
HAL Id: hal-03555629
https://hal.science/hal-03555629v1

Submitted on 3 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Achieving PAC Code Performance with SCL Decoding
without Extra Computational Complexity

Samet Gelincik, Philippe Mary, Jean-Yves Baudais, Anne Savard

To cite this version:
Samet Gelincik, Philippe Mary, Jean-Yves Baudais, Anne Savard. Achieving PAC Code Perfor-
mance with SCL Decoding without Extra Computational Complexity. IEEE International Con-
ference on Communications Workshops, ICC Workshops 2022, May 2022, Seoul, South Korea.
�10.1109/ICC45855.2022.9838502�. �hal-03555629�

https://hal.science/hal-03555629v1
https://hal.archives-ouvertes.fr


Achieving PAC Code Performance with SCL
Decoding without Extra Computational Complexity

Samet Gelincik∗, Philippe Mary∗, Jean-Yves Baudais∗ and Anne Savard†‡
∗ Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, F-35000 Rennes, France
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Abstract—For finite blocklength polar codes, the minimum
distance and the number of low weight codewords are essential
to obtain good performance under successive cancellation list
decoding with moderate and high list sizes. In this paper, we
propose a code design method to decrease the number of low
weight codewords for some information lengths with a very low
computational complexity. In the proposed method, some infor-
mation bits are encoded by several rows of the polar encoding
matrix, i.e., each of the dynamic frozen bits is chosen the same
as one of the preceding information bits. The dynamic frozen
bit index set is determined by using the connection between
the binary representation of the row indices and the number of
common 1-bit positions of any given rows. The resulting design is
shown to perform as well as polarization-adjusted-convolutional
codes [9] under successive cancellation list decoding but with
significant computational complexity savings. These findings pave
the way for the use of polar codes in applications with stringent
complexity and with low energy consumption constraints.

Index Terms—Polar Codes, dynamic frozen function, Reed-
Muller codes, successive cancellation list decoding

I. INTRODUCTION

Polar codes are the first proven (symmetric) capacity-
achieving block codes in asymptotic regime with low decoding
complexity for discrete binary input memoryless channels [1].
Polar codes have recently been adopted for control channels
in 5G networks and may be used for other purposes in
future wireless networks. Indeed in beyond 5G networks,
use cases such as traffic safety, industrial control, medical
and internet services will rely on highly reliable low latency
communications [2], [3]. Therefore, it is important to design
polar codes that are efficient in short blocklength regime.

However, for short and moderate code sizes, polar codes
under successive cancellation decoding performs poorly due to
the incomplete polarization of the channel, and hence, designing
codes with good minimum distance properties becomes very
important to improve performance. For instance in [4], cyclic
redundancy check (CRC) concatenation is proposed to improve
the minimum distance properties of the code to help successive
cancellation list (SCL) decoding. In [5] and [6], the CRC
polynomial has been optimized to increase minimum Hamming
distance and minimizing the number of low weight codewords
by an exhaustive search over a wide range of CRC polynomials.

This work has been partially supported by IRCICA, CNRS USR 3380,
Lille, France and the French National Agency for Research (ANR) under grant
ANR-16-CE25-0001 ARBurst.

Authors in [7] proposed to improve the minimum distance
properties of a polar code by choosing the frozen bits as a
function of preceding information bits. This technique has
been called dynamic freezing and has been extended in [8]
by introducing the concept of precoded polar codes, in which
any linear codes can be represented with a precoding matrix
followed by a standard polar transformation matrix. In precoded
polar codes, information bit indices are not necessarily chosen
as it is in the original polar codes. In this article, we use the
term polar-like codes to represent a general class of linear
precoded codes with information and frozen bits1.

