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Abstract—In the Machine-to-Machine (M2M) transmission
context, there is a great need to reduce the amount of transmitted
information using lossy compression. However, commonly used
image compression methods are designed for human perception,
not for Artificial Intelligence (AI) algorithms performances. It
is known that these compression distortions affect many deep
learning based architectures on several computer vision tasks.
In this paper, we focus on the classification task and propose a
new approach, named expert training, to enhance Convolutional
Neural Networks (CNNs) resilience to compression distortions.
We validated our approach using MnasNet and ResNet50 ar-
chitectures, against image compression distortions introduced by
three commonly used methods (JPEG, J2K and BPG), on the
ImageNet dataset. The results showed a better robustness of these
two architectures against the tested coding artifacts using the
proposed expert training approach. Our code is publicly available
at https://github.com/albmarie/expert training.

Index Terms—Artificial Intelligence (AI), image coding,
Machine-to-Machine (M2M)

I. INTRODUCTION

Machine-to-Machine (M2M) connections are already part
of our daily life, used in a wide spectrum of applications
such as consumer electronics, autonomous vehicles, public
utilities, telemedicine and manufacturing. In the span of 5
years, starting from 2017, the number of M2M connections
is expected to increase fourfold [11]. Such substantial growth
comes at the expense of the consumed bandwidth, which
will be a major bottleneck for the Internet of Things. Face
to the continuous increase of transmitted data and limited
communication bandwidth, the data is commonly compressed
lossyly. While 80% of the total bandwidth is used for video
content only [8], lossy image/video compression is particularly
important.

The usual goal in the image/video coding research field is
to achieve the best trade off between the quantity of trans-
mitted data and the perceptual quality. However, in the M2M
context, this data is transmitted neither to be seen by a human
observer, nor to be stored, but only to be used as the input
of AI algorithms. Since camera side computing resources are
scarce in many M2M transmissions, the use of deep learning
based computer vision tasks is impossible without outsourcing
the computations. Thus, the image/video is encoded to be
transmitted with minimal bandwidth to an external server,
where the computer vision task will be performed. In such
context, the goal is to preserve the vision task accuracy
under compression artifacts, while minimizing the transmitted
information. Figure 1 shows an example of the described M2M

Fig. 1: Proposed Machine-to-Machine (M2M) scheme at in-
ference. The goal is to outsource model f computation, while
both minimizing quantity of data in transmitted bitstream and
error rate of model f . Note the clear separation between the
camera side (left) and the vision task side (right) .

scheme. Note that preserving CNNs performance is of greater
importance than preserving perceptual quality here.

Artifacts in compressed data is the main source of CNNs
accuracy drop at lower rates [4], [6], [22], and tackling this
lack of resilience is of major importance for M2M transmis-
sions. To this end, we propose a novel technique, namely
expert training, that helps to enhance the resilience of CNNs
to image coding artifacts. In a nutshell, expert training takes
advantage of a regularization term added to the original loss
function to enhance model resilience to distorted images. This
regularization term gives an incentive to the trained model
to minimize the distance between predictions on distorted
images and undistorted images. Expert training has multiple
advantages: (i) it is straightforward to implement. (ii) it does
not increase the complexity for inference. (iii) it consistently
brings a performance increase at equivalent quality.

Our work is presented as follows. The section Related work
makes a quick overview of the literature. Section Proposed ex-
pert training presents the proposed training procedure and loss
function. Our approach is then validated through experiments
in section Experiments, followed by a conclusion.

II. RELATED WORK

Multiple ways of addressing the M2M problem have been
proposed in the literature. One proposal is to adapt the
compression level according to the content in images and
videos. Following this idea, Galteri et al. [12] and Choi and
Bajic. [2] use a saliency map to harshly compress areas without
objectness, while Kong and Dai [19] propose a mode-decision
to skip macroblocks with unnecessary temporal fluctuations

https://github.com/albmarie/expert_training


Fig. 2: Diagram of the proposed training procedure. Model
f resilience to distorted images x̃ is enhanced through ex-
pert training using L0 and Lexpert loss functions. Model g
weights are fixed, only model f weights are updated through
backpropagation.

in the background of a static surveillance camera. While these
approaches may appear promising, the added complexity at
the camera side reduces the outsourcing advantages. It is
not clear whether these approaches are complementary or
redundant with well known compression standards for M2M
transmission.

