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Abstract
Mounting privacy legislation calls for the preservation of

privacy in speech technology, though solutions are gravely lack-
ing. While evaluation campaigns are long-proven tools to drive
progress, the need to consider a privacy adversary implies that
traditional approaches to evaluation must be adapted to the as-
sessment of privacy and privacy preservation solutions. This
paper presents the first step in this direction: metrics.

We introduce the zero evidence biometric recognition as-
sessment (ZEBRA) framework and propose two new privacy
metrics. They measure the average level of privacy preserva-
tion afforded by a given safeguard for a population and the
worst-case privacy disclosure for an individual. The paper
demonstrates their application to privacy preservation assess-
ment within the scope of the VoicePrivacy challenge. While
the ZEBRA framework is designed with speech applications in
mind, it is a candidate for incorporation into biometric informa-
tion protection standards and is readily extendable to the study
of privacy in applications even beyond speech and biometrics.

1. Introduction
Spoken language contains a wealth of personal information in-
cluding the biometric identity [1, 2]. Such sensitive information
is clearly susceptible to being exploited for unscrupulous and
ethically reprehensible purposes. Unsurprisingly, speech data
falls within the scope of recent privacy legislation, e.g., the Cal-
ifornia Consumer Privacy Act (CCPA) [3] in the US (effective
January 1, 2020), the European General Data Protection Regu-
lation (GDPR) [4] (implemented May 25, 2018) and EU direc-
tive 2016/680 [5] (the Police Directive, also implemented May
25, 2018). Privacy is a fundamental human right [6] and the
failure to respect privacy legislation can attract significant fines.
Speech technology providers and operators are thus obliged to
ensure adequate provisions for privacy preservation.

There are two general approaches to guard against privacy
intrusions in the case of speech data. The first is to protect ac-
cess to speech data, usually via some form of encryption and
secure computation. The second, and the focus in this article, is
to strip the speech signal of personally identifiable information
such that it cannot be linked (with some level of certainty) to
a specific individual. Pseudonymisation, de-identification and
anonymisation are all examples of such approaches, but are all
relatively embryonic research topics within the speech commu-
nity; only few solutions have been proposed thus far.

One reason for why progress in privacy preservation has
not kept pace with legislation is due to the lack of frameworks
for assessment. While privacy preservation solutions may take
many different forms, their goals are common: they should pre-
vent the use of speech being used to infer identity. Accordingly,

the same or similar metrics can be used for the assessment of
any form of privacy preservation solution. The design of such
metrics is then a priority and stands to boost progress in privacy
preservation whatever the particular approach.

Upon first consideration, metrics for the assessment of pri-
vacy preservation solutions may seem straightforward. This is
not the case, however, since many obvious metrics do not reflect
the decision policy of a privacy adversary. Consequently, they
will give a misleading measure of privacy. Inspired by metrics
used in forensics research, this paper reports our proposals for
two different privacy preservation metrics that disentangle the
considerations of the privacy safeguard and the privacy adver-
sary. The paper shows how the empirical cross entropy and the
strength of evidence can be harnessed within a so-called zero ev-
idence biometric recognition assessment (ZEBRA) framework
to measure the expected and worst-case privacy disclosure for a
given privacy preservation solution.

The motivation for this work is described in Section 2.
Section 3 describes background work and the empirical cross-
entropy. Section 4 describes its use in the ZEBRA framework
and demonstrates its application to the assessment of privacy
preservation solutions within the context of the VoicePrivacy
2020 challenge [7, 8]. A discussion of the work and directions
for the future are presented in Section 5.

2. Towards empirical privacy metrics
Privacy metrics are needed in order to gauge and to compare
the level of privacy preservation offered by different solutions.
Such a metric should also reflect the gain in privacy delivered
by a given safeguard as well as the remaining potential for pri-
vacy disclosure. We also seek metrics which reflect not just the
average level of privacy preservation provided by a particular
solution, but one that can also be used to understand the varia-
tion in privacy preservation provided to a population; there may
be differences in the level of protection provided to different
users. Finally, metrics should be based not upon the prior beliefs
and costs of a privacy preservation system designer or evaluator
but should, instead, reflect those of a privacy adversary. Only
then, can we gain meaningful insights to privacy and the gap to
perfect privacy.