Recently, polarization-adjusted convolutional (PAC) code has
been proposed by Arikan [9] and studied further in [10] and
[11]. The information indices are chosen according to the Reed-
Muller (RM) design rule, i.e., the rows of the encoding matrix
with the highest Hamming weights are selected as information
rows. PAC codes have been shown to perform close to the
normal approximation (NA) of the second order rate [12]. This
method allows to reduce drastically the number of minimum
weight codewords by employing an outer convolutional encoder
that can be represented with an upper triangular matrix that in
turn has the property to reduce the number of minimum weight
codewords [13]. However, the improved performance comes at
the cost of extra computational complexity. For instance, the
decoding complexity of PAC codes is of the order of magnitude
of SCL decoder’s itself for short blocklengths. In [6], state of
the art has been moved a step forward by combining variable
list size SCL decoding with a sphere decoder. The technique
has been shown to approach the achievable error probability in
finite block length but at the cost of very high complexity of the
sphere decoder that may prevent from its usage in applications
with low computational capability.

In this paper, we propose an alternative way for designing
polar-like codes in the sense that some frozen bits are
determined with a dynamic freezing function with a single
argument, and not with a combination of preceding information
bits, as it has been done in literature. The proposed process
of determining the dynamic freezing functions is named row
merging. The proposal is based on the relationship between
the binary representation of row indices of the polar encoding

1In [8], the name polar-like is used to represent original polar codes of [1]
with dynamic frozen bits.



matrix and the number of common 1-bit positions among the
rows. In order to construct the code, the information bit indices
are first chosen according to the Reed-Muller rule, which
provides the highest minimum distance among the codewords
without dynamic frozen bits. Then, we search for the rows that
can be merged together in order to decrease the number of low
weight codewords. Our method provides codes that perform as
well as the PAC codes [9] in terms of frame error rate (FER)
in binary-input additive white Gaussian noise (BI-AWGN)
channel but at a much smaller computational complexity.

II. PRELIMINARIES

A. Notations

Vectors of length N are represented in row and denoted
with sans serif font x. The j-th entry of the vector x is xj

with j ∈ N = {0, 1, · · · , N − 1}. The set of integers from j
to k − 1 are represented by [j, k) and the set of integers from
j to k are represented by [j, k]. A sub-vector drawn from x
is denoted as xkj = [xj , · · · , xk], ∀(j, k) ∈ N 2, j < k, and
simply as xk if j = 0. Index sets are denoted by caligraphic
letters, e.g. A, and are sorted in the ascending order. For a
vector x and set A ⊂ N , xA = {xj : j ∈ A}. The matrices are
denoted with uppercase sans serif font, e.g., G. For a matrix
G ∈ {0, 1}N×N and index set A ⊆ [0, N − 1], GA denotes
the matrix consisting of rows of G indexed by A. Modulo-2
binary addition is denoted by ⊕.

For any index j ∈ N , N = 2n, the n-bit binary represen-
tation of j is denoted by bj and is a vector of length n. The
indexing of elements in bj is started from the least significant
bit, i.e., the rightmost bit, and bj,k is the k-th least significant
bit, k ∈ [0, n− 1]. The number of ones and zeros in any
binary vector x is denoted by i1(x) and i0(x), respectively.
For any x1, x2 ∈ {0, 1}N , x1∩̄x2 is the element-wise logical
′AND′ operation and x1∪̄x2 is the element-wise logical ′OR′

operation. Moreover, P1(x),P0(x) denotes the index sets of
1’s and 0’s, respectively, of any binary vector x.

B. Polar-like and Polar Codes

Let C(N = 2n, k,A), n ∈ N, be a polar-like code defined
as a binary linear block code with generator matrix GN ,

GN =
[
gT0 gT1 · · · gTN−1

]T
= G⊗nKer , GKer =

[
1 0
1 1

]
where ⊗ is the Kronecker product and [·]T the transpose
operator. The input bits are denoted by u ∈ {0, 1}N , where k
of them are information bits and indexed by A ⊆ N , and the
rest are indexed by F = N \ A and called frozen bits since
they can be set to any binary value and are known a priori by
the decoder. Alternatively, the jth row gj of generator matrix
GN is represented as

gj = ĝbj,(n−1)
⊗ ĝbj,(n−2)