Compression standards can also be used to reduce trans-
mitted information in the M2M context [7]. Cameras often
integrate hardware implementation of such codecs, allowing a
minimal increase in latency for real-time applications. One
major drawback of using compression standards to reduce
transmitted information in the M2M context is the impact
on CNNs performances [9], [21]. Especially on unknown
distortions at training time, CNNs performances are severely
impacted when the quality of transmitted images is lowered
by image compression artifacts [3], [4], [6], [10], [22], [27].

Many approaches have been proposed to overcome the lack
of generalization of CNNs to image distortions. Zheng et al.
[28] propose to use a stability training technique to strengthen
CNNs robustness on small image perturbations. However,
several papers [16], [23] put into question the robustness
that stability training can bring with various experiments.
In [23], authors add new nonlinear layers in existing CNNs
architectures to increase their robustness to higher moment
statistics shifts, such as skewness or kurtosis. Hendrycks et al.
[16] perform rigorous benchmarks to evaluate ImageNet [5]
classifiers to image corruptions and perturbations. As shown
by the authors, from AlexNet [20] to ResNets [15], CNNs
resilience to corruptions failed to improve, while accuracy
on clean images went up. Techniques that successfully en-
hance CNNs robustness are also presented afterwards. Such
techniques include the use of multiscale networks, histogram
equalization, stylized ImageNet [13] and even an adversarial
defense called Adversarial Logit Pairing (ALP) [17].

While improving CNNs generalization is a research field of

(a) Lossless (b) JPEG-75 (c) JPEG-10 (d) JPEG-5 (e) J2K-75

(f) J2K-200 (g) J2K-400 (h) BPG-41 (i) BPG-46 (j) BPG-51

Fig. 3: Example of artifacts with considered distortions. Orig-
inal image is from ImageNet [5] validation set.

major interest, existing methods still struggle to generalize to
unseen distortions. Hence, we propose a method called expert
training, that improves model accuracy on specific image
coding artifacts.

III. PROPOSED EXPERT TRAINING

Achieving high accuracies on a known distortion can be
done by including artifacts from this distortion in the training
set, at the cost of generalization ability [26]. Interest of such
approach can be shown with the M2M context, where gen-
eralization could not be desired. Indeed, one could carefully
choose a specific image quality that satisfies a bandwidth
constraint, and train a CNN to be an expert of this known
distortion.

Our approach is inspired from the stability training tech-
nique [28]. In a nutshell, stability training wants CNNs to
give consistent outputs for similar inputs. The purpose is to
have more resilient CNNs not only to adversarial attacks [14],
but also to acquisition or transmission noise. This is done by
introducing a new stability term Lstability to the loss function
L0, so that the trained model f must output similar results for
original images x and slightly distorted images x′. The final
loss function L defined in [28] is as follows:

L(x, x′; θf ) = L0(x; θf ) + αLstability(x, x
′; θf ) (1)

Lstability(x, x
′; θf ) = D(f(x), f(x′)) (2)

where α controls the balance between the original loss L0

and Lstability, θf represents weights of the trained model,
and D is a distance function. Images x′ are slightly distorted
versions of images x, where Additive White Gaussian Noise
(AWGN) was added. Stability training helps CNNs to be
resilient to small image perturbations by ensuring that pre-
dictions on images x and x′ are similar with the stability
term Lstability. Stability training does not exactly address
our problem, as we seek to train experts of a specific and
harsh distortion. Additionally, stability training must keep
good accuracy on undistorted images x, while a CNN that will
handle only distorted images does not have this constraint.



