10: Tile border duplication with tiles of size 4×3. (a) Original
image (b) Image with halo. Note that small tiles are used for illustration
purposes, but the ratio of duplicated pixels is actually much lower in real
cases.

Then (a, b), (a,B) and (A, b) are useless edges in the max-tree
construction as they do not change the peak components.

Let α = min(f(a), f(b)). a and b connects through the path
a ↔ A ↔ B ↔ b, with min(f(A), f(B), f(a), f(b)) ≥ α, so
Pα
a = Pα

b with or without (a, b).
Let α = min(f(a), f(B)). a and B connects through the path

a ↔ A ↔ B with min(f(a), f(A), f(B)) ≥ α, so Pα
a = Pα

B with
or without (a,B).

Let α = min(A, b). A and b connects through the path A ↔
B ↔ b with min(f(A), f(B), f(b)) ≥ α, so Pα

A = Pα

b with or
without (A, b).

By recursively removing the useless edges for all k (in
whichever order), proposition 1 holds. Note that the edge
(uk−1, vk−1) might be missing for some k. Nevertheless, the
equivalence holds as there still exists an equivalent path.

Proposition 2. Considering the 8-connectivity, the max-tree of
f with edges E′ is equivalent to the max-tree of f with the set of
edges E′′ = ∪E′′

k where E′′
n = E′

n and for k < n:

E
′′

k =

{

E′

k \ {(uk, vk)} if f(uk) < f(uk+1) ∨ f(vk) < f(vk+1)

E′

k otherwise

Proof. Similar to the previous proof. There exists an alterna-
tive path that do not pass by (uk, vk).

From proposition 1 and proposition 2, it follows that
|E′′

k | ≤ 1. In the context of the merging tile boundaries, it
follows that there is at most one CONNECT per thread. The
grid simplification can also be applied with the 4-connected
grid using proposition 3 which also makes it possible to
remove some unnecessary calls to CONNECT.

Proposition 3. Considering the 4-connectivity, the max-tree of
f with edges E is equivalent to the max-tree of f with the set of
edges E′′′ = ∪E′′′

k where:

E
′′′

k =











∅ if min(f(uk−1, f(vk−1)) < min(f(uk), f(vk))

∅ if min(f(uk+1, f(vk+1)) < min(f(uk), f(vk))

Ek otherwise

In figure 9c, we illustrate the grid simplification of the
fully connected grid depicted in figure 9a and show that
they lead to the exact same max-trees. The dashed edges
for 8-connected simplified grid represent the edges removed
from E′ to E′′.

5.3 High dynamic range (HDR) images

As it stands, nothing prevents the current algorithm from
running on high-quantized data. However, as described
in [34], CONNECT is not efficient for those data as its
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Configuration Device Model

Embedded CPU Jetson TX1 - 4 ARM Cortex-A57 @ 1.9Ghz
Embedded GPU Jetson TX1 - 256 Maxwell Cores @ 1.3Ghz
Desktop 1 CPU 2 i7-7567U cores @ 3.50GHz
Desktop 1 GPU GeForce GTX 1650 - 896 Cores @ 1.5Ghz
Desktop 2 CPU 6 i7-9750H cores @ 2.60GHz
Desktop 2 GPU GeForce RTX 2060 - 2176 Cores @ 1.4Ghz
Compute 1 CPU 20 Xeon Silver 4210 cores @ 2.20GHz
Compute 1 GPU Quadro RTX 8000 - 4608 cores @ 1.4Ghz
Compute 2 CPU 16 Xeon Silver 4110 cores @ 2.10GHz
Compute 2 GPU Tesla V100 - 5120 cores @ 1.3GHz

TABLE 1: Hardware devices in the benchmark setup.