Perfect privacy was introduced as perfect secrecy by Shan-
non [9]: the posterior probabilities of intercepted data are iden-
tical to the prior probabilities of an adversary. This led to the-
oretically founded assessment of privacy safeguards in modern
cryptography [10] (zero knowledge proofs); here, input data has
a mathematical definition. Speech data is different (we use mod-
els, not definitions), hence we seek empirical approaches to as-
sessment. Unfortunately, despite some obvious candidates, ex-
isting empirical metrics do not meet the above requirements.
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Figure 1: Decoupling the classifier, decision policy and action
to estimate privacy from the perspective of an adversary.

Obvious candidates are to measure the, e.g., equal error rate
(EER), unlinkability of protected biometric datasets [11], cost
risks and application-independent risks by detection cost func-
tions (DCFs) [12] and the goodness of so-called log-likelihood
ratio (LLR) scores, 𝐶llr [13]1; all are ill suited to the privacy sce-
nario.2 The envisaged scenario is illustrated in Fig. 1. Speech
data is processed according to some form of privacy preserva-
tion algorithm (safeguard) to suppress speaker-discriminative
information. The resulting data is used by an adversary who still
seeks to infer the speaker’s identity. The adversary does this us-
ing some biometric classifier which assesses data and reports on
the strength-of-evidence in the form of scores. In this scenario,
the classifier can be in the realm of either the privacy preserver,
or the privacy adversary. If the privacy adversary were to use
the best technology available to them, then a classifier can be
used within the realm of the privacy preserver so long as it is
representative of the state of the art. This is where the realm of
the privacy preserver ends.

From here on, everything is within the realm of the pri-
vacy adversary, not the privacy preserver. A privacy metric
must hence reflect the adversary’s decision policy (what action
to take) parameterised by their prior and cost beliefs. It is then
necessary to assume minimum knowledge, or maximum uncer-
tainty. Whereas priors can be simulated, costs of privacy in-
fringement cannot. In this case, the prior of the prior is assumed
to be uniformly distributed. Accordingly, classifier outputs are
assumed to be likelihood ratios, obtained by the pool adjacent
violators to LLR algorithm [15, 16, 17], a non-linear transform
of observed scores resulting in oracle score calibration.

The scenario described above may be familiar to some read-
ers for it resembles that of a (counter) forensics scenario. The
counterparts here are the forensic practitioner (the privacy pre-
server) and the judge/jury (the privacy adversary). The forensic
practitioner must present evidence only; s/he must not make
decisions. The decision policy is that of the judge/jury; it is
unknown to the forensic practitioner who must assume max-
imum uncertainty of prior/cost beliefs so as not to encroach
upon the province of the court. While they provide the basis
for the work presented in this paper, even the metrics used by
the forensics community are not sufficient for the assessment of
privacy. This is because the forensic practitioner simulates the
empirical cross-entropy over different prior values only, without
quantifying either the expected or highest strength-of-evidence
(worst-case disclosure), which we need for assessing privacy.

1The 𝐶llr metric also relates to empirical cross-entropy (see Sec-
tion 3) for one specific prior; a computational co-incidence [14].

2(1) By its very definition, the EER reflects a privacy adversary’s
worst possible decision policy [15]; the EER will hence reflect an un-
duly optimistic estimate of privacy protections. (2) Unlinkability con-
siders the potential of evidence to confirm an identity, it overlooks the
relevance to privacy of evidence that might exclude an identity. The ex-
clusion of identities is still evidence, however, and so the unlinkability
metric also gives a potentially distorted measure of privacy protections.
(3) For cost based metrics, the impact of privacy disclosure depends on
subcultures, such that we cannot possibly treat cost impacts.

3. Empirical cross entropy
This section presents a brief overview of empirical cross en-
tropy (ECE), a metric developed for the assessment of forensic
speaker recognition systems and originally reported in [14, 18,
19]. It ends with a discussion of how the ECE can be adapted
to assess the performance of privacy preserving systems.