⊗ · · · ⊗ ĝbj,0 (1)

where ĝ0 = [1 0] and ĝ1 = [1 1].
Let W : X → Y be a binary-input symmetric discrete

memoryless channel, where X = {0, 1}, with a priori
probabilities pX(0) = pX(1) = 1/2, and W (y|x) are transition

probabilities ∀(x, y) ∈ X × Y . It has been shown in [1] that
the application of a linear mapping such as x = uGN for any
u ∈ XN creates synthetic subchannels W

(j)
N : X → YN ×X j

such as

W
(j)
N (y, uj−1|uj) =

∑
uN−1
j+1

1

2N−1
WN (y|uGN ) (2)

in which p(u) = 1/2N and WN : XN → YN denotes the
vector channel which, in memoryless channel, becomes

WN (y|x) =

N−1∏
j=0

W (yj |xj). (3)

The polar code determines the information bit index set A as
the k most reliable bits and the rest of the indices are the frozen
bit set F and transmitted as uj = 0,∀j ∈ F . To exploit the
polarization phenomenon imposed by the linear transformation
GN , the SC decoding has been proposed [1]:

ûj =

{
0 if W (j)

N (y, ûj−1|0) ≥W
(j)
N (y, ûj−1|1)

1 otherwise,
, j ∈ A (4)

where ûj = 0, ∀j ∈ F .
The dynamic frozen bits concept for polar codes has been

first introduced in [7]. Here, we generalize the definition of
[7] for polar-like codes and name them as dynamic polar-
like codes, which is the same as precoded polar codes of
[8] and [14]. In these codes, some frozen bits j ∈ F are
determined dynamically using previous bits2 with a Boolean
function hj : {0, 1}j → {0, 1}:

uj = hj(u0, u1, · · · , uj−1), j ∈ F (5)

For dynamic polar-like codes, the encoding process is:

x =
( ⊕
m∈A

um · gm
)
⊕
(⊕
j∈F

hj · gj
)
, (6)

where hj is a short-hand of hj(u0, u1, · · · , uj−1) and hj(·) =
0 if the jth bit is not a dynamic frozen bit.

The SC decoding of dynamic polar-like codes is the same as
polar codes for information bits. However, the dynamic frozen
bits are obtained with their corresponding functions

ûj = hj(û0, û1, . . . , ûj−1) (7)

during the course of decoding. The reader may refer to [4] for
SCL decoding details.

C. Distance Spectrum and Symbol Error Probability

For a C(N, k) binary linear block code, the minimum
distance dmin is the minimum Hamming distance between any
two codewords x, x′ ∈ C, that is to say

min
x 6=x′

x,x′∈C

i1(x⊕ x′) = min
x 6=0,x∈C

i1(x) (8)

2In [7], (5) is defined as a function of the preceding information bits. Here,
we give a general definition.



Let Aw(C) be the number of codewords in C with the Hamming
weight w, i.e.,

Aw(C) := |{x : i1(x) = w, x ∈ C}|, (9)

Then, the distance properties of the code C is described by
the set AC = {A0, A1, · · · , AN}, which is called distance
spectrum (or the weight enumerator function).

The decoding error probability of any code C(N, k) under
maximum likelihood (ML) decoding, PML, is upper bounded by
the union bound. For the binary phase-shift keying modulation
over AWGN channel, the union bound is given as [15]:

PML ≤ Pub =

N∑
w=1

AwQ(
√
w · SNR). (10)

For high SNR, the union bound is well approximated by [5]

Pub ≈ AdminQ(
√

dmin · SNR), (11)

which indicates that, at high SNR’s, the minimum weight
codewords contribute more to the union bound than codewords
with higher Hammming weights. To estimate the distance
spectrum, we adopt the SCL decoding method proposed in
[16]. For any polar-like code with uF = 0, the minimum
distance is given as dmin = 2minj∈A i1(bj) in [17].

III. NEW CODE DESIGN WITH DYNAMIC FROZEN BITS

This section summarizes our main contribution in this paper.

