
A CompCert Backend with Symbolic Encryption

PAOLO TORRINI, INRIA, Grenoble, France
SYLVAIN BOULMÉ, Verimag, Grenoble, France

Binary encryption can be used to strengthen a verified compilation toolchain,
in order to protect executable code from malware attacks. We present In-
trinSec, a C backend that extends RISC-V with binary encryption and our
work on its formalization and verification as a CompCert backend.

Attacks against computer systems can take advantage of software
vulnerabilities such as buffer overflows in order to inject malicious
code or divert control-flow. Protection against them typically in-
volves ensuring integrity of executable code and stack data. Integrity
can then be used to ensure higher-level properties of system be-
haviour, such as those represented by the control-flow directed
graph (CFG) and non-interference. Various techniques have been
introduced to ensure integrity, including mitigation tools, type-safe
languages, the enforcement of CFG-based control-flow integrity [1]
and encryption.

Binary code encryption can be used to safe-guard code and data
integrity. Unlike other approaches, it generally requires the deploy-
ment of specialized hardware to execute the encrypted code. In
[2, 4], integrity of C program execution by authenticated encryption
of instructions is ensured by compilers that have been co-developed
with RISC processors (the latter used as prototype for proprietary
CEA hardware developed within the NanoTrust project). The en-
cryption of binary programs is carried out at compile-time by the
trusted compiler. Their decryption is achieved on the fly, at runtime,
by the processor itself. The processor supports single-instruction
decryption (it executes cyphertext by decrypting each instruction
just before executing it).

1 INTRINSEC
The IntrinSec assembly, following the design of [4], extends RISC-V
32bits with additional registers and instructions, for control-flow
monitoring (CFM), which appear in blue on Fig. 1. The compiler
translates source code to encrypted binary code (EBC) after link-
ing, producing cyphertext which is executable relying on single-
instruction decryption. Encryption is based on stream cyphers (finite
ones), each associated with a code block (cryptographic block) that
has a single entry point. Instructions in the block are sequentially as-
sociated with CFM tokens (which are masks) [2]. The assembly code
is instrumented at compile-time in order to update the CFM tokens
accordingly to control-flow branch. A higher level of protection can
be achieved by adding encryption of the whole program, associ-
ated with a stronger secret key, and by introducing data encryption,
though these aspects will not be further discussed here.

Verified compilation ensures source-level behaviour preservation,
i.e. that the target assembly code always behaves compatibly with
the source code semantics. The CompCert C compiler [3] formally
developed and verified in Coq is based on a chain of verified compi-
lation passes between intermediate languages down to Asm. Each

Authors’ addresses: Paolo Torrini, INRIA, Grenoble, France, Paolo.Torrini@inria.fr;
Sylvain Boulmé, Verimag, Grenoble, France, Sylvain.Boulme@univ-grenoble-alpes.fr.

int fact(int n){
if (n <= 1) return 1;
return n*fact(n-1);

}

ecr.enter
fact:

mv x30, sp
addi sp, sp, -16
sw x30, 0(sp)
sw ra, 4(sp)
ecr.sw emr, 8(sp)
sw x8, 12(sp)
mv x8, ra0
ecr.lui emb,%hi(.L100)
ecr.addi emb, emb,%lo(.L100)
addi x31, x0, 1
blt x31, x8, .L100

addi ra0, x0, 1
ecr.lui emb,%hi(.L101)
ecr.addi emb, emb,%lo(.L101)
j .L101

.L100:
addi ra0, x8, -1
ecr.lui emb,%hi(fact)
ecr.addi emb, emb,%lo(fact)
call fact
mul ra0, x8, ra0

.L101:
lw x8, 12(sp)
lw ra, 4(sp)
ecr.lw emb, 8(sp)
addi sp, sp, 16
jr ra

Fig. 1. IntrinSec assembly produced by our version of CompCert

language is characterized in terms of executable semantics, and
they all share a memory model which ensures separation between
mutable data and code associated with functions. At the assembly
level, a function is associated with a block and each instruction in
the block with an offset. CompCert can target different assembly
backends including RISC-V [5].