A speaker recognition system is furnished with two utter-
ances, one for training with known speaker identity and one
for testing an identity claim. There are two propositions 𝒜,ℬ,
namely that either the identity of the speakers in each utterance
is the same 𝒜, or that the speakers are different ℬ. We de-
note the set of propositions Θ = {𝒜,ℬ} and refer to a single
proposition as 𝜃 ∈ Θ. Before using the speaker recognition sys-
tem, we have some prior belief in the truth of each proposition,
which we quantify by the prior probability 𝑃 (𝜃). We denote
two probability spaces: the ground truth or reference probabil-
ity 𝑃 (·), and the classifier probability 𝑃 (·); the latter is the
forecast whose desired value is the reference. The prior entropy
in making a binary decision 𝐻𝑃 (Θ) is:

𝐻𝑃 (Θ) = −
∑︁
𝜃∈Θ

𝑃 (𝜃) log2 𝑃 (𝜃). (1)

The recognition system compares the training utterance to
the test utterance in order to compute (ideally calibrated) recog-
nition scores 𝑆. The goal of an attacker is to reduce prior pos-
terior entropy about the propositions Θ by updating the prior
with observed scores 𝑆 which results in the posterior entropy,
see [20]. The reference posterior entropy 𝐻𝑃 (Θ |𝑆) is:

𝐻𝑃 (Θ |𝑆) = −
∑︁
𝜃∈Θ

𝑃 (𝜃)

∫︁
𝑠

𝑃 (𝑠 | 𝜃) log2 𝑃 (𝜃 | 𝑠) d𝑠. (2)

Because we are in an empirical setting, it is not possible to
derive reference likelihoods 𝑃 (𝑠 | 𝜃) from a theoretical footing;
in general, they remain unknown [14, 19]. We can, however,
quantify the cross-entropy 𝐻𝑃 ||𝑃 (Θ |𝑆) between the posterior
distributions of a system 𝑃 and the reference 𝑃 :

𝐻𝑃 ||𝑃 (Θ |𝑆) = −
∑︁
𝜃∈Θ

𝑃 (𝜃)

∫︁
𝑠

𝑃 (𝑠 | 𝜃) log2 𝑃 (𝜃 | 𝑠) d𝑠. (3)

We can approximate 𝑃 (𝑠 | 𝜃) ≈ |𝑆𝜃|−1 for a large number of
classifier posteriors 𝑃 (𝜃 | 𝑠), where 𝑆𝜃 denotes the set of scores
for class 𝜃 and |𝑆𝜃| is its size. In the forensic setting, systems do
not compute 𝑃 (𝜃 | 𝑠) directly, since priors 𝑃 (𝜃) are decoupled.
The choice of reference and classifier prior values 𝑃 (𝜃), 𝑃 (𝜃)
is external to the classifier and considered a parameter: 𝜋 =
𝑃 (𝒜) = 𝑃 (𝒜) and 1 − 𝜋 = 𝑃 (ℬ) = 𝑃 (ℬ). Consequently,
systems estimate likelihood ratio (LR) scores 𝑆 = 𝑃 (𝑋 | 𝒜)

𝑃 (𝑋 | ℬ)

from features 𝑋 . The ECE is computed as [14]:

ECE(Θ | 𝒮) :=
𝜋

|𝒮𝒜|
∑︁

𝑎∈𝒮𝒜

log2

(︂
1 +

1 − 𝜋

𝑎𝜋

)︂

+
1 − 𝜋

|𝒮ℬ|
∑︁
𝑏∈𝒮ℬ

log2

(︂
1 +

𝑏 𝜋

1 − 𝜋

)︂
.

(4)

It can be shown that the ECE reflects the expected amount
of additional information that is needed in order to know the true
proposition 𝜃. If the classifier is unreliable (it performs poorly,
requiring more information), then the ECE will be higher than
if the classifier is more reliable.



4. Zero evidence framework
The goal of privacy preservation is to strip a speech utterance of
personally identifiable information such that an adversary can-
not recognise the identity of a speaker from an protected record-
ing of their voice. In terms of speaker recognition, it should not
be possible to match with certainty a training utterance to an
anonymised test utterance. The adversary has some prior belief
and seeks to use evidence provided by a speaker recognition
system to update their prior belief for identity inference. Since
use of a speaker recognition system should not result in an infor-
mation gain, privacy preservation should leave the adversary in
a position where they are left making decisions based only upon
their prior belief (whatever it is). This is perfect secrecy [9], a
concept re-coined here as perfect privacy.