A. Number of Common 1-bit Positions in GN Rows

The jth row of GN , gj , in (1) can be divided into n disjoint
vectors rj(`), such that for ` ∈ [1, n− 1]:

rj(`) =

{
02`−1

0 if bj,` = 0

[rj(0)rj(1) · · · rj(`− 1)] if bj,` = 1
(12)

and rj(0) = ĝbj,0 . The length of rj(`) is 2` if ` ≥ 1 and is
equal to 2 if ` = 0. A close look at the recursive nature of rj(`)
reveals that the entries of gj , indexed by the set K`, defined as

K` = {k : bk,` = 1, k ∈ N}, (13)

are zeros if bj,` = 0, ` ∈ [0, n− 1]. More precisely, the set K`

gets the following particular form

K` = {k :k = a 2`+1 − b, a ∈ [1, 2n−1−`], b ∈ [0, 2` − 1]},
(14)

and gj,K`
= 0 if bj,` = 0 whatever bj,`′ , `′ 6= `, is.

We define the complementary set as Kc
` = N \ K`. Note

that, by (13), |K`| = |Kc
` | = 2n−1 for any ` ∈ [0, n− 1] since

there are n − 1 free positions in bk if the `th bit is set to 1.
Moreover

|
⋂
`∈B

K` |=|
⋂
`∈B

Kc
` |= N/2|B| (15)

for any subset B ⊆ [0, n).

Theorem 1. Let GN be the generator matrix for a polar-like
code (N = 2n, k) with arbitrary information bit indices set A

and frozen bit indices set F . For any T ⊆ N , the number of
common 1-bit positions for all j ∈ T is given as:

i1
(⋂

j∈T
gj
)

= 2i1(
⋂

j∈T bj). (16)

Proof. By (12) note that if bj,` = 0, all entries of gj , i.e., gj,k,
indexed by k ∈ K` are zero. Therefore, the number of zeros
at row vector gj is given by

i0 (gj) =
∣∣ n−1⋃

`=0,
bj,`=0

K`

∣∣ (17)

and the number of ones is

i1(gj) = N − i0
(
gj
) (a)

= | N \
n−1⋃
`=0,
bj,`=0

K` |

(b)
= |

n−1⋂
`=0,
bj,`=0

Kc
` |

(c)
=

2n

2i0(bj)
= 2i1(bj) (18)

where (a) and (b) are due to standard operations on sets and
(c) is due to (15) since |B| = i0(bj) in (b). In general, for any
T ⊆ N , the number of common ones is given as

i1
(⋂̄

j∈T
gj
)

= N − i0
(⋃̄

j∈T
gj
)

= | N \
⋃

`: bj,`=0,
j∈T

K` |

= |
⋂

`: bj,`=0,
j∈T

Kc
` |

(a)
=

2n

2i0(∪̄j∈T bj)

= 2n−i0(∪̄j∈T bj) = 2i1(∩̄j∈T bj), (19)

where (a) is due to (15). To see this, note that⋂
`: bj,`=0,

j∈T

Kc
` =

⋂
`: bT (`)=0

Kc
` (20)

where bT = ∪̄j∈T bj .

B. Hamming Weight of the Sum of GN Rows

Let T ⊆ N be any subset of row indices of polar-like code
generator matrix GN and gT be

gT =
⊕
j∈T

gj , (21)

and T w ⊆ T be any subset of T with |T w| = w. Then, the
Hamming weight of gT is given by the following theorem:

Theorem 2. Let T ⊆ N be any subset of row indices of polar-
like code generator matrix GN . Then, the Hamming weight of
the sum of the rows gj , j ∈ T is given by

i1
(
gT ) =

|T |∑
w=1

(−2)w−1
∑
T w∈T

2i1
(⋂̄

j∈Twbj

)
. (22)

Proof. Let us proceed by induction. For any two rows (gt, gm),
t,m ∈ N of GN , the Hamming weight of gj ⊕ gk is given by:

i1(gt ⊕ gm) = i1(gt) + i1(gm)− 2 · i1(gt∩̄gm). (23)



Note that (23) complies with the following expression

i1
(⊕
j∈T

gj
)

=
∑
j∈T

i1(gj)+

|T |∑
w=2

(−2)w−1
∑
T w∈T

i1
(
∩̄j∈T wgj

)
, (24)

where T = {t,m}.
Now, assume that it holds for arbitrary T ⊂ N . By (23),

i1(gT ′) for T ′ = T ∪ {t′} can be written as

i1(gT ′) = i1(gT ) + i1(gt′)− 2 · i1(gT ∩̄gt′)

