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This paper presents an overview of wavelet-based techniques for statistical process monitoring. The use of wavelet has already had an effective contribution to many applications. The increase of data availability has led to the use of wavelet analysis as a tool to reduce, denoise, and process the data before using statistical models for monitoring. The most recent review paper on waveletbased methods for process monitoring had the goal to review the findings up to 2004. In this paper, we provide a recent reference for researchers and engineers with a different focus. We focus on i) wavelet statistical properties, ii) control charts based on wavelet coefficients, iii) wavelet-based process monitoring methods within a machine learning framework. It is clear from the literature that wavelets are widely used with multivariate methods compared to univariate methods. We also found some potential research areas regarding the use of wavelet in image process monitoring and designing control charts based on wavelet statistics, and listed them in the paper.

Introduction

Quality improvement, system performance, and safety operation have attracted much attention in recent years. These aspects can be achieved by implementing a reliable monitoring system, which includes fault detection and isolation/identification procedures that aim at determining whether or not a fault has occurred and which variables are responsible, respectively. Several approaches have been developed to tackle these aspects based on three main ideas: 1) data-driven approach, which is also referred to as statistical process monitoring, that is concerned with the collected data from processes to develop a statistical monitoring model (Atoui et al. 2019a;[START_REF] Yin | A review on basic data-driven approaches for industrial process monitoring[END_REF][START_REF] Chiang | Fault Detection and Diagnosis in Industrial Systems[END_REF], 2) knowledge-based approach that is based on experts [START_REF] Chiang | Fault Detection and Diagnosis in Industrial Systems[END_REF], and 3) model-based approach that requires a priori physical and mathematical knowledge of the process [START_REF] Isermann | Fault-diagnosis systems : An Introduction from Fault Detection to Fault Tolerance[END_REF][START_REF] Chiang | Fault Detection and Diagnosis in Industrial Systems[END_REF]. Obviously, the best way to implement a monitoring system is to use all three approaches because any description (data, expert and physical knowledge) of the process provides useful information and reinforces system understanding. However, the cost and/or technical environment of the process may encumber practitioners and engineers to use the three approaches simultaneously. This paper focuses on data-driven approach or Statistical Process Monitoring (SPM). More particularly, wavelet-based statistical process monitoring methods. The rise of big data technologies has contributed to process data sets available in industrial systems. These data sets are characterised by the 4 V's: Volume (from Terabytes to Zettabytes), Velocity (from Batch to 1 Department of Mathematics and Statistics, University of West Florida, Pensacola, Florida 32514, USA. 2 CNRS Lab-STICC, Universit é Bretagne-sud, France. amine.atoui@univ-ubs.fr Real-time), Variety (from Structured to Unstructured), and Veracity (From Noise to Uncertainty). On the other side, statistical process monitoring serves as an efficient alternative tool where other approaches (modelbased, knowledge-based) may fail to provide satisfactory results, such as in complex systems where it is often tough or impossible to come up with an analytical model.

Wavelet-based techniques are often superior in performance, and that is why they are used in various modern applications such as image processing JPEG2000 and Wavelet Scalar Quantization algorithm for fingerprint images developed by FBI [START_REF] Bradley | FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression[END_REF]; condition monitoring [START_REF] Peng | Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[END_REF]; chemical engineering [START_REF] Reis | Multiscale statistical process control with multiresolution data[END_REF][START_REF] Choi | Nonlinear multiscale modelling for fault detection and identification[END_REF]; machine transmission lines [START_REF] Lebaroud | Classification of induction machine faults by optimal timefrequency representations[END_REF][START_REF] Liang | A wavelet multiresolution analysis approach to fault detection and classification in transmission lines[END_REF]; bearing and gearbox fault detection and diagnosis [START_REF] Zarei | Bearing fault detection using wavelet packet transform of induction motor stator current[END_REF]; wind turbines [START_REF] Sun | Wind turbine fault detection using multiwavelet denoising with the data-driven block threshold[END_REF]; biomedical analysis [START_REF] Akay | Time Frequency and Wavelets in Biomedical Signal Processing[END_REF]; profiles monitoring [START_REF] Mcginnity | Nonparametric changepoint estimation for sequential nonlinear profile monitoring[END_REF][START_REF] Nikoo | Phase ii monitoring of nonlinear profile variance using wavelet[END_REF]; statistics [START_REF] Abramovich | Wavelet analysis and its statistical applications[END_REF], and others (Cohen et al. 2016b,a;[START_REF] Kano | Comparison of multivariate statistical process monitoring methods with applications to the eastman challenge problem[END_REF][START_REF] Gao | Wavelets: Theory and Applications for manufacturing[END_REF][START_REF] Wang | Introduction to orthogonal transforms: with applications in data processing and analysis[END_REF]). In the context of statistical process monitoring, wavelet-based methods are popular for the goal of fault detection and diagnosis. Their significant advantages consist of reducing noise, extracting features, and reducing dimension [START_REF] Jeong | Wavelet-based data reduction techniques for process fault detection[END_REF].

