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Abstract—Action recognition in continuous video streams is
a growing field since the past few years. Deep learning tech-
niques and in particular Convolutional Neural Networks (CNNs)
achieved good results in this topic. However, intrinsic CNNs
limitations begin to cap the results since 2D CNN cannot capture
temporal information and 3D CNN are to much resource de-
manding for real-time applications. Capsule Network, evolution
of CNN, already proves its interesting benefits on small and
low informational datasets like MNIST but yet its true potential
has not emerged. In this paper we tackle the action recognition
problem by proposing a new architecture combining Temporal
Shift module over deep Capsule Network. Temporal Shift module
permits us to insert temporal information over 2D Capsule
Network with a zero computational cost to conserve the lightness
of 2D capsules and their ability to connect spatial features. Our
proposed approach outperforms or brings near state-of-the-art
results on color and depth information on public datasets like
First Person Hand Action and DHG 14/28 with a number of
parameters 10 to 40 times less than existing approaches.

I. INTRODUCTION

Action recognition and video understanding are hard prob-
lems that generally requires a lot of computational cost that
make them difficult to process continuous videos. Though, a
lot of applications require for efficient and accurate solution
of those problems like hand gestures recognition for new
Augmented/Virtual Reality interactions.

Deep learning has become one of the most efficient tech-
niques for image and video understanding especially since the
appearance of Convolutional Neural Networks (CNNs) [1].
They also proved their benefits for real-time applications, at
least for relatively small networks, since the learning phase is
particularly time consuming, but the inference consists only of
a bunch of calculus. However, 3D CNNs, even if they present
the benefit to capture both spatial and temporal information,
are generally way to large to be applied in real-time with
reasonable computing power [2], [3], [4]. Conversely, 2D
CNNs, thanks to their weights sharing, bring small compu-
tational cost, perfect for fast training and real-time inference,
but in their basic implementation, they cannot extract temporal
information since they work with only one frame at a time [5],

(61, [71, [8].

To counterbalance this lack of temporal information ex-
traction, previous works presented several approaches taking
into account temporal modeling into 2D CNNs [8], [9], [10].
Our attention especially focused on recent Temporal Shift
Module (TSM) research by Li ef al. [11] that provides new
efficient video modeling by adding temporal information into
2D CNN by shifting channels in convolutional layers without
deteriorating computational costs.

Besides this lack of temporal information, CNNs seize
other limitations as invariance because of pooling, or the
incapability to understand spatial features relationship between
convolutional layers. A solution was proposed by Sabour et
al. [12] developing a new architecture based on convolu-
tion, capsule network that have presented promising results
on some datasets like MNIST [13] with a far less deeper
network than the common CNN solutions. But still, Capsule
Network struggles to provide good performance on complex
dataset. Recent intuitions, similar to deep convolutional neural
network, pushed some research as Rajasegaran et al. [14] to
experiment deep capsule network (DCN) by stacking capsule
layers. They found that simply stacking those layers conduct
to a degradation of performance whether in classification
precision or in computational cost because of the new routing
algorithm, specific to the good learning of capsule layers. In
order to address this issue, they proposed to reduce the number
of routing iterations on the initial capsule layers, also adding
skip connections to improve learning of middle layers and
use of 3D convolutions layers to reduce parameters number. It
should also be noted that the usage of capsule network have
not been yet explored for video understanding, only Duarte
et al.’s approach [15] can be found. However, we note in this
first network of 3D capsules the same problem as for 3DCNN,
that is the significant cost of calculation of these solutions.
In our exploration of 2D capsule network solutions for video
and action understanding, we found some new complications
specific to capsule architecture, the weights divergence when
large scale information are passed as input of capsule layer,
because frame data from video dataset as HMDBS51 [16] or
FPAH [17] are much bigger than the 14 x 14 frame of dataset
like MNIST [13].



To address those problems, we propose in this paper a new
architecture combining deep capsule network and temporal
shift module for efficient video and action understanding,
called later 2D Deep Video Capsule Network (2D DVCN).
We explore three different capsule shifts based on Li et al.’s
approach [11], illustrated in Fig. 1. Shift of entire first capsules
from a frame to the next one (Fig. 1d), shift of first dimension
features for every capsules of a layer of a frame to the capsules
of the next one (Fig. 1c) and shift of first dimension features
of the first capsule of a layer of a frame to the next one (Fig.
1b).