= i1(gT ) + i1(gt′)− 2 · i1(
⊕
j∈T

(gj∩̄gt′)) (25)

Substituting (24) in (25) provides (26) on top of the next page
where T w is any subset of T , i.e., T w ⊆ T , with |T w| =
w. Substituting (16) in (24) results in (22) once noted that
i1(gj) = 2

i1(
⋂̄

j∈T 1
b
bj)

= 2i1(bj) for T 1
b = {bj}.

C. Code Design with Row Merging

The proposed code design is based on encoding some
information bits with more than one row of the generator matrix
GN such that some frozen bits are set to their corresponding
preceding information bits, in a sense that it will be made clear
in the following. For a given blocklength N = 2n, we define
the critical information lengths k = k`, ` ∈ [2, n− 1], such
that

k` =

n∑
p=`

(
n
p

)
. (27)

In order to guarantee the highest possible dmin without dynam-
ically frozen bits, the set of information bits, A, is chosen as
the set of row indices which have the highest weights, which
is called the Reed-Muller (RM) rule [1] selection, that is to
say, for k = k`:

A =

n⋃
p=`

Np (28)

where Np := {j ∈ N : i1(bj) = p}.
Even though RM row selection guarantees a polar-like code

with the highest dmin with uF = 0, the number of codewords
with Hamming weight dmin is still high as it is illustrated in
Table I. This table gives the number of codewords Ad with the
Hamming weight d, for the RM design, our proposed design
(PD) and PAC codes. To decrease the number of low weight
codewords, we propose a heuristic algorithm by which either
the Hamming weight of the merged rows are increased or they
remain unchanged but the positions of 1’s in the merged rows
are moved, which changes the regular structure of the positions
of 1’s of the information rows selected by the RM rule. For
a given k`, the Hamming weight of a row j ∈ N` can be
increased by merging it with a row m ∈ N`−1 such that

i1(bj∩̄bm) = `∗, m > j (29)

where max{0, 2` − 1 − n} ≤ `∗ < ` − 2. The merging with
any row m such that

i1(bj∩̄bm) = `− 2, m ∈ N`−1, m > j (30)

results in a merged row with i1(gj ⊕ gm) = 2`. However, by
Theorems 1 and 2, the 1’s at the indices P1(gj∩̄gm) are moved
to the indices P1(gm) \ P1(gj∩̄gm).

After having merged two rows (j,m) satisfying (29) one
can still increase the Hamming weight by merging them with
a third row t > j, t ∈ N`−2 such that

P1(bj∩̄bm∩̄bt) = P1(bj∩̄bm) and
P1(bt)⊂(P1(bj∩̄bm)∪P0(bj∪̄bm)) if i1(bj∪̄bm) < n (31)

For (j,m) pairs satisfying (30), the third row t > j, t ∈ N`−2

to increase the Hamming weight can be chosen as

P1(bt∩̄bj)=P1(bt∩̄bm) and i1(bj∩̄bm∩̄bt)=i1(bj∩̄bm)− 1

andP1(bt)⊂(P1(bj∩̄bm)∪P0(bj∪̄bm))if i1(bj∪̄bm)<n.
(32)

Based on these observations, for each `∗ ∈
[max{0, 2`− 1− n}, `− 2] and for a given k = k`,
we implement Algorithm 1 to obtain pairs and triples to merge.
The algorithm chooses the smallest m ∈ N`−1 satisfying (29)
or (30) starting from the smallest j ∈ N` for any given `∗.
Then, it chooses the smallest t ∈ N`−2 satisfying (31) or (32)
regarding the value of `∗. To obtain the codewords for any
`∗ ∈ [max{0, 2`− 1− n}, `− 2], the row merging operation
is implemented at the encoding stage by choosing

um
(a)
= hm(u0, · · · , um−1)=uj , (33)

for m∈F , j∈A and j<m, where (a) is due to (5), or

hm(u0, · · · , um−1) = ht(u0, · · · , ut−1)

= uj , (34)

for (m, t) ∈ F , j ∈ A, j < m and j < t, if there exist
corresponding merging pairs or triples, respectively. These
operations only require reading from the memory in practice.