This section sets out our ideas to make use of the ECE as
a means of assessing the level of privacy provided by a pri-
vacy preserving solution. We propose two metrics that can be
used for optimisation, assessment and ranking according to a
so-called zero evidence biometric recognition assessment ap-
proach.3 The two metrics aim to measure the extent to which
a safeguard preserves privacy, or rather what degree of speaker
discriminative information remains in an utterance. The first
metric reflects the gain in information that an adversary can ob-
tain by using a speaker recognition system. This is equivalent
to the expected privacy disclosure regardless of the adversary’s
prior belief. Realising that the ECE reflects no more than an
expected value (population level), the second metric reflects the
worst-case scenario (individual level), i.e. the maximum level
of privacy that may be disclosed despite privacy preservation.

4.1. Expected privacy disclosure

The expected privacy disclosure is the relative information that
can be gained from use of a speaker recognition system. This
difference is illustrated in terms of the ECE profiles in Fig. 2
where the black line represents the perfect privacy ECE (zero
evidence scores 0𝒮 ; all LRs have the value 1) and the blue,
dashed line represents the adversary ECE, i.e. for a system that
would yield oracle calibrated scores 𝒮 (oracle LRs).4

By removing as much as possible any biometric informa-
tion in speech data, the gap between these two profiles would
reduce and result in an increase in the adversary ECE, as indi-
cated by the blue arrows in Fig. 2. In the case that the safeguard
is successful in removing all the speaker specific information,
then the perfect privacy and adversary ECEs would be identical,
i.e. we have perfect secrecy; there remains zero evidence.5

In practice, a safeguard is unlikely to remove all evidence;
it will likely still result in the disclosure of some privacy and dif-
ferent solutions will disclose different levels of privacy. Hence,
we need some means to compare solutions. The answer is a
metric which measures the difference between the perfect pri-
vacy and adversary ECE. Since the adversary’s prior is un-
known, the evaluator must assume maximum uncertainty (dif-
ferent 𝜋 values have the same probability of occurrence). Ac-
cordingly, the metric must reflect the difference between both
ECE profiles in Fig. 2 for the full range of priors 𝜋. This gives
the expected privacy disclosure 𝐷ECE(Θ | 𝒮):

𝐷ECE(Θ | 𝒮) =

∫︁ 1

0

ECE(Θ |0𝒮) − ECE(Θ | 𝒮) d𝜋. (5)

3Code: https://gitlab.eurecom.fr/nautsch/zebra
4In [14, 18, 19], the default and the minimum ECE, respectively.
5ECE(Θ |0𝒮) = 𝜋 log2(1 + 1−𝜋

𝜋
) + (1− 𝜋) log2(1 + 𝜋

1−𝜋
).
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Figure 2: (a) Adversary ECE (blue profile) for some oracle cal-
ibrated scores. The idea is to make the blue equal the black
profile (perfect privacy ECE). (b) Conventionally, ECE profiles
are plotted against log 𝜋

1−𝜋
, the log-odds of 𝜋.

It can be shown that the integral is given by:

𝐷ECE(Θ | 𝒮) =
⟨𝑍(𝑎)⟩𝑎∈𝒮𝒜 + ⟨𝑍( 1

𝑏
)⟩𝑏∈𝒮ℬ

log(2)

with 𝑍(𝑥) =
(𝑥− 3)(𝑥− 1) + 2 log(𝑥)

4 (𝑥− 1)2
,

𝑥 > 0, lim
𝑥 ↦→1

𝑍(𝑥) = 0, and lim
𝑥 ↦→∞

𝑍(𝑥) =
1

4
,

(6)

where ⟨·⟩𝑠∈𝒮𝜃 computes the average over scores 𝑠 in a set 𝒮𝜃 .
𝐷ECE(Θ | 𝒮) signifies the expected disclosure to an adver-

sary in bits and is independent of the adversary’s prior belief
(the prior is marginalised and integrated out in Eq. 5). It has
an intuitive interpretation: if 𝐷ECE(Θ | 𝒮) = 1

2 log(2)
≈ 0.721,

then classes are perfectly separated for all priors (no privacy); if
𝐷ECE(Θ | 𝒮) = 0, then we have perfect privacy (zero evidence).