Statistical process monitoring

Traditional statistical process monitoring methods are essential to understand the variation in a process and to assess its current state [START_REF] Woodall | Some current directions in the theory and application of statistical process monitoring[END_REF], such as X-R (Mean-Range), X-S (Mean-Standard deviation), EWMA (Exponential Weighted Moving Average), CUSUM (Cumulative Sum), Multivariate EWMA (MEWMA), MCUSUM, χ 2 , T 2 , Q-statistic, Principal Components Analysis (PCA), Partial Least Squares (PLS), see Figure 1. These methods have been used for decades and still being used because of their simplicity and efficiency to detect assignable faults in the time domain. However, these methods are not able to detect faults in a frequency domain, especially where the time domain cannot provide information about the state of the system. Several techniques in time-frequency domain have been developed and used for process monitoring, such as Linear time-frequency representation (short time Fourier transform and wavelet) and Bilinear time-frequency distribution (e.g. Wigner-Ville, Cohen class) [START_REF] Feng | Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples[END_REF].

Figure 1 shows a categorization of statistical process monitoring approaches. We distinguish the statistical process control, which mainly means control charts techniques. These are graphical tools that are often based on a plotted statistic that monitors a quality characteristic, which can be univariate, multivariate, adaptive, or profile; the control limits define the area where the control chart does not signal. The second group of techniques are machine learning/data-driven techniques, where the data are often subject to processing/feature extraction/feature selection before applying a statistical monitoring model. For example, control chart patterns (CCPs) is a different way to detect faults using machine learning techniques [START_REF] Hachicha | A survey of control-chart pattern-recognition literature (1991-2010) based on a new conceptual classification scheme[END_REF]. Also, principal component analysis is widely present in the literature of SPM as well as its various extensions, such PCA-dynamic (dynamic process), PCA-moving (autocorrelation), PCA-Kernel (non-linear process).

Wavelet-based methods have drawn attention earlier 2000 for process monitoring in order to deal with measurements noise, autocorrelation, non-normal data, and more particularly time-frequency analysis, where the fault detection can be made in different scales or frequency. This is become a considerable subtopic in statistical process monitoring field. Sometimes called mnultiscale statistical process monitoring. However, multiscale analysis can be conducted using other methods such as empirical mode decomposition. We can distinguish techniques that use wavelet coefficients to develop a statistic to plot in a control chart, and techniques that use wavelet analysis as a preprossessing tool before using the classical technique of statistical process monitoring. For example, Multiscale Principal Component Analysis (MS-PCA) that uses wavelet with PCA to denoise data before applying PCA-Hotelling Statistics for fault detection. [START_REF] Kano | Comparison of multivariate statistical process monitoring methods with applications to the eastman challenge problem[END_REF] showed that MS-PCA performs better than DISSIM (Dissimilarity) (Kano et al. (2002a)) and PCA-moving when monitoring Tennessee Eastman Process (TEP).

The scope of the paper

The most recent review paper on wavelet-based methods for process monitoring was published in 2004 by [START_REF] Ganesan | Wavelet-based multiscale statistical process monitoring: A literature review[END_REF]. The authors reviewed the use of wavelet analysis for process monitoring and highlighted the advantages and disadvantages of multiscale methods.

More particularly, they presented the use of wavelet in process monitoring with and without process model. Thresholding techniques were also presented. The goal of this paper is to review the up-to-date findings in order to provide a recent reference for researchers and engineers, so we attempt to avoid duplication of the material listed in that paper. We focus on i) wavelet statistical properties, ii) control charts based on wavelet coefficients, iii) wavelet-based process monitoring methods within a machine learning framework. This paper is organized as follows: Section 2 introduces wavelet and their statistical characteristics; Section 3 presents control charts using wavelets; Section 4 shows the usage of wavelet in a machine learning framework. Finally, in Section 5 conclusions and some possible research directions are presented.

Wavelet for statistical process monitoring

Wavelets were introduced by Jean Morlet in 1983. He came up with the word "wavelet" when he was working on seismic signals as a geophysicist. Afterwards, Grosmann Alex and Yves Meyer [START_REF] Meyer | Wavelets-algorithms and applications[END_REF]) developed the mathematical foundations of wavelets. A historical introduction to the subject of wavelet is presented by [START_REF] Hubbard | The World According to Wavelets The Story of a Mathematical Technique in the Making[END_REF]. The theory of Multi-Resolution Analysis (MRA) developed by [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF] opened the way to apply wavelet to image processing. His work also resulted in the implementation of the Fast Wavelet Transform (FWT) algorithm [START_REF] Misiti | Les ondelettes et leurs applications[END_REF][START_REF] Misiti | Wavelet toolbox[END_REF], and then spreading out the use of wavelet in various applications. Wavelet functions are grouped by families: discrete wavelets that contain [START_REF] Haar | Zur theorie der orthogonalen funktionensysteme[END_REF], Daubechies, Coiflet, Symlet and Biorthogonal (Daubechies 1992;[START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF]; and continuous wavelets such as Morlet and Gaussian [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. A suitable introduction to wavelet analysis is to compare it to Fourier analysis. In fact, Fourier transform is a decomposition that projects data into a sinusoidal base, where each sinusoid corresponds to a frequency and has a coefficient weight, called Fourier coefficients. Similarly, wavelet transform projects data into a wavelet base, where the size of the windowanalysis is variable and not fixed as in Fourier transform. Each window of analysis (given by stretching and shrinking of the mother wavelet) corresponds to a scale of the decomposition and contains the wavelet coefficients. The multiscale representation is given into a Time vs. Scale plan as shown in Figure 2. The data is represented into large scales or resolutions. If you look at the data with a large window (large scale), we would observe "global" features, and if we look at the data with a small window then we would observe "local" features. Wavelet analysis processes the data at different resolutions or scales. An example of Morlet wavelet is given in Figure 3 compared to a sinusoid function.