The implementation of temporal shift on capsule network
is motivated by the strength of capsules to understand re-
lationship between spatial features extracted by convolution
operations. Our goal is to reinforce the temporal information
shifted and shared from a frame to the next one by linking the
shifted convolutions with the frame’s original ones thanks to
the capsules and routing algorithm. We also figured out how
to avoid weights divergence when processing large image with
capsule network by modifying the original DeepCaps network
[14] permitting to use input frame 10 times larger than actual
frames of datasets usually test on by other capsule networks.
The main contributions of our paper are the followings:

o Developing a first 2D capsule network for video under-
standing (2D DVCN) thanks to the temporal information
addition of the temporal shift module.

o Proposing three different implementations (Fig. 1) of
temporal shift module over capsule layer and a study of
their impact on classification rate of our approach.

o Evaluation the performance of our approach over chal-
lenging action and gesture video datasets as HMBDS51
[16], FPAH [17] and DHG14/28 [18] with outperform
or near state-of-the-art results over color and/or depth
information but with 10 to 40 times less parameters than
other 2D/3D CNN or RNN methods.

The rest of this paper is organized as follows: Discussion
of related work over other capsule or 2D/3D convolutional
network for video understanding problem in Section II, de-
scription of our 2D Deep Video Capsule Network and temporal
shift module implementation in Section III, Section IV shows
our results and Section V concludes this paper.

II. RELATED WORK

Since the first implementation of Capsule Network by
Sabour et al. [12], some new capsule architectures have been
explored. Ma et al. [19] developed deep capsule network joints
to LSTM for forecasting transportation. Similar idea for speech
recognition but with an LSTM before capsule layer has been
explored by Srivastava et al. [20]. We can particularly observe
that there are few works on capsule network opposite to
other deep methods, especially in video understanding. We can
find only one implementation of Capsule Network for video
understanding in the literature, Duarte et al. [15] developed the
first 3D Capsule Network especially for action detection and
segmentation but we can find the same defect than 3D CNN,

the important computational cost compared to 2D Capsule
Network.

2D CNN is the lightest method for video recognition and
understanding ([S], [6], [7], [8]), but these methods have a
natural lack to capture temporal information. Karpathy et al.
[5] designed a two-streams CNN that takes the same image
at different resolutions to capture more spatial information.
Temporal Segment Network [7] combines a sparse temporal
sampling strategy with video-level supervision. But if 2D
CNNs can run efficiently on modest hardware, most of them
cannot capture temporal information. 3D CNNs were first
developed to offset this lack and most of them surpass 2D
CNNss results but for an important computational loss [2], [3],
[4]. Molchanov et al. [3] implemented a fusion of 3D CNN to
capture spatio-temporal information with a Recurrent Neural
Network (RNN) for online analysis of video clip per clip, but
this method demanded an important computational power.

Recurrent Neural Networks have been also designed
for temporal sequences analysis like speech recognition
and action or gesture recognition [21], [22], [23], [24]. In
their works, Du er al. [24] used skeleton joints of each
body members on a hierarchical Bidirectional-RNN network
to proceed action recognition. RNN based method have
generally better classification results since the skeleton
information over time is really informative. Still, we decided
to develop our 2D DVCN on color, depth or optical flow
images since this kind of information is really easy to obtain.
It is thus present on a great majority of databases and do not
require a extraction pretreatment as skeleton joints needs. Our
motivation is therefore to have the more flexible solution.

Many attempts have been made to model temporal
information into deep learning method. We already discussed
above about 3D CNN and their natural handling of temporal
information. Attention mechanism have been explored, Guo
et al. [25] used dynamic weighted sum of local 2D CNN
and 3D CNN representations to pass extracted features into
an LSTM. Zang et al. [26] have implemented Attention-
based Temporal Weighted to implant visual attention into
a multi-stream CNN. Lin et al.[11] proposed the temporal
shift module to deal with lack of temporal information in
2D CNN without computational loss, on each kernel of each
convolutional layer, a small proportion of channels is shift
on the next or previous frame of a same video sequence that
will be treat frame per frame by the CNN. This temporal
shifting permits to bring information of a part of the spatial
extracted features of the previous frame on the current
treated frame, or from the next to the current one in case
of offline implementation. This new module, in addition to
have zero extra computational cost apart of data movement,
improved state-of-the-art performance over multiple action
datasets like HMDBS51 [16] or UCF101 [27] in comparison to
other temporal modeling methods. The last work particularly
attracted our attention and from which our proposed approach
was inspired.
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(b) Offline shift on first
kernels of the first cap-
sule