4.2. Worst-case privacy disclosure

The worst-case privacy disclosure is reflected by the highest
strength of evidence observed during testing. While we can use
posterior probabilities of a non-informative prior 𝜋 as in [21],
we propose the use of an additional approach which improves
human interpretability, especially for the non-expert. This en-
tails categorical tags, see Table 1, for LR values 𝑙 that are
adapted from methodological guidelines for forensic practition-
ers published by the European Network of Forensic Science In-
stitutes [22] and by forensics work in [23]. Additionally, we
provide the odds ratio for recognising a biometric identity by the
lowest LR value of a category (assuming no knowledge of the
adversary prior: 𝜋 is flat); lower odds mean less precision for
an adversary, thus privacy is more preserved (best is 50 : 50).

To determine 𝑙, the LR value of the worst-case privacy dis-
closure, we must consider both positive strength of evidence

Table 1: Categorical tags of worst-case privacy disclosure.

Tag Category Posterior odds ratio (flat prior)

0 𝑙 = 1 = 100 50 : 50 (flat posterior)

A 100 < 𝑙 < 101 more disclosure than 50 : 50
B 101 ≤ 𝑙 < 102 one wrong in 10 to 100
C 102 ≤ 𝑙 < 104 one wrong in 100 to 10 000
D 104 ≤ 𝑙 < 105 one wrong in 10 000 to 100 000
E 105 ≤ 𝑙 < 106 one wrong in 100 000 to 1 000 000
F 106 ≤ 𝑙 one wrong in at least 1 000 000

https://gitlab.eurecom.fr/nautsch/zebra


(proposition 𝒜, it is the speaker) and negative strength of evi-
dence (proposition ℬ, it is not the speaker). The former corre-
sponds to LR values 𝒜 : 1 < 𝑙 < ∞, whereas the latter cor-
responds to LR values ℬ : 0 < 𝑙 < 1. In LR space, however,
the extent to which one proposition is favoured over another is
non-linear; LRs of 𝑙 = 0.9 or 𝑙 = 1.1 do not reflect the same
strength of evidence in support of each proposition. A linear
space is obtained easily by operating in the log-LR (or LLR)
space 𝒮 ′

log of ideally calibrated6 scores 𝒮 ′:

𝒮 ′
log =

(︀
log(𝑠) | 𝑠 ∈ 𝒮 ′)︀ . (7)

In log-LR space, a value of zero implies neither 𝒜 nor ℬ
is favoured (zero evidence; full privacy). In addition, scores in
log-LR space are symmetric; scores of -0.1 and +0.1 reflect the
same strength of evidence for each proposition. As a result, the
worst-case privacy disclosure is obtained as log(𝑙) by taking the
maximum of the absolute value:7

log(𝑙) = max
𝑠∈𝒮′

log

(abs(𝑠)). (8)

As for log-LRs, the log-odds of posteriors/priors are also
symmetric; Table 1 defines categories by magnitudes—for
base 10 log-LRs as log10(𝑙) values and posterior log-odds.

4.3. Assessing privacy disclosure, an example

Reported here is an example case study performed using the
ZEBRA framework in the context of the VoicePrivacy 2020
challenge [7, 8], which involves the design of anonymisa-
tion solutions in privacy preservation. Experiments were per-
formed with the female subset of the LibriSpeech test data
using: the two challenge baselines, B1 [24] (a pre-trained x-
vector approach) and B2 [25] (a formant shifting technique; no
training)—the safeguard component in Fig. 1; a state-of-the-art
x-vector [26] speaker recognition system—the classifier com-
ponent in Fig. 1. We report results for all subsets online.3

Results are illustrated in Fig. 3. The legend also shows
ZEBRA results in the form of a (𝐷ECE, log10(𝑙), tag) tuple,
where computations are according to (6) for 𝐷ECE and to (8)
for log10(𝑙), with categorical tags referenced in Tab. 1. The
lower blue profile shows the ECE without protection (𝐷ECE:
0.58, log10(𝑙): 3.98, tag: C). The magenta and green profiles
show the ECE of each baseline. The black profile corresponds
to perfect privacy or zero evidence.