In order to address the targeted issue, we propose a novel
loss function, called expert training, defined as follows:

L(x, x̃; θf ) = L0(x̃; θf ) + αLexpert(x, x̃; θf ) (3)

Lexpert(x, x̃; θf ) = D(g(x), f(x̃)) (4)

where x̃ is distorted with the distortion we want to be
robust against. Comparing with stability training, we have two
distinct differences in the loss function definition itself. First,
the original loss function L0 is evaluated on x̃, not on x.
Second, the model g is used in Lexpert to get prediction on
undistorted images x. The model g has the same architecture
as f , but model weights θg are fixed. Both model weights θf
and θg are initialized with a pre-trained model on undistorted
images. Since g is not trained, the model will stay specialized
on undistorted images, while f will learn how to handle
distortion in x̃ images through expert training. The purpose
of these two changes is to authorize the trained model f to
forget how to handle full quality images, and to focus only
on the distortion it must be robust against. A diagram of our
proposed training procedure is presented in Figure 2 for the
sake of clarity.

Note that our approach differs from fine-tuning because of
the added expert term Lexpert. While both approaches seek to
have greater performances on a known distortion, experimental
results show the superiority of CNNs trained with expert
training in terms of accuracy.

Another difference between stability training and expert
training is the way the set of images x′ and x̃ used for training
are built. In stability training, Additive White Gaussian Noise
(AWGN) is used as an unbiased distortion to create slightly
distorted images x′ out of x. In our case, x̃ is built by
performing image compression with a compression algorithm
and a specific compression strength, possibly resulting in
strong distortions between x̃ and x. Note that x̃ may be
obtained using any other distortion scheme, depending on the
type of distortion we want to be robust against through expert
training.

IV. EXPERIMENTS

A. Experimental setup

To assess the effectiveness of expert training, we consider
the context of M2M image transmission for the classification
task on ImageNet [5] dataset. For each considered distortion,
we can compute images x̃ out of images x in ImageNet
training and validation sets. This allows us to make a model
more resilient to that specific distortion by using fine-tuning
or expert training described in the previous section. To reduce
the bandwidth in the context of M2M, the considered distor-
tion algorithms are compression algorithms, such as JPEG,
JPEG2000, and BPG [1]. For JPEG, qualities QJPEG of 75,
10, and 5 are used, where a quality of 100 represents the best
quality and 1 denotes the lowest. For JPEG2000, a quality
layer of 0 corresponds to lossless, and increasing this value
lowers the quality of the distorted image. We choose to use

quality layers QJ2K of 75, 200 and 400. Finally, we use the
quantization parameter QBPG of 41, 46 and 51 for BPG,
where a bigger value corresponds to a lower quality. Some
of the considered distortions artifacts are shown in Figure 3.
While other parameters such as chroma subsampling or image
downscaling could have a significant impact, we make the
choice to not consider their impact in this study for clarity.

Images given as inputs to CNNs must match the architecture
input size. It is important to note that undistorted images
x are already preprocessed with cropping and resizing, and
that the compression to obtain distorted images x̃ is applied
afterwards. Indeed, performing compression before cropping
and resizing would be incoherent in a M2M context, because
parts of the transmitted information would not be used at
the end. Thus, since compressed images x̃ in our study are
globally of smaller size compared to other studies [4], [6],
[27], accuracies obtained at a given quality for a given codec
are not comparable. Since we use MnasNet [24] and ResNet50
[15] architectures which require an input size of 224×224, all
images x, x′ and x̃ in our experiments have a size of 224×224.

The ADAM optimizer [18] (β1 = 0.5, β2 = 0.99) and an α
of 10−2 are used for 45 epochs. We use a learning rate of 10−5

for all trainings on MnasNet. For ResNet50, we report the best
accuracy obtained among learning rates of 10−5, 5×10−6 and
10−6. For stability training, we used for MnasNet a learning
rate of 10−6, α = 5 × 10−3, σ = 4 × 10−2 for the AWGN
standard deviation, while we used for ResNet50 a learning
rate of 10−7, α = 5 × 10−3, and σ = 5 × 10−4. We also
use a learning rate decay by dividing learning rate by 5 when
the validation loss fails to improve for 3 consecutive epochs.
Similarly to stability training, we use the KL-divergence as the
distance function D in our expert term Lexpert and the cross-
entropy for L0 since we are performing classification. For θf
and θg initialization of MnasNet and ResNet50 architecture,
we use the Pytorch implementation with a reported top-1
validation accuracy of 73.45% and 76.13%, respectively.