(a) Ancient Map (#1)
11136×7711 = 86 MPix

(b) Satellite (#2)
6000×4000 = 24 MPix

(c) Medical brightfield microscopy (#3)
27744×24352 = 675 MPix
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0.05

0.06

0.07
Ancient Map (#1)
Satellital (#2)
Medical (#3)

(d) Gray levels distribution

Fig. 11: The dataset used for benchmarking and the gray-level distribu-
tion of these images.

performance depends on the length of the branch (that
drastically increases with the number of grayscale levels).
In [29], the authors suggest duplicating the tile boundaries
(called halo, see figure 10) so that CONNECT is called in
global memory on two nodes with the same levels. The
CONNECT procedure could be seen as two stages. The first
step consists in traversing the chain to reach the nodes to
merge, while the second step consists in merging the linked-
lists of nodes. The halo technique enables us to reduce the
amount of work done by the first step.

6 PERFORMANCE EVALUATION

6.1 Base benchmark

We compare the performance of our GPU implementation
to the State-of-the-Art CPU ones. For the CPU part, the se-
quential Salembier’s algorithm (Salembier ST) implemented
without recursion and pre-allocated priority queues are
used. The parallel version (Salembier MT) uses a divide-and-
conquer strategy. It runs Salembier’s algorithm on tiles and
merges the trees hierarchically as described in [34]. The two
GPU versions are the algorithm described in section 4 (Base)
and its 1D-optimization from section 5.1 (Optim 1D). They
are benchmarked with and without the memory transfer
from and to the host memory. We have benchmarked on
three profiles: embedded systems, desktop computers, and
compute servers. Their descriptions are shown in table 1.

# Algorithm Local trees Merge Global Flatten Total time

1 Base 88.7 (49%) 71.7 (40%) 19.8 (11%) 180.2
1 Optim 1D 45.3 (33%) – (52%) – (15%) 136.9

2 Base 23.0 (61%) 9.4 (25%) 5.3 (14%) 37.8
2 Optim 1D 11.7 (44%) – (36%) – (20%) 26.5

3 Base 646.9 (50%) 521.9 (40%) 120.4 (9%) 1289.2
3 Optim 1D 358.5 (36%) – (52%) – (12%) 1000.3

TABLE 2: Processing time (in milliseconds) of each kernel with the
Desktop 1 configuration on test images.

The benchmark also includes several image types shown
in figure 11 (satellite images, medical images, and docu-
ments) to consider the variability of real image contents.

As one can see on figure 12, our GPUs versions out-
perform the sequential and the parallel version running
on CPUs on comparable devices by at least a factor 5 on
a single image. However, when processing a stream of
images, the transfer latency from the host memory can be
hidden and only the GPU kernel time has to be taken. Then,
performance of 1D Optimized is one order of magnitude
higher than those on CPU.

When comparing the GPU algorithms, the 1D-
optimization improves the performance by about 30% on
average. Table 2 shows the kernel time distribution for the
base algorithm and for the local max-tree optimized version.
As one can see, the relative time spent by kernels depends
on the image content, but the latter does not change the
overall “kernel ordering”. Also, while the timings are for the
Desktop 1 configuration, the time distribution on the other
architectures varies by ±10%, but this is still representative
to all test configurations. As depicted in table 2, the local
max-trees computation time that represents more than half
the GPU compute time is reduced by 50%. Several factors
may explain this performance gain. First, the work per
thread is much higher, because a single thread processes a
full column (16× higher, because the columns are 16 pixels
high). While it reduces the theoretical occupancy of the
Streaming Multiprocessor (SM) and the number of active
warps per SM, it actually leads to less contention between
threads, because it reduces the number of concurrent atomic
writes trying to update the same parent. From our experi-
ment, the stall of individual warps (mostly due to atomics)
and the thread divergence (mostly due to the FIND-PEAK-
ROOT loop) are reduced by 25%.

It is worth mentioning that to speed up column merging
and flattening of our 1D-optimized, another work organiza-
tion was tried. We tried running one thread per pixel, only
using one thread per column during the 1D-construction
part (yielding many idle threads) and then, using all the
threads for column merging and flattening (more parallel
work). However, this approach reduced the performance
and showed that augmenting the work-per-thread to de-
crease the contention when merging was better.
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Fig. 12: Performance comparison of the max-tree computation with CPUs and GPUs on many hardware configurations and various image types.
Benchmarks have been run 10 times and error bars represent the standard deviation of the measures.