Mathematically, a wavelet is a square integrable function on Euclidean space R × R * + , usually oscillating and must satisfy some eligibility conditions [START_REF] Daubechies | Ten lectures on wavelets[END_REF][START_REF] Meyer | Wavelets-algorithms and applications[END_REF]. The wavelet transformation is a way to decompose data (signal, image, video, time series, etc.) into a weighted sum of a series of bases localized in time and frequency domains. [START_REF] Mallat | A wavelet tour of signal processing[END_REF][START_REF] Gao | Wavelets: Theory and Applications for manufacturing[END_REF]. Not all wavelet functions have an analytic expression, some are defined by a filter.

Continuous Wavelet Transform (CWT)

The continuous wavelet transform is defined as follows:

cwt(τ, s) = 1 √ s +∞ -∞ x(t)ψ * t -τ s dt, (1) 
where * represents the operation of complex conjugate of the mother wavelet ψ; s ∈ R + * and τ ∈ R indicate the scale and translation parameters, respectively. x(t) is the data. The wavelet coefficients cwt(τ, s) are the convolution result between the data and the wavelet functions. In this transformation, the translation τ parameter is continuous and vary along the data x(t). The transformed data are a function of the translation τ and the scale s parameters. The signal energy here is normalized by dividing the wavelet coefficients by 1 √ s at each scale. An example of the CWT is given in Figure 4. The large scales correspond to low frequencies and vice versa. The most suitable type of wavelet in the investigated case was the Haar wavelet. They used the classification accuracy of their artificial neural networks to select the suitable wavelet. An extensive attention was given to the use of continuous wavelet on rotary machines [START_REF] Peng | Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[END_REF][START_REF] Yan | Wavelets for fault diagnosis of rotary machines: A review with applications[END_REF][START_REF] Chen | Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review[END_REF]. Most of the published papers used CWT to extract featured data in a specific frequency band.

Discrete Wavelet Transform (DWT)

CWT is a redundant transformation since the scale and the translation parameters are changed continuously. Although the redundancy is useful in some applications such as noise reduction and feature extraction, other applications may need computational efficiency. This can be achieved by discretization of the scale s and translation τ parameters, as follows:

ψ j,k (t) = 2 j/2 ψ(2 j t -k), (2) 
where s = 2 j and τ = ks; j, k ∈ Z.

These wavelet bases are orthogonal and defined in the framework of the Multi-Resolution Analysis (MRA), which provides a multiscale decomposition using orthogonal wavelet families across filter banks [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF], see Figure 5. The input signal is downsampled and results in two subsignals. The approximation coefficients a j (k) capture the low frequency or high scale of the input signal (using filter h n ), while the details coefficients d j (k) capture the high frequency or small scale of the input signal. In a multi-scale decomposition the process is repeated as described in Figure 5. The approximation at scale j is successively decomposed in two subsignals: one detail and one approximation. At each scale of decomposition j, we obtain details coefficients d j (k) until we reach the maximum level J where we obtain both approximation and details coefficients. An example of a discrete wavelet transform is given in Figure 6. The data denoted by s is decomposed into 5 levels, therefore we obtain the approximations coefficients a 5 (k) and the details at each scale d 1 , d 2 , d 3 , d 4 , and d 5 . The wavelet coefficients of the DWT, approximations a j (k) and details d j (k), are given as follows:

a j (k) = l i=0 h[i]a j-1 [2k -i],
(3)

d j (k) = l i=0 g[i]a j-1 [2k -i], (4) 
where a 0 = x the original signal, j represents the decomposition scale; k ∈ Z; l is the filter length; h and g are the scaling (low-pass) and wavelet (high-pass) filters, respectively.

The Discrete wavelet transforms provide parsimonious representations, which have the ability to describe data with a limited number of wavelet coefficients [START_REF] Mallat | A theory for multiresolution signal decomposition: the wavelet representation[END_REF][START_REF] Mallat | Characterization of signals from multiscale edges[END_REF]. Therefore, thresholding wavelet coefficients techniques have shown an excellent performance for reducing noise in data. Several thresholds have been developed: VisuShrink (Donoho and Johnstone 1994), RiskShrink, SUREShrink [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | De-noising by soft-thresholding[END_REF], FirmShrink [START_REF] Gao | Waveshrink with firm shrinkage[END_REF][START_REF] Gao | Wavelet shrinkage denoising using the non-negative garrote[END_REF]. [START_REF] Andrade | Adaptive threshold based on wavelet transform applied to the segmentation of single and combined power quality disturbances[END_REF] proposed an adaptive threshold allowing the segmentation of electric signals to analyze the power quality. [START_REF] Kumar | Outer race defect width measurement in taper roller bearing using discrete wavelet transform of vibration signal[END_REF] proposed a technique based on the DWT using Symlet wavelet for measuring outer race defect width of taper roller bearing.

Statistical properties of wavelet coefficients

There have been advances in recent years in the use of wavelet approaches for statistical modeling and applications. But a few research papers have reported the statistical characteristics of wavelet coefficients.

Regarding statistical applications, the central use of wavelet analysis has been in nonparametric regression and density function estimation. This is basically done by using the discrete wavelet transform, applying a thresholding rule [START_REF] Donoho | De-noising by soft-thresholding[END_REF]Johnstone 1994, 1995), and then reconstructing the function using the inverse wavelet transform [START_REF] Nason | The stationary wavelet transform and some statistical applications[END_REF][START_REF] Abramovich | Wavelet analysis and its statistical applications[END_REF]. Additionally, wavelet decompositions have shown good time-frequency localization [START_REF] Daubechies | The wavelet transform, time-frequency localization and signal analysis[END_REF], which is a reasonable catalyst for their use in changepoint problems.

The wavelet coefficients are the result of the convolution product of wavelet/scaling functions and the signal under consideration. Considering X X X = [X 1 , X 2 , ..., X n ] is a sample/signal, where X i are independent and identically distributed random variables, which have f X i as a probability density function. The wavelet coefficients, approximations a j (k) and details d j (k) (Equations ( 3) and ( 4)), are defined as a linear combination of the random variables X i that come from the same distribution family, which corresponds in the context of the statistical distribution to the convolutions of probability distributions f X i . Some of these convolutions have already been derived in the literature, such as the linear combination of exponential distributions [START_REF] Ali | Distribution of linear combination of exponential variates[END_REF] and χ2 chi-square distribution [START_REF] Davies | Algorithm as 155: The distribution of a linear combination of χ 2 random variables[END_REF]. For additional distributions, see [START_REF] Nadarajah | On the linear combination of exponential and gamma random variables[END_REF][START_REF] Johnson | Continuous univariate distributions[END_REF][START_REF] Johnson | Continuous univariate distributions[END_REF]. In the case of wavelet coefficients, the prior results must first be adapted to the wavelet functions (filters) in order to derive the exact distribution of the wavelet coefficients. Various combinations could be studied for the existing different wavelets and the probability distributions of the data.

An asymptotic result is given in [START_REF] Ogden | Essential wavelets for statistical applications and data analysis[END_REF]. It is mentioned that, for normal data the approximation and details wavelet coefficients are asymptotically normal with order O(1/n). [START_REF] Vannucci | Covariance structure of wavelet coefficients: theory and models in a Bayesian perspective[END_REF] presented some results on the covariance structure of wavelet coefficient in the case 2D wavelet transformations with a Bayesian perspective.

In [START_REF] Ganesan | Wavelet-based multiscale statistical process monitoring: A literature review[END_REF], it is mentioned that wavelet coefficients are Gaussian even if the data are non-normally distributed, but no references were given.

The distribution of wavelet coefficients depends on the distribution of the data of interest. For normal data, it is shown that wavelet coefficients follow a normal distribution. Assume X X X = [X 1 , X 2 , ..., X n ] is a signal, where X i are independent and identically distributed random variables X i ∼ N (µ 0 , σ 2 0 ). Consider Orthonormal and Biorthogonal compactly supported wavelets (Haar, Daubechies, Symlets, Coiflets, Discrete Meyer, Biorthogonal, Reverse Biorthogonal). The multiresolution analysis applied to X provides wavelet coefficients as follows (Cohen et al. 2016a):

a j (k) ∼ N (2 j/2 µ 0 , n h 2 n j σ 2 0 ), (5) 
d j (k) ∼ N (0, n g 2 n n h 2 n j-1 σ 2 0 ), (6) 
which are identically distributed random variables, and independent if the orthonormal wavelets are used, else they are slightly correlated.

The wavelet coefficients are summation of normally distributed variables consequently they follow the normal distribution. Furthermore, for orthonormal wavelets families the wavelet coefficients are independent at each scale. The independence of wavelet coefficients is a consequence of the projection into orthonormal bases. This is not the case for Biorthogonal bases where the correlation coefficient can be estimated by empirical studies.

Aspects of the Wavelet-based Methods

There are three main aspects in multiscale methods that are valuable and should be taken into account while designing a wavelet-based statistical monitoring model. These include 1) the level of the decomposition, 2) the window size (e.g. a subgroup/sample in control charts), and 3) the wavelet selection. The level of the decomposition is related to the the window size with the formula n = 2 J , where J is the maximum level of the decomposition that can be applied to a sample of size n. In the case where the sample size does not equal to 2 J , the concept of wavelet on the interval is proposed [START_REF] Meyer | Ondelettes sur l'intervalle[END_REF][START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]), but still not entirely satisfactory from a practical viewpoint. However, several numerical algorithms can be used to solve this problem (Strang and Nguyen 1996, Chapter 8). So we can adapt the wavelet-based method to any sample size. The issue is that by violating this condition (n = 2 J ) correlation between wavelet coefficients can be created even if the observations are mutually independent.

The choice of the wavelet families The subject of selecting a wavelet for a given application is valuable because the choice may affect the result of wavelet transform and then the performance of the multiscale method at the end. Wavelet families have some properties, such as symmetry, orthogonality, and compact support. Having knowledge and understanding these properties should be helpful for selecting a candidate wavelet from the wavelet families for a specific application. For example, a compact support wavelet is a nonzero function only within a finite interval. This is an important property for data compression. The orthogonality means that the inner product of the wavelet with itself is unity, and zero with other scaled or shifted wavelets. This property is effective to decompose a signal into non-overlapping sub-frequency bands. The symmetry feature is useful to filtering operations. Figure 7 shows the common criteria used to select a wavelet family. A well presented description of wavelet selection measures is given in (Gao and Yan 2010, Chapter 10).

In the last decade, researchers have used different criteria to select a wavelet that is suitable for a specific application. For instance, Rafiee and 

Wavelet-based control charts

The use of wavelets analysis in control chart field has been addressed in two ways: 1) the use of the multiscale analysis to reduce noise and extract features in order to improve recognition of control chart patterns, and 2) the design of control chart statistics for detecting mean and/or variance changes.

Control Chart Patterns

Control charts have played an important role to improve product quality and to monitor processes for many decades. The process variability observed through the data results from either natural variation or unnatural variation. The goal is to discriminate between these two types of variation.

The natural variation is inherent to the system. However, the unnatural variation often reflects a specific fault or a set of faults. Phase I for designing a statistical process monitoring system consists of learning and understanding the natural variation for a well-functioning system, this is named as natural pattern. This phase contains valuable information for tuning parameters and decision rules. In Phase II, a traditional control chart is used to detect faults (unnatural variation). Unfortunately, control charts often do not provide any pattern-related information to be capable to recognize different kinds of unnatural patterns (faults). These faults can be associated with a pattern-related cause. Seven common categories of control chart patterns exist: 1) natural pattern, 2) cyclic pattern, 3) upward shift, 4) downward shift, 5) upward trend, 6) downward trend, and 7) systematic pattern. These patterns can be described by some associated causes. For example, cyclic patterns can be observed in periodic rotation of operators or fluctuations in the equipment. Trend patterns concern with tool wear, operator fatigue, and equipment failure. Shift patterns often indicate an abrupt shift or change in the quality characteristic, this can describe failure sensor, introduction of new employees, and replacement of raw materials, see Figure 8. A survey related to control chart pattern recognition approaches is given in [START_REF] Hachicha | A survey of control-chart pattern-recognition literature (1991-2010) based on a new conceptual classification scheme[END_REF]. In real application, data collected from processes often contain noise, outliers, and they are in various scales (frequencies). Moreover, the control chart patterns or data are often non-stationary in sense that a trend pattern has low-frequency components while a shift pattern is a high-frequency component. In other words, the trend patterns need more time to be seen and a shift pattern is observed in a short time. wavelet-based methods are very useful to process these patterns in order to display their components in the time-frequency domain, which can enhance the performance of the fault detection and diagnosis.

Wang and Kuo ( 2007) have proposed a framework to identify six common types of control chart patterns. They particularly used a multiscale filter based on wavelet to reduce the noise. A fuzzy clustering algorithm is then adopted to discriminate patterns. They used Haar wavelet to enhance the interpretation of abrupt changes in data. Their method consists of decomposing the noisy signal into wavelet domain, then apply a threshold rules and finally reconstruct the data from the thresholded wavelet coefficients. [START_REF] Du | Recognition of concurrent control chart patterns using wavelet transform decomposition and multiclass support vector machines[END_REF] have studied the case of concurrent control chart patterns, in which two simultaneous patterns are considered. This situation is realistic because a process signal often contains more than one pattern, and methods that detect simultaneous faults can be valuable to fault diagnosis. The authors used the multiscale decomposition to decompose an input pattern into two single patterns using Haar wavelet transform. The multiscale decomposition allowed them to separate the concurrent control chart patterns to single patterns. Then they used a support vector machine algorithm to recognize and classify these patterns.

Wavelet-based methods combined with neural network for recognition of concurrent control chart patterns was proposed by [START_REF] Al-Assaf | Multi-resolution wavelets analysis approach for the recognition of concurrent control chart patterns[END_REF]. [START_REF] Chen | A hybrid system for SPC concurrent pattern recognition[END_REF] have also suggested a method combining wavelet transform and neural network. They showed that the traditional run-rule based approach and stand alone artificial neural network approach are not capable for recognizing concurrent patterns, however incorporating wavelet decomposition allowed the recognition of concurrent patterns. [START_REF] Ranaee | Control chart pattern recognition using a novel hybrid intelligent method[END_REF] proposed a method for recognition common types of control chart patterns. Their proposed approach made up of a feature extraction module based on the wavelet decomposition. [START_REF] Lee | Monitoring nonlinear profiles using a wavelet-based distribution-free CUSUM chart[END_REF] proposed a wavelet-based distribution-free CUSUM chart for detecting shifts in the mean of a profile with noisy components. They focused on monitoring key components of the discrete wavelet transform. A dimension reduction technique was proposed based on thresholding the wavelet coefficients. A wavelet-based distribution-free tabular CUSUM chart with an adaptive thresholding has been proposed by [START_REF] Wang | Monitoring nonlinear profiles adaptively with a wavelet-based distribution-free CUSUM chart[END_REF]. Another approach that uses Haar wavelet coefficients in an SPC setting for detecting process drifts is presented here [START_REF] Wang | Change detection in precision manufacturing processes under transient conditions[END_REF].

Their method involves the wavelet coefficients at a predetermined optimal (wavelet) level using CUSUM and EWMA control charts. [START_REF] Jeong | Exponentially weighted moving average-based procedure with adaptive thresholding for monitoring nonlinear profiles: Monitoring of plasma etch process in semiconductor manufacturing[END_REF] used an adaptive thresholding test statistic to select wavelet coefficients adaptively according to process changes in the wavelet domain. The authors then applied an EWMA control chart on that test. The proposed control chart was applied to detect small shifts in nonlinear profiles of a plasma etch process in semiconductor manufacturing. [START_REF] Mansouri | Wavelet optimized ewma for fault detection and application to photovoltaic systems. Solar Prepared using sagej[END_REF] proposed a new method (WOEWMA) using wavelet with EWMA control chart applied to photovoltaic systems. The use of wavelet was in order to obtain deterministic features as well as decorrelate the data.

Wavelet thresholding is the process of cutting off some of the wavelet coefficients based on a specific threshold then reconstruct the data using the inverse of wavelet transformations. Various thresholds are proposed in the literature such as VisuShrink [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], RiskShrink, SUREShrink [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF][START_REF] Donoho | De-noising by soft-thresholding[END_REF], FirmShrink [START_REF] Gao | Waveshrink with firm shrinkage[END_REF][START_REF] Gao | Wavelet shrinkage denoising using the non-negative garrote[END_REF]). These techniques are often used with statistical methods for monitoring processes. For instance, multiscale Principal Component Analysis (PCA) [START_REF] Bakshi | Multiscale PCA with application to multivariate statistical process monitoring[END_REF][START_REF] Aradhye | Multiscale spc using wavelets: Theoretical analysis and properties[END_REF] was proposed for dimension reduction, and it is based on combining wavelet analysis and principal component analysis. This methodology has been widely used in the literature of chemical process monitoring. It consists of applying wavelet transform on the data and then reconstruct the data after a thresholding technique is applied. [START_REF] Yoon | Principal-component analysis of multiscale data for process monitoring and fault diagnosis[END_REF] used the multiscale PCA approach for fault detection and diagnosis, where they applied it to the Continuous Flow Stirred-Tank Reactor (CSTR) process, and they showed the usefulness of wavelet analysis to isolate the faults when prior knowledge about their frequencies is given. [START_REF] Sheriff | Fault detection using multiscale PCA-based moving window GLRT[END_REF] proposed a hybrid datadriven fault detection method where they improved the performance of the generalized likelihood ratio test chart using a moving window and wavelet analysis; see also [START_REF] Kini | Anomaly detection using multi-scale dynamic principal component analysis for tenneesse eastman process[END_REF][START_REF] Reis | Multiscale statistical process control with multiresolution data[END_REF][START_REF] Lee | Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor[END_REF][START_REF] Maulud | A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring[END_REF][START_REF] Aminghafari | Multivariate denoising using wavelets and principal component analysis[END_REF].

Combining wavelet analysis with partial least squares was proposed for process monitoring using the same approach we described before [START_REF] Teppola | Wavelet-PLS regression models for both exploratory data analysis and process monitoring[END_REF][START_REF] Lee | Multi-scale extension of pls algorithm for advanced on-line process monitoring[END_REF][START_REF] Roodbali | Multi-scale PLS modeling for industrial process monitoring[END_REF][START_REF] Zhang | Multivariate process monitoring and analysis based on multi-scale KPLS[END_REF][START_REF] Madakyaru | Improved anomaly detection using multi-scale pls and generalized likelihood ratio test[END_REF]. These methodologies are used with control chart statistics such as Hotelling-T 2 and Q.

Design of Control Chart Wavelet-Statistics

There have been several advances in theory and application of wavelet as a pre-processing tool. However, less attention has been given to propose a wavelet control chart statistic for mean and/or variance changes. It is shown that by using discrete wavelet transform, the wavelet approximation coefficient can be used to monitor the process mean, and the wavelet detail coefficients can be used to control the process variability. More particularly, the Haar discrete wavelet transform is equivalent to the X -R control charts scheme (Cohen et al. 2016a).

An Illustrative Example: Weighted Wavelet Coefficients for Process

Mean

In this example, we consider a window length/sample size of n = 8 observations and the Daubechies 2 db2 wavelet, and then the discrete wavelet transform is applied. Consequently, we have eight wavelet coefficients at the scale one (maximum decomposition level in this case): four approximations coefficients and four details coefficients. The aim of this example is to show the behavior of wavelet coefficients using db2 when a mean change is occurring. The first 39 points plotted in Fig. 9(a) consist of observations randomly generated from a normal distribution N (0, 1) (simulated as a in control process), and the last 41 observations consist of observations randomly generated from a normal distribution N (20, 1) out-of-control process with mean change. Figure 9(b) shows that the fourth approximation coefficient a 4 is the most sensitive to the change in the mean. As progressively the moving window enters in the region with the mean change (see Window 1 in Fig. 9(a)), the other wavelet approximation coefficients will be progressively sensitive to the mean change, and they will converge (see Window 2 in Fig. 9(b)) to 2 j/2 × µ 0 = 2 1/2 × 20 = 28.28. On the other side, details coefficients reveal also the mean change, but they are less sensitive than approximations coefficients. Details wavelet coefficients converge to zero, see Window2 in Fig. 9(b). However, we can note that the first detail coefficients (d 1 ) is the most sensitive one. We present a statistic called OW ave that is based on the following wavelet coefficients: a 1 , a 2 , a 3 , a 4 , d 1 . It is based on weighted wavelet coefficients, as follows:

OW ave i = w 1 a 1,i + w 2 a 2,i + w 3 a 3,i + w 4 a 4,i + w 5 d 1,i , (7) 
where i is the index of the moving window across the signal, 5 i=1 w i = 1, 0 ≤ w i∈{1,2,3,4} ≤ 1, and -1 ≤ w 5 ≤ 0 because the detail coefficient d 1 shifts negatively when the mean increases (see Fig. 9(b)). On the other hand, the d 1 shifts positively when the mean decreases. In fact, wavelet coefficients have symmetrical behaviour with positive and negative mean shifts, then one can use the same weights w i and symmetric control limit, in order to detect both positively and negatively shifts in the mean, more details are given in [START_REF] Cohen | Owave control chart for monitoring the process mean[END_REF]. Other research has been applying existing control charts to wavelet coefficients instead of the original data. Harrou et al. (2018) combined proprieties of the discrete wavelet transform and the exponentially weighted moving average control chart to appropriately detect faults in PV systems. Specifically, this approach was employed to monitor the residuals generated by a simulated model of a single-diode modeling for fault detection purposes. Similar work have been done to monitor swarm robotics systems performing a virtual visco-elastic control model for circle formation task. The proposed mechanism is applied to the uncorrelated residuals from principal component analysis model (Harrou et al. 2018), see also [START_REF] Harrou | Robust and flexible strategy for fault detection in grid-connected photovoltaic systems[END_REF]. A distribution-free approach using a multivariate cumulative sum (CUSUM) control chart to monitor wavelet coefficients is proposed to detect location shifts [START_REF] Li | A wavelet-based nonparametric cusum control chart for autocorrelated processes with applications to network surveillance[END_REF].

Wavelet with Machine Learning for SPM

Machine learning has become a very important field that intersects with statistics, computer science, artificial intelligence and other engineering areas. Statistical learning has many applications in many areas of science such as monitoring complex systems. Machine learning methods include several statistical methods and generally classified as supervised or unsupervised techniques [START_REF] Bishop | Pattern recognition and machine learning[END_REF][START_REF] Friedman | The elements of statistical learning[END_REF]).

Consider we want to monitor a system by estimating/predicting its state based on a set of features/variables. We have historical data from the system in which we observe the outcome (quantitative or categorical) and some feature measurements for a set of objects. Using these data we construct a predictive model, which enables us to predict the outcome for new objects. A good model is one that accurately predicts such an outcome. We just described above what we called supervised learning problem. It is called supervised because of the presence of the outcome variable to guide the learning process. In the unsupervised learning, we observe only the features and have no measurements of the outcome.

Then the task here is rather to describe how the data are organized and clustered. Several machine learning methods are being used in statistical process monitoring context such as support vector machines, decision tree, Bayesian networks, Neural Networks, discriminant analysis, k-means, and principal component analysis with Hotelling statistics (Atoui et al. 2019b;[START_REF] Ge | Data mining and analytics in the process industry: The role of machine learning[END_REF][START_REF] Yin | A review on basic data-driven approaches for industrial process monitoring[END_REF]Cohen et al. 2016a;[START_REF] Atoui | A bayesian network dealing with measurements and residuals for system monitoring[END_REF][START_REF] Atoui | Fault detection with conditional gaussian network[END_REF].

Most statistical learning methods can be used with wavelet in an attempt to obtain better predictive performance. Wavelets are mainly used to achieve the following goals: noise reduction, creation of new features, and extraction of information in time-frequency or time-scale space. Wavelet features are useful to many process monitoring studies as wavelet can decompose the information for further analysis. One of the most usage of wavelet is to decompose the data and use the wavelet coefficients or statistics of wavelet coefficients to characterise a data set or an object (e.g. faulty or normal operating conditions). Alamelu Manghai and Jegadeeshwaran (2019) investigated the applications of wavelet for diagnosing the faults on a hydraulic brake system. They considered a list of wavelet families: Haar, Daubechies, Symlet, Coiflets, Discrete Meyer and others. They also performed a thresholding procedure to reduce the noise, and use statistics based on the de-noised data. The classification was conducted with the following techniques: decision tree, support vector machine, and neural network. It is also shown in their paper that Discrete Meyer wavelet provided the best classification accuracy across the different classification methods. [START_REF] Jung | Nonparametric wavelet-based multivariate control chart for rotating machinery condition monitoring[END_REF] introduced new feature extraction technique to alleviate the high dimensionality problem of implementing multivariate statistical process monitoring when the quality characteristic is a vibration signal from bearing system. A set of multiscale wavelet scalogram features was generated to reduce the dimensionality of data, and is combined with the bootstrapping technique as nonparametric density estimation to set up an upper control limit of control chart. The simulation of a bearing system showed that the proposed method has satisfactory fault-discriminating ability without any distributional assumption.

The combination of wavelet and support vector machine has been considerably developed for the last decade [START_REF] Yin | Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes[END_REF] [START_REF] Gangsar | Diagnostics of mechanical and electrical faults in induction motors using wavelet-based features of vibration and current through support vector machine Prepared using sagej.cls algorithms for various operating conditions[END_REF]. Fault diagnosis in induction motors has been developed using wavelet features [START_REF] Monfared | Diagnosis of rotor broken bars faults in squirrel cage induction motor using continuous wavelet transform[END_REF][START_REF] Zgarni | Artificial immune network for bearing fault detection of induction motor[END_REF][START_REF] Hmida | Arm based RSWPT implementation for embedded condition monitoring of induction motor[END_REF]. [START_REF] Rato | Multiscale and megavariate monitoring of the process networked structure: M2NET[END_REF] proposed a multiscale approach to deal with changes in the networked structure of process data. The authors used the sensitivity enhancing transformations to detect changes in the process, and they showed that the wavelet can be useful when the system is difficult to model. [START_REF] Gillis | Non-intrusive load monitoring using semi-supervised machine learning and wavelet design[END_REF] presented a new technique based on semisupervised machine learning and wavelet design applied to non-intrusive load monitoring.

to improve the fault diagnosis performance for rotating machinery a deep learning (DL) algorithm is proposed based on the advantages of the wavelet packet transform in vibration signal processing (the capability to extract multiscale information and more spectral distribution features) and deep convolutional neural networks (good classification performance, data-driven design and high transfer-learning ability) [START_REF] Ma | A lighted deep convolutional neural network based fault diagnosis of rotating machinery[END_REF].

Some research directions

Wavelet analysis has been used for decades in statistical process monitoring. They have been extensively employed to multivariate analysis to reduce dimension, reduce noise, and extract features. There are two potential research directions that need more attention:

• Wavelet-based statistics for control charts: Wavelet coefficients are function of sample observations. The idea to use them as new data is not well investigated. Moreover, statistics based on wavelet coefficients have not been yet well explored. In the literature, a very small number of published papers use a statistic based on wavelet coefficients to monitor the mean and/or the variance of the process in an univarate case. Also, wavelet coefficients can be useful when data are autocorrelated [START_REF] Jeske | Statistical methods for network surveillance[END_REF][START_REF] Cohen | Statistical process control for AR(1) or non-gaussian processes using wavelets coefficients[END_REF][START_REF] Cohen | Owave control chart for monitoring the process mean[END_REF]). • Image statistical control using wavelet: Image data are become available in today's industries [START_REF] Koosha | Statistical process monitoring via image data using wavelets[END_REF][START_REF] Megahed | A review and perspective on control charting with image data[END_REF]. In this context a data image is taken from a process, and using 2D wavelet transformations features are extracted and a statistic can be derived to monitor and plot on the control chart. Wavelet analysis has been widely used in image processing and we expect more papers on the use of advanced image processing using wavelet to be applied to image statistical process control [START_REF] Amirkhani | A novel framework for spatiotemporal monitoring and post-signal diagnosis of processes with image data[END_REF][START_REF] Zuo | An ewma and region growing based control chart for monitoring image data[END_REF].

Conclusions

Wavelet based methods for statistical process monitoring have been studied for decades and enormous contributions have allowed better performance for fault detection and diagnosis. They are extensively employed to achieve, in a few sentences as a conclusion, the following:

• Wavelet transformations are often used to reduce noise via threshold techniques. • Wavelet can be used to characterize faults in time-frequency domain.

This needs a better knowledge of the physics related to the faults such in bearing fault detection. • Wavelet coefficients can be used as input data (features), instead of the original data. Another approach is to use statistic of wavelet coefficients (details or approximations) as input data. This often improves the machine learning performance algorithm.

In this paper, we introduced wavelet analysis as well as give an overview of the aspects related to its application to statistical process monitoring.
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  . It is shown that wavelet can help reduce the number of iterations when training classifiers such as SVM and Neural network.[START_REF] Liu | Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings[END_REF] proposed a wavelet support vector machine technique to detect the bearing fault of electric locomotives. They showed wavelet based SVM is better than SVM in accuracy. Wavelet SVM is also well used to diagnose faults in induction motors[START_REF] Keskes | Broken rotor bar diagnosis in induction machines through stationary wavelet packet transform and multiclass wavelet SVM[END_REF][START_REF] Das | Wavelet aided SVM classifier for stator inter-turn fault monitoring in induction motors[END_REF]. Most often, frequency components are hardly detected in the stator current due to its low magnitude and closeness to the supply frequency component. To overcome this drawback, the wavelet packet transform is applied to extract one parameter able to detect the fault with arbitrary working conditions and a great concern of low load cases. Different multiclass support vector machines (MSVMs) methods are evaluated with respect to accuracy, number of support vectors, and testing time. The experimental results confirm that the DAG SVMs and Symlet wavelet kernel function are fast, robust, and give the best classification accuracy of 99%[START_REF] Keskes | Recursive undecimated wavelet packet transform and DAG SVM for induction motor diagnosis[END_REF]. Time-frequency strategies for process monitoring have been extensively using wavelet transformations because they can provide the time where the frequency changes. This cannot be achieved with the traditional Fourier transform. In this regard, wavelet has been the main focus to extract features in time-frequency domain. Besides the cost of a Fast Fourier Transform is O(n log(n)) and for the Fast Wavelet Transform is O(n). It is worth noting that there exists other techniques for time-frequency analysis such as the Empirical Mode Decomposition (EMD). A methodology for fault detection has been proposed for Induction Motors (IMs) to detect various electrical and mechanical faults based on wavelet and support vector machine (SVM). For this, the radial, axial and tangential vibrations, and three-phase current signals are acquired from IMs having different faults. The acquired time domain signal is then transformed to timefrequency signals using continuous wavelet transform (CWT). Ten different base wavelets are used to investigate the impact of different wavelet function on the fault diagnosis of IMs. Statistical features are extracted based on the CWT, and then appropriate feature(s) are selected using the wrapper model
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