Here we discuss the formalization and verification of the IntrinSec
CompCert 3.8 backend1. In order to deal with cryptographic tokens,
we extend the RISC-V formal model with the specific instructions
and registers, and we extend the memory state with a correspond-
ingly modified notion of stack frame. This instrumented version of
CompCert RISC-V constitutes the executable model of the IntrinSec
backend. As CompCert verified compilation stops at the assembly
code, the formal verification of our compiler can only consider an
abstract model. We extend the IntrinSec executable model with an
axiomatic model of link-time encryption and run-time decryption,
basically corresponding to a symbolic encryption model of stream
cyphers in Coq. Encryption is represented as a function that de-
pends on a cryptographic block and an offset, returning the CFM
mask of the corresponding instruction.
Our basic encryption model assumes that each function block,

hence each function, is associated with a stream cypher. The first
instruction in the block is associated with the initial mask of the
stream (entry mask generated by the “ecr.enter” directive in the
concrete assembly). Further instructions in the code are then se-
quentially associated with further masks in the stream. In order to
decrypt an instruction, the processor needs to be given the correct
mask: an incorrect mask is considered as the result of a control-flow

1https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-intrinsec.

https://gricad-gitlab.univ-grenoble-alpes.fr/certicompil/compcert-intrinsec


• P. Torrini, S. Boulmeé

attack, and the execution aborts. The processor fetches this mask
from dedicated mask registers: MSK_CNT (for the mask associated
with the next instruction address, given by the program counter
PC), emr—called MSK_RTN in our Coq model—(for the mask associated
with the return address, given by RA), and emb—called MSK_BRN in
Coq—(for the mask associated to the next branching address). On
each non-branching instruction, MSK_CNT is implicitly updated (with
the symbolic encryption). For jumps, the correct mask (stored in
the memory at conventional locations for indirect jumps), must
be loaded by the program to emb by means of the special “ecr.”
instructions (see Fig. 1).
Asm programs in CompCert are obtained from a chain of inter-

mediate languages inclusive of Mach and Linear [3]. This makes it
possible to take advantage of the Mach semantics in the verification
of control-flow properties, in particular with respect to function
entry points. A minor revision of the semantics preservation proof
between Mach and Linear is needed in connection with stackframe
operations. A more significant revision is needed for the semantics
preservation proof from Mach to Asm. The verification invariant
needed for IntrinSec strengthens RISC-V source-level behaviour
preservation with a symbolic encryption invariant, ensuring that an
instruction can be executed only if the mask which becomes avail-
able for its decryption matches the one that has been used to encrypt
it (expressed as a relation between PC and MSK_CNT). The proof con-
sists in a refactoring of the analogous one for Mach and RISC-V, and
it involves a significant revision of the notion of straightline code,
which is essentially meant to capture code without jumps.

From the point of view of symbolic encryption, under the assump-
tion that masks cannot be guessed and encryption cannot be broken,
our model can guarantee code integrity, i.e. the fact that it is not
possible to make the processor execute assembly code that has been
altered or introduced by the attacker. This protection extends at
least partially to control flow, especially with respect to function
calls (i.e. the forward edges in the CFG). In the case of direct jumps,
the destination address is protected by mask encryption. In the case
of indirect ones, the mask to decrypt the address is associated to
the function entry point. This is safe, under the assumption that
the conventional location at which the mask is stored cannot be
guessed. Moreover, under the assumption that the mask increment
function cannot be guessed, this suffices to guarantee that jumping
into the middle of a function is not possible. Concerning the return
addresses (i.e. the backward edges in the CFG), the problem is more
delicate as both the return address and the associated return mask
are stored as data on the stack. Therefore, in order to protect the
backward edges, data encryption is needed.

2 RESETTING CRYPTO-BLOCKS
The basic version of IntrinSec assumes that cryptographic blocks
coincide with function blocks. This means that each stream cypher
has at least the same size of the block it is associated with. However,
this is a rather artificial constraint and may be undesirable when
function blocks are very large. It seems then appropriate to introduce
an independent notion of crytographic block. Operationally, this
can be done by using a special label to mark the start of a new block,
and a reset instruction to initialize the stream cypher. Although

the semantics of reset seems easy, this instruction complicates the
refactoring of the proofs, as the encryption function comes to depend
on the whole function code (labels may trigger a reset), and this
makes the definition of the encryption invariant more complex.

The CompCert inductive definition of “straightline code” is seman-
tic (i.e. bounding the PC shift between two sequential instructions).
This definition does not depend on any instruction set, and there-
fore can be used for different backends. In general, this notion is
slightly different from a syntactical one which could be obtained by
checking for jump instructions in the function code (a jump which
advances the counter by one does not break the semantic definition).
In IntrinSec, however, this notion has to be modified, as we need
to keep into account the MSK_CNT update. With the reset instruction,
this complicates refactoring. Thus, we switched to a syntactic notion
of straightline code, excluding jump and reset.

3 PSEUDO-ASM
In order to mitigate the refactoring problem which may arise when
we enrich the Asm back-end (as the reset example shows), we want
to split two main aspects that are dealt with in the translation from
Mach to Asm. One is the shift from the structural character of
the stack representation in Mach to the memory-embedded one of
Asm. The other one is the shift from the Mach instruction set to
the Asm one. We then introduce an intermediate language, which
we call PseudoAsm