6.2 Impact of the 8-connected grid

Figure 13 shows the impact of the 8-connectivity on the
processing time. The processing time of the base algorithm
increases by 120% on average, while the time of the 1D-
optimized algorithm is multiplied by a factor 2.5. Indeed, we
have twice as many edges for the local max-tree computa-
tion but three times as many edges in the global max-tree
merging step. Figure 13 also shows the effect of the grid
simplification on the performance. In particular, the grid
simplification for the 8-connectivity is always beneficial,

and we get back to the same running times as with the
4-connectivity baselines. With a 4-connected neighborhood,
the grid simplification benefits are less obvious. This ex-
hibits an interesting trade-off to have between “more work,
more contention but better work balancing and better parallelism”
and “less work but unbalanced work and less parallelism opportu-
nity”. Indeed, in the extreme case where all boundary edges
are replaced by a single link, a single thread has to merge
the whole branch while the other threads are idle. The level
of work done in parallel eventually drops while the branch
could have been merged by several threads concurrently.
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Fig. 13: Impact of the 8-connected neighborhood and the optimized
connectivity grid. The processing time of the 4-connectivity kernels is
used as a baseline. The processing time of each variant is expressed
as a factor of the baseline time and averaged over the hardware config-
urations from table 1 (lower is better).

Image Base (8b) Base (16b) Halo (16b)

#1 804 MPix/s 29.7 MPix/s 47.9 MPix/s
#2 588 MPix/s 18.4 MPix/s 29.6 MPix/s
#3 539 MPix/s 15.7 MPix/s 26.7 MPix/s

TABLE 3: Desktop 1 performance on 16-bit HDR test images compared
to 8-bit images.

6.3 Impact of the HDR

To figure out the performance penalty of the quantization
on our algorithm, we have transformed the original 24-bit
RGB test images into 16-bit images. Following the proto-
col in [46], the luminance of RGB values is computed by
0.2126R+0.7152G+0.0722B, and the value is quantized on
16 bits. In table 3, the second column shows the performance
of our Base algorithm on 16-bit images and highlights a
drastic slow-down (about 30 times slower). Actually, this
slow-down is mostly due to the merge of max-trees in
global memory that takes 90% of the total compute time.
Indeed, with 16-bit images, there are more (canonical) nodes
and the chain are longer. It follows that we hit the global
memory at more random location (the L2 cache hit rate

· · ·

· · ·

Thread 1

Thread 2

Fig. 14: Unbalanced merge work between threads. If two threads of
the same warp merge two trees but have a low common ancestor, one
thread is stalled and waits for the other to finish.

is less than 40%) and the memory latency is the leading
cause of the thread stalls. Longer chains also induce less
workload balancing between threads. Indeed, suppose that
threads have to merge branches from two disjoint trees, but
the branches meet soon in the hierarchy. One thread is going
to be elected to merge the whole chain, while the others are
being stalled waiting for the elected thread to finish. This
problem is illustrated on figure 14. This thread divergence
causes a low number of active threads per warp (less than 3
actives thread/warp on some images).

With the halo technique, the cost of the first FIND-PEAK-
ROOT in global memory is lower and compensates the extra-
work induced to process the halo as shown in the third
column of table 3 (adding and removing the halo counts
only for 2% of the total time). Even if it improves slightly the
performance, processing 16-bit images is still much slower
than 8-bit images (up to 20 times slower).

Some interesting approaches have been proposed in [46],
where the max-tree construction is “stratified” by buckets.
An extension of our algorithm for high-dynamic images
could probably benefit from these ideas, running the max-
tree construction at different low-quantized bucket and
eventually, merging them.

7 FUTURE WORK

3D images. The presented algorithm can easily be extended
to 3D images. The max-tree algorithm depicted in section 5.1
could build the max-trees of the 2D slices. Then, the max-
trees of the slices would be merged depth-wise just like
we did for merging the 2D tiles vertically and horizontally.
However, adding those z-connections would drastically
reduce performance. Indeed, the maximal 26-connectivity
would lead to a large amount of CONNECT issued in global
memory during global max-tree merging. Even if the grid
simplification trick could probably be extended in 3D,
managing such a high amount of connection in global
memory remains challenging.