(a) Original convolution
capsule layer

(c) Offline shift on first
kernels of every
capsules

(d) Online shift on
every kernels of the
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Fig. 1: Visual implementation of our temporal shift over capsule layers. A color horizontal slice of a big cube represent a
capsule. A big cube represent the same capsule at different temporality / frame. The two big cubes represent a ShiftConvCapsule
layer (first and last capsules). Small cube represent a convolutional kernel of size h*w, channels are represented over a line.
A white small cube is for zero-padding since the shift leave empty the first channels. In offline implementation, (a) and (b),
channels are shifted in both temporal direction, past and future, since it’s impossible in an online solution to get information
from the future, an online shift has been implemented to progressively shift only to the future frame.

III. 2D DEEP VIDEO CAPSULE NETWORK (2D DVCN)

2D capsule network architecture for video understanding
has not been yet explored. The only works explored to deal
with temporal information using capsule used LSTM cells that
can only perform well on low dimensional information which
is not the case for videos treatment. However, capsule network
already proves its potential for spatial-features extraction [12],
[14], hence we decided to explore how can we incorporate
temporal-features extraction into capsules. We first explain
the Temporal Shift Module (TSM) [11] implementation into
capsules, then our 2D Deep Video Capsule Network for video
understanding.

A. Shift Convolutional Capsule

Let’s represent the shape of the input of a convolutional
capsule as : R("»"¢") with w and h respectively be the width
and height of the current spatial features, ¢ the number of
capsule tensors and n the dimension of the capsule (number
of convolutional kernels). By looking at the shape of a
convolutional capsule, we can see that, structurally, capsules
are just a set of cxn convolution kernels of size wx*h. Benefits
of capsule network occur by regrouping n convolution kernels
into ¢ capsules so that they can represent complex spatial
features and with the routing algorithm that produces links
between them. We call shift the operation that consists of
moving channels or entire capsules from one layer to another
one. The same for a video sequence, but from the next (or
previous in case of offline) inference of the network that treats
another frame. In our approach, we implement and test three
different temporal shift operations:

First dimension features of the first capsule. This imple-
mentation is a naive adaptation of the temporal shift module
[11] over capsules, since we can see a capsule layer as a
R(w:h.czn) conyolution layer if we unroll the capsules. Hence,
if we shift only the first convolution kernels of the layer, once

roll again, we can see we shifted only the first dimension
features of the first capsule (Fig. 1b).

First dimension features of all capsules. In this imple-
mentation, we consider capsules as what they are for, a set of
convolutional kernels that, together, represent a more complex
spatial feature (Fig. 1c). Our motivation is to consider the sub-
spatial features inside each capsules independently to other
capsules so that a shift of the first kernels of each capsules
permits to capture temporal information of each complex
spatial features encapsulated. The temporal shift is then an
integral part of the capsule behavior.

Entire first capsules. This implementation is a mixed of
the two others. As in the original TSM, they shift a small
portion of spatial features extracted by convolutional kernels.
In our case, we shift a small portion of complex spatial features
extracted by capsules by shifting the entire first capsules (Fig.
1d). Our motivation is then relatively similar, temporal shift is
independent to capsules behaviour, we want to share complex
spatial features extracted between frames.

Offline vs Online. For offline scenarios, since we can
treat an entire video at once, we can shift kernels to future
frame, but also from future frame (Fig. 1b and Fig. Ic).
This allows us to share a maximum of information inside a
video, yet, we cannot get access of future frame for online
implementation. Moreover, we can only passed our frame one
by one to our network, contrary to offline case where we can
pass all video frames in a batch. To address those problems,
we can temporally cached kernel of capsule information into
a temporal tensor so that we can reuse those information on
the next frame.

Every implementation has the same structure in what we
called a ShiftConvCaps (Fig. 2). As in TSM [11], we added
a residual branch inside each convolution capsule where the
shift and convolution operations are performed. A naive imple-
mentation of shift module, where we linearly shift the input
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Fig. 2: ConvShiftCapsule representation

and then perform convolution on it, irremediably provoked
a loss of information due to the disappearance of spatial
features shifted in the current frame. Hence both original input
and shifted convolution are fused together before the squeeze
activation function of the capsule.

B. Network Architecture

The architecture of our 2D Deep Video Capsule Network
with ShiftConvCaps, skettched in Fig. 3, is inspired by the
DeepCaps model [14]. We conserve the basic structure of a
Capsule Network with some first 2D convolution operations
followed by convolution capsule and then classification ones.
The convolution capsules are replaced with CapsCell [14] that
performs three convolution capsules and a residual one. All
convolution capsules that performed a convolution stride of
(1% 1) are replaced with ShiftConvCaps.