Let C`∗ denote the codebooks obtained by applying the
row merging operations proposed by Algorithm 1. Then, the
codebook with the best distance spectrum is chosen, i.e., the
one with the lowest number of minimum weight codewords. If
the distance spectrum of two codebooks are equal for the first
w − 1 smallest terms, w ≥ 2, then the one with the smallest
number of codewords at the w-th term is chosen.

IV. NUMERICAL RESULTS

A. Distance Spectrum and FER Performance

Table I shows the number of codewords with different
Hamming weights for blocklength N = 128 and k =
29, 64, and 99 by employing the same experiment as the one
conducted in [16]. For k = 99, k = 64 and k = 29 the
minimum list size is 7×105, 3×105 and 1.5×105 respectively.
For PAC codes with k = 29 and k = 99, the generator
polynomials have been optimized for the memory length
m = 9, following the experimentin [16] in order to produce
the most favorable case of PAC codes. The chosen generator
polynomial for k = 29 and k = 99 are [1 0 1 1 1 0 0 0 0 1] and
[1 0 0 1 0 1 1 1 1 1], respectively. We observe that the proposed



i1(gT ′) =
∑
j∈T

i1(gj)+i1(gt′)− 2
( |T |∑
w=2

(−2)w−2
∑
T w∈T

i1
(
∩̄j∈T wgj

)
+
∑
j∈T

i1
(
gj∩̄gt′

)
+

|T |∑
w=2

(−2)w−1
∑
T w∈T

i1
(
(∩̄j∈T wgj)∩̄gt′

))

=
∑
j∈T ′

i1(gj)+

|T |∑
w=2

(−2)w−1 ·
( ∑
T w∈T

i1
(
∩̄j∈T wgj

)
+

∑
T w−1∈T

i1
(
(∩̄j∈T w−1gj)∩̄gt′

))
+ (−2)|T

′|−1i1(∩̄j∈T ′gj)

=
∑
j∈T ′

i1(gj)+

|T ′|∑
w=2

(−2)w−1 ·
∑
T ′,w∈T

i1
(
∩̄j∈T ′,wgj

)
(26)

Algorithm 1: Row Merging Pairs and Triples for `∗.

Set M←N`−1 and W ← N`−2;
for i from 1 to |N`| do

Set j ← N`(i);
Set Mj←{m : i1(bj∩̄bm)=`∗,m>j,m∈M};
if Mj 6= ∅ then

Set (j,m)← (j,Mj(1)) ;
Set M←M\m;
if `∗ < `− 2 then

Set Wj,m ← {t : t>j, t ∈ W, satisf. (31)};
else

Set Wj,m ← {t : t>j, t ∈ W, satisf. (32)};
end
Set (j,m, t)← (j,m,Wj,m(1)) ;
Set W ←W \ t if Wj,m 6= ∅;

end
end

Table I: Number of low weight codewords in some codes.

A8 A10 A16 A18 A32 A34

(128, 29) RM − − − − 10668 −
(128, 29) PD − − − − 952 −
(128, 29) PAC − − − − 348 360
(128, 64) RM − − 94488 NC NC NC
(128, 64) PD − − 2778 410 NC NC
(128, 64) PAC − − 3120 2696 NC NC
(128, 99) RM 188976 − NC NC NC NC
(128, 99) PD 19226 > 105 NC NC NC NC
(128, 99) PAC 14432 > 105 NC NC NC NC

’−’: no codeword at this Hamming weight; ’NC’: not computed

design allows to reduce the number of minimum weight
codewords to the same order of magnitude of those obtained
with optimized PAC codes. For (128, 64)-code, the numbers
of codewords at Hamming weights 16 and 18 obtained with
our proposal are even lower than for the ones obtained with
PAC codes. For (128, 29)-code the chosen code does not have
any codewords with Hamming weights 34. The number of
codewords at certain Hamming weights are not computed due
to the prohibitive amount of computations that they require.