The baselines offer varying degrees of privacy preservation.
B1 (𝐷ECE: 0.11) appears to perform considerably better than B2
(𝐷ECE: 0.36); the green and black profiles are relatively close
together whereas the gap between black and magenta profiles is
substantial. log10(𝑙) results show a somewhat different picture:
3.98 for the unprotected system, 3.58 for B2 and 2.27 for B1.

6We refer to 𝒮′ instead of 𝒮 on purpose. To avoid infinite LR values,
see the code of [15], we extend the calibration used in Section 4.1, and
apply Laplace’s rule of succession (also known as the sunrise problem).
Two dummy scores are added to the extremities of all observed scores—
one for class ℬ and one for class 𝒜. The former serves as a Bayesian
predictor to the LR value for the highest class 𝒜 scores (that are larger
than the highest class ℬ score), and the latter captures the infinity.

7The metric log(𝑙) corresponds to the 𝐿∞ length-norm of a vector
𝑥 with 𝑛 LLRs: ||𝑥||∞ = max{|𝑥1|, . . . , |𝑥𝑛|}. If this length is
zero, there is zero evidence disclosure (the vector points from its origin
to itself). A privacy disclosure, a non-zero dimension, increases the
vector length. The worst-case metric is optimistic, since any other 𝐿𝑝

norm with 𝑝 < ∞ is larger (despite the Bayesian prediction of LLRs).
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Figure 3: ZEBRA assessment with ECE profiles.

These results all correspond to tag C in Tab. 1.8 Hence, while
B1 is substantially better than B2 in terms of average privacy
disclosure, there is less to choose between them in terms of the
categorical worst-case privacy disclosure.

These observations highlight the value of the proposed
ZEBRA framework for privacy preservation. Whereas the EER
and other metrics may give an unduly optimistic and distorted
sense of protection, the 𝐷ECE provides a reliable estimate of
protection in terms of the average protection afforded to a popu-
lation whereas log(𝑙) provides additional insights into the level
of protection afforded in a worst-case to an individual.

5. Discussion and future work
With mounting legislation demanding protections for personal
information, provisions for privacy are today of paramount con-
sideration. This paper presents the ZEBRA framework for the
evaluation of privacy safeguards. It overcomes many of the
weaknesses of existing metrics such as the equal error rate. Cru-
cially, the framework formulates the problem in the realm of a
privacy adversary and provides the means to assess the average
and worst-case privacy disclosure of a given safeguard.

While the work makes inroads towards an adversary-centric
metric, the arguments presented in this paper suggest that we
need to go one step further; metrics are only one part of an as-
sessment strategy. The case study presented in this paper uses
a protocol designed by an evaluator. Just like the decision pol-
icy, the protocol is also in the realm of the adversary. Future
work should hence extend the current study to consider the pri-
vacy that can be disclosed when the adversary chooses both the
decision policy and the protocol. Similarly, the current work
assumes oracle score calibration, whereas it too is in the realm
of the adversary. Future work could hence study the impact of
calibration within the ZEBRA framework, such that they cannot
be used by adversaries.

Finally, the ZEBRA framework proposed in this paper is
relevant to the biometric information protection standard, cur-
rently in revision. It is also readily extendable to the study of
privacy concerning sensitive speech data, e.g. health and emo-
tional status, or particularly sensitive spoken/transcribed con-
tent, e.g. political and religious beliefs. Finally, speech serves as
only one example application of the ZEBRA framework; since
it operates in the score domain, it can be applied with mini-
mal effort to the study of non-speech problems such as privacy
preservation in video surveillance.
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8Categorical tags for LRs and their tables evolved over time since
1961 starting with Jeffrey, whose table ended with 2 ≤ log10(𝑙) [27];
category C resulted after the introduction of DNA evidence in media.



7. References
[1] A. Nautsch, C. Jasserand, E. Kindt, M. Todisco, I. Trancoso, and

N. Evans, “The GDPR & speech data: Reflections of legal and
technology communities, first steps towards a common under-
standing,” in Proc. Interspeech, 2019, pp. 3695–3699.
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