Since we work on much complex problem with video
understanding than image classification, we need to use larger
reshape input images (128 % 112 x 3) compared to DeepCaps
(64 x 64 = 3) or other 2D capsule networks. However, we
observe a quick exploding gradient on the deepest capsule
layer using such inputs if they are not enough reduced by
the previous convolution layers. The original implementation
of DeepCaps does not produce this problem since the first
convolution and capsule layers produced very small outputs.
However, we consider that these first layers reduced to much
the dimension of the input and provoked a loss of information
that can be really useful to deal with our video understanding
problem. To address this problem, we kept reasonably large
capsule dimension on the CapsCell by removing convolution
strides in the middle of the network. Then, to offset this large
scale data for the classification capsules, we added two extra
ConvCaps to have treatable data on the classification capsule
layer (Fig. 3). We also decided to augment convolution kernels
size of ShiftConvCaps to get nearer from to original Capsule
Network vision, observing better results in that way.

Finally, a basic reconstruction module with 2D deconvolu-
tion was put at the end of the network to reconstruct input
image and assist the training by regularization. We also use
the margin loss for loss function as described in Sabour et al.
[12]:

Ly = Tymazx (0, m™ —||vg|])?+ (1 =Ty )maz(0, |Jv]| —m™)?

ey

With m™ = 0.9 and m~ = 0.1 and where T}, = 1 if

the sequence belong to class k and ||vg|| is the length of the
classification capsules.

Input image
128x112x3

Convolution

9x9)-(2x2)

Convolution
(x9)-(2x2)
256

ConvCaps

(7x7)-(2x2)
8-8

ShiftConvCaps
(7x7)-(1x1)
8

=6 ShiftConvCaps
v (7x7)-(1x1)
. 8-8
ShiftConvCaps
(7x7)-(1x1)
8-8

ShiftConvCaps
(7x7)-(1x1)

8-8
ShiftConvCaps
(5x5)-(1x1)

8-8 p

ShiftConvCaps

v (7x7)-(1x1)
. 8-8
ShiftConvCaps
(5x5)-(1x1)

8-8

ConvCaps

(5x5)-(2x2)
8-8
ShiftConv3DCaps
(5x5)-(1x1)
8-8 .
ShiftConvCaps
v (5x5)-(1x1)
. 8-8
ShiftConvCaps
(5x5)-(1x1)
8-8
ConvCaps ConvCaps
(Bx3)-(2x2) (Bx3)-(2x2)
-8 8-

8 8
FlattenCaps

v

Classification
8*28

Fig. 3: Our 2D Deep Video Capsule network architecture [14]



IV. EXPERIMENTS AND RESULTS

In this section, we first evaluate our proposed approach
on two datasets and compare it with existing state-of-the-
art methods based only on color and depth images. We then
demonstrate the impact of the temporal shift module over
capsule network.

A. Datasets and implementation

We use two datasets to test our new architecture, First
Person Hand Action (FPHA) [17] and Dynamic Hand Gesture
Dataset (DHG28) [22].

The FPHA dataset is a collection of RGB-D video se-
quences with more than 100k frames of 45 dialy hand action
categories, involving 26 different objects in several hand
configurations. It also contained 21 joints of a hand model
via 6 magnetic sensors and inverse kinematic that we are not
going to use in our experiments.

The DHG dataset contains sequences of 14 hand gestures
performed in two ways : using one finger and the whole
hand so we can consider 28 class gestures. Each frame of
sequences contains a depth image and the coordinates of 22
joints forming a full hand skeleton both captured with The
Intel RealSense short range depth camera. We only use depth
image in our case.

We used Keras library [28] and Tensorflow [29] as backend
for the development of 2D DVCN and trained it on the
following configuration: Intel 19 9900k, Nvidia RTX Titan
and 32 GB RAM. For all experiments, we used the Adam
Optimizer [30] with a starting learning rate of 0.001 and
trained the network over 500 epochs on offline shift version.