As shown by Geirhos et al. [13], convolution kernels are
biased towards textural information, which is not pertinent
on harshly compressed images where high-frequencies are
generally discarded first. Thus, there is a need to re-train
convolution layers. Therefore, all weights θf are updated with
fine-tuning and expert training, while stability training updates
only weights in fully connected layers.

B. Results

In table I, we compare the proposed expert training against
stability training and fine-tuning with respect to top-1 valida-
tion accuracy. For each distortion used, we show the average
PSNR and SSIM [25] values for all images in the ImageNet
validation set. We provide these values to give the reader
an idea of applied distortions strength. When there are no
distortions or only minor artifacts, expert training has no
significant impact on model accuracy. This is reasonable since
Lexpert is almost 0. However, whenever the applied com-
pression decrease the baseline model accuracy, our proposed
expert training consistently outperforms the classic fine-tuning



Codec Qcodec PSNR (dB) SSIM Rate/img Pre-trained Stab. training Fine-tuning Our Gain
- Lossless +∞ 1.000 - 73.13% 72.90% 73.51% 73.58% +0.07%

75 32.04 0.917 10 899 B 70.05% 68.40% 72.70% 72.71% +0.01%
JPEG 10 25.27 0.738 3018 B 45.94% 45.50% 66.03% 66.59% +0.56%

5 22.81 0.632 2170 B 21.64% 23.71% 59.80% 60.59% +0.79%
75 24.33 0.648 2003 B 31.02% 27.86% 61.80% 62.58% +0.78%

J2K 200 21.19 0.499 761 B 9.62% 8.30% 47.21% 47.85% +0.64%
400 18.59 0.399 390 B 1.77% 1.61% 26.56% 27.01% +0.45%
41 25.66 0.752 1795 B 50.77% 51.70% 66.50% 67.00% +0.50%

BPG 46 24.32 0.679 870 B 35.33% 36.14% 60.99% 61.39% +0.40%
51 22.96 0.597 400 B 17.58% 18.70% 51.73% 52.35% +0.62%

(a) MnasNet [24]

Codec Qcodec PSNR (dB) SSIM Rate/img Pre-trained Stab. training Fine-tuning Our Gain
- Lossless +∞ 1.000 - 75.80% 74.35% 76.72% 76.84% +0.12%

75 32.04 0.917 10 899 B 73.74% 70.21% 75.79% 75.86% +0.07%
JPEG 10 25.27 0.738 3018 B 49.58% 52.76% 69.36% 69.92% +0.56%

5 22.81 0.632 2170 B 18.48% 30.60% 62.44% 63.13% +0.69%
75 24.33 0.648 2003 B 39.33% 36.11% 65.00% 65.79% +0.79%

J2K 200 21.19 0.499 761 B 14.45% 13.10% 48.33% 48.84% +0.51%
400 18.59 0.399 390 B 2.17% 2.12% 25.75% 26.27% +0.52%
41 25.66 0.752 1795 B 57.89% 52.93% 69.94% 70.59% +0.65%

BPG 46 24.32 0.679 870 B 42.98% 40.80% 64.20% 64.83% +0.63%
51 22.96 0.597 400 B 21.33% 24.29% 53.56% 54.31% +0.75%

(b) ResNet50 [15]

TABLE I: Top-1 validation accuracy comparison at different level of distortions for 2 classifiers. Shown PSNR, SSIM [25]
and rates values are an average on all 50000 images in ImageNet [5] validation set.
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Fig. 4: Rate-distortion comparison for considered distortions
on ResNet50 [15] classifier using expert training.