Figures 1 and 2 compare the FER achieved with our
design with those obtained with RM and PAC codes for three
different codes, i.e., (128, 29), (128, 64) and (128, 99), w.r.t.
the uncoded energy per bit, i.e. Eb/N0. Indeed, since codes

with different rates are compared, Eb/N0 is a fairer base of
comparison than SNR. This is the reason why one may observe
a difference about 3 dB for R = 1/2 between our results
compared to PAC codes in [9]. The performance of the codes
are also compared w.r.t. the lower bound of the saddle-point
approximation [18] of the meta-converse bound [12] in BI-
AWGN channel. This bound, referred as converse saddle-point
approximation (CSA) on Figures 1 and 2, is a strict lower
bound that cannot be outperformed. At the receiver side, SCL
decoding with list size L = 256, that almost reaches the
ML performance, is performed. It is seen that our method
performs as well as the optimized Arikan’s PAC codes for
various information length k, with a lower complexity, as it
will be explained in next Section. Moreover, FER achieved
with our design is at most at 0.5dB from CSA at 10−4 for
k = 29, as it has been reported in Figure 2. As expected,
PD outperforms RM codes due to the huge difference in the
number of lowest weight codewords between the two schemes.

B. Complexity Comparison with PAC Codes

As stated in [19], the difference of PAC encoding scheme
from standard polar encoding is the rate-1 convolutional
encoder that takes place before polar transformation, which is
implemented through a length-m memory as follows [19]:

ui =

m∑
j=0

cjvi−j , i ∈ N (35)

where c ∈ F1×(m+1)
2 with c0 = cm = 1 is the generator

polynomial of the convolutional encoder, vA ∈ F1×k
2 is the

information vector and vF = 0N−k−1
0 is the frozen vector,

respectively. At the encoder side the PAC code requires O(m ·
N) additional floating point operations besides extra memory
requirement [10]. Note that the extra computational complexity
is equivalent to standard polar encoding for short block lengths
if m ≈ log2 N , which holds for the undertaken scenario, for
instance.

The SCL decoding of PAC codes is implemented by adding
a convolutional decoder after each SC decoder of list decoder
as follows [19]:

v̂i = ûi −
m∑
j=1

cj v̂i−j , i ∈ A (36)
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Figure 1: FER obtained with our scheme (PD) w.r.t. PAC codes
and CSA for N = 128, k = 64 and k = 99.
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Figure 2: FER obtained with our scheme (PD) w.r.t. PAC codes
and CSA for N = 128, k = 29.

where v̂i = 0 if i ∈ F . Therefore, in terms of hardware
complexity the PAC SCL decoder requires O(L ·m) additional
memory on top of O(L ·N) of standard SCL decoding [4].

As for computational complexity, PAC SCL decoding
requires extra O(m · L · k) [10] addtitional floating point
operations compared to standard SCL decoding, which is even
equivalent in complexity of SCL decoder O(L ·N · logN) [4],
for short blocklengths if k ·m ≈ N · logN as it is the case of
k = 99.

On the contrary, the complexity of the proposed method is
almost equivalent to the one of SCL decoder as it requires
few memory readings due to the single argument of dynamic
frozen functions as stated in (33) and (34).

V. CONCLUSION

In this paper, we proposed a practical polar-like code
construction method that performs similar, in terms of FER,
to PAC codes, at short blocklengths but with a much smaller
computational complexity. The method is based on the row

merging that encodes some information bits with more than
one rows of the polar encoding matrix. The proposed scheme
has been constructed using the connection between the binary
representation of row indices and the number of common 1-
bit positions of the corresponding rows in the polar matrix.
Our design decreases the number of low weight codewords
compared to the RM selection rule. The proposed scheme
does not require more computational resources than classical
SCL decoding and hence our scheme is a good candidate to
implement polar codes in applications with stringent complexity
constraints and with short packet transmission. As further work,
the extension to higher blocklengths is under investigation
since it may require increasing the list size decoding for proper
performance.
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