Tree of Shapes (ToS) and Alpha-tree. As depicted in [22]
the ToS can be computed using a max-tree algorithm. As
stated, this approach benefits from efficient component-
tree implementation. The newly presented max-tree GPU
algorithm could serve as a foundation for efficient ToS
computation. However, the method from [22] requires that
we first transform the input images with 3 steps, namely in-
terpolation, immersion and propagation. The first two steps can
be trivially parallelized on GPU. Nevertheless, porting the
propagation (that as the name suggests, uses a propagation
flow) remains challenging on GPU.

Our algorithm seems to be also adapted to computing
the α-Tree (a.k.a. the quasi-flat zone hierarchy). In this rep-
resentation, the flat-zones are the leaves of the tree while
the internal nodes are the edges of minimum spanning
tree (MST) ordered by altitude. The most common α-tree
algorithm [47], [48] is based on Kruskal’s MST algorithm
and relies on the Union-Find. In [49], it has been observed
that the α-tree is closely related to computing the min-tree
on the edge graph of an image, and as a consequence, the
adaptation looks straightforward.
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8 CONCLUSION

In this work, the first massively parallel GPU algorithm for
the computation of the max-tree has been presented. By
taking advantages of the non-ending growth of the GPU
computing performance, our algorithm is at least 5 times
faster than the current State-of-the-Art CPU parallel algo-
rithm and one order of magnitude faster when the memory
transfer latency can be hidden. Moreover, we have pro-
posed algorithmic variants that handle the 8-connectivity
with no overhead and no added complexity. This work
will especially benefit the recent researches dedicated to
a distributed max-tree computation for terabyte images
where each cluster node could compute a local max-tree
of some subsection of data with the advantages of our
GPU algorithm. Then, max-trees could be combined with
some wider distributed algorithm. Finally, not only does
this new algorithm enable the integration of the max-tree
computation in GPU pipelines, but it also paves the way to
port to GPUs many max-tree related structures as the Tree
of Shapes.

As a matter of reproducible research, the source code of
the GPU max-tree algorithm is available at https://gitlab.
lrde.epita.fr/nblin/max-tree.
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into a max-tree: a simple and efficient linear algorithm,” in Proceed-
ings of the 25th International Conference on Image Processing (ICIP).
IEEE, 2018, pp. 1488–1492.

[23] R. Souza, L. Tavares, L. Rittner, and R. Lotufo, “An overview of
max-tree principles, algorithms and applications,” in Proceedings
of the 29th SIBGRAPI Conference on Graphics, Patterns and Images
Tutorials (SIBGRAPI-T). IEEE, 2016, pp. 15–23.

[24] L. Najman and M. Couprie, “Building the component tree in quasi-
linear time,” IEEE Transactions on Image Processing, vol. 15, no. 11,
pp. 3531–3539, 2006.
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[28] P. Matas, E. Dokládalová, M. Akil, T. Grandpierre, L. Najman,
M. Poupa, and V. Georgiev, “Parallel algorithm for concurrent
computation of connected component tree,” in Advanced Concepts
for Intelligent Vision Systems, vol. 5259, 2008, pp. 230–241.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[29] M. Gotz, G. Cavallaro, T. Geraud, M. Book, and M. Riedel,
“Parallel computation of component trees on distributed memory
machines,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 11, pp. 2582–2598, Nov. 2018.

[30] S. Gazagnes and M. H. Wilkinson, “Distributed connected compo-
nent filtering and analysis in 2d and 3d tera-scale data sets,” IEEE
Transactions on Image Processing, vol. 30, pp. 3664–3675, 2021.

[31] R. E. Tarjan, “Efficiency of a good but not linear set union algo-
rithm,” Journal of the ACM, vol. 22, no. 2, pp. 215–225, 1975.

[32] W. H. Hesselink, “Salembier’s min-tree algorithm turned into
breadth first search,” Information Processing Letters, vol. 88, no. 5,
pp. 225–229, 2003.

[33] M. H. Wilkinson, “A fast component-tree algorithm for high
dynamic-range images and second generation connectivity,” in
Proceedings of the 18th International Conference of Image Processing
(ICIP), 2011, pp. 1021–1024.
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