B. Classification results

On the color data of the FPHA database [17], in order
to avoid overfitting, we considerably reduce the size of our
network with only 2 CapsCells and 4 capsules of dimension 8
in the remaining ShiftConvCaps. Such a configuration allows
us to have a very small network with only 4 millions pa-
rameters and still improving results than with a much deeper
network. We reduce the action sequences to 16 images per
sequence, which is enough because the database provides high
definition color images. Indeed, the action performed by the
hand is not only a temporal but also a spatial problem. The
subject interacts with an object so there is a spatial context
that can counterbalance the necessity to deeply analyse the
action over the time dimension. We observe that we obtain
better classification results over other state-of-the-art methods
on color stream with 45 time less parameters (TABLE I). We
apply TSM [11] method on FPHA to compare our temporal
shift on capsule layers over them on convolution layers.
We use their code obtained from Github. We can also see
the benefit of capsules over traditional convolution with the
5% better classification than TSM [11] with 5 times less
parameters.

For the DHG28 dataset [22] we consider the 28 labels
cases and use the three CapsCells network as represented
in Fig. 3, we obtained a 7M parameters network. Since we

Method Parameters ~ Accuracy (%)
Two stream-color [31] 46M 61.56
Two stream-flow [31] 46M 69.91
Two stream-all [31] 181M 75.30
TSM [11] 24M 71.57
2D CVNN 4M 76.72

TABLE I: Comparing 2D DVCN on FPHA dataset [17] over
other color stream methods

have less spatial information, the database being composed
of gestures only make in front of the camera, without any
object interactions or background context, we decided to
consider video sequences of 32 frames to extract as temporal
information as possible (TABLE II). We also observe a 10%
classification rate improvement compare to TSM [11]. We
approach state-of-the art method [32] that uses fusion of 3D
CNN and 2D CNN VGGI16 [33] and have 20 times more
parameters than our method.

Method Parameters ~ Accuracy (%)
TSM [11] 24M 58.66
2D-3DCNN Fusion [32] 140M 74.41
2D CVNN ™ 68.98

TABLE II: Comparing 2D DVCN on DHG28 databset [22]
over other depth stream methods

To prove the benefits of the temporal shift module over
capsule network, we also conducted some experimentation by
testing the same network with the same training conditions,
same architecture, dataset and hyper-parameters but with or
without the temporal shift module applied (TABLE III). We
then prove that there is directly an improvement by apply-
ing two of the temporal shift operations we implement and
that the temporal sharing information have a positive impact
for classification with at least a 4% accuracy improvement.
However, we observe significant degradation of results when
applying the temporal shift on every kernel on the first capsule
only (Fig. 1b). We can explain this degradation since this
shift is the only one that share partial temporal information.
Indeed, in this configuration, every other capsule have to deal,
with the routing algorithm, with a capsule that have previous
and current frame information ; this inconstant information
leads to deterioration of the results. On the contrary, the two
other implementations offer real improvement. We can see
that temporal shift on every kernels of every capsules (Fig.
1c) and shifting all the first capsules (Fig. 1d) lead to similar
improvement by outperforming the classification results. We
can explain the improvement since the shift over entire capsule
is the most logical way to share temporal information on
a capsule network. Indeed, a capsule represents a complex
spatial information by encoding in a vector, different charac-
teristics of a same spatial features like the orientation or the
scale. The two first implementations then, by shifting the firsts



elements of these vectors, do not share pertinent information
since they shift very specific and not contextual spatial in-
formation. Shifting entire capsules however move temporally
all spatial information and explain the best improvement from
this implementation.

Shift Accuracy (%)
No shift 70.01
Shift every kernels first caps 64.14
Shift every kernels every caps 74.33
Shift all first capsules 76.72

TABLE III: Comparison of all temporal shift operations and
no shift on the FPHA database [17]

1
0.9 v
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All first caps
Every kernels first cap
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034 ¢ Every kemels every caps
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Fig. 4: Evolution of training precision over epochs on different
shift operations

We can also see that, regardless of the temporal shift imple-
mentation, in addition to the final classification improvement,
the training operation is faster to reach same precision in less
epochs, even with the temporal shift on every kernels of the
first capsule (Fig. 4).

V. CONCLUSION

In this paper, we proposed a new architecture for video
understanding, 2D Deep Video Capsule Network that can deal
with large image input without exploding gradient contrary
to other capsule network architecture. We show that the
integration and implementation of temporal shift module over
capsule layer inject relevant and benefit temporal information
to process video sequences with no additional computational
cost. We also prove that shifting all capsules instead of internal
kernels provides better results since we share all complex
spatial information captured by capsules. Finally, we are
outperforming the state-of-the-art on the FPHA dataset with
45 time less parameters and bring near best results on DHG28
but with 20 time less parameters.
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