approach to regain some of the lost accuracy. We obtain a
0.79% at best and an average of 0.61% accuracy improvement
over fine-tuning on lossy distortions, excluding JPEG-75. It
can also be observed that, at equivalent quality, fine-tuning
and expert training allow greater accuracy gains over pre-
trained with JPEG compression. Models that are trained on
ImageNet, a dataset only composed of JPEG images like
most datasets, tend to be more resilient to JPEG artifacts,
as opposed to artifacts from other codecs. Note that JPEG-
75 almost reaches Lossless accuracy, since JPEG images in
ImageNet must contain artifacts of a similar strength.

Figure 4 shows the rate-accuracy curve for the considered
codecs. Note that training a different model on each distortion
removes some bias in this experiment. On one hand, using pre-

trained models [6], [10] allows to measure robustness to statis-
tical shift between original and distorted dataset distributions.
On the other hand, training a different model on each distortion
allows to measure how well a given architecture can fit the
distorted dataset distribution. Since weights θf are initialized
with a pre-trained model on ImageNet through expert training,
this experiment is in favor of JPEG. Nevertheless, we can still
observe the superiority of codecs with better rate-distortion
optimization such as BPG, which is using HEVC intra mode
with a minimal header for images. Therefore, a better trade-
off between model accuracy and rate can be achieved at the
cost of higher coding complexity, even when the observer is
a machine and not a human.

We provide comparison with stability training [28], since
expert training is inspired from it. It is unclear that stability
training is beneficial to enhance a model resilience to unseen
distortions, with experiments performed in this paper. As
mentioned in Section Related work, this is coherent with other
experiments performed on stability training [16], [23]. While
accuracy gains using stability training can be observed on
low JPEG and BPG qualities in table I, reached accuracies
are still far behind fine-tuning and expert training approaches.
As explained in Section Proposed expert training, stability
training strives for more generalization by not using x̃ in the
training. Thus it may not be adapted to the context of M2M,
where we have a priori knowledge on the distortion we want
to be robust against.

Knowing the exact distortion during the training stage is not
possible for some applications. Thus we also show the inter-
codec performances using fine-tuning and expert training in
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Fig. 5: MnasNet [24] top-1 validation accuracy comparison among considered distortions. Each row refers to the considered
distortion at training time to generated images x̃. Each column refer to the distortion on which the trained model is evaluated.

Figure 5. We can observe that for both fine-tuning and expert
training, model accuracy does not drop if there is a small
quality change from Q to Q̂ between training and evaluation,
as long as the codec is the same. If training is performed
on a set of images x̃, gains can be observed as long as the
distortion used at evaluation is not too different from the
one used at training. This intra-codec generalization can be
observed between BPG-46 and BPG-51, or between J2K-75
and J2K-200 in Figure 5. More surprisingly, there is also an
inter-codec generalization, for similar levels of distortion. This
can be seen with BPG-46 and J2K-75 that generate samples x̃
of similar PSNR, where training on one codec and evaluating
on the other one brings gains over not using any distortion.
Inter-codec generalization with JPEG is less notable, probably
because it is the only codec among the considered ones to
introduce very strong blocking artifacts at lower rates. Figure 3
illustrates well similarity between BPG-51 and J2K-200, and
also the different nature of JPEG artifacts at very low rates.

Overall, these experiments show that expert training con-
sistently improves accuracy over fine-tuning for a large range
of distortion strength, from lossless to extreme levels of
distortion. Since using even higher level of distortion than
the considered ones is not realistic, expert training brings
improvements, regardless of the distortion strength.

V. CONCLUSION

In this paper, we proposed a general, easy-to-implement and
lightweight novel technique, namely expert training, which
focuses on improving the robustness of CNNs against known
distortions, which may be valuable for the M2M transmission.
The effectiveness of expert training has been validated here
using three image codecs and two CNNs architectures on the

classification task. In the future, the expert training will be
further explored in other computer vision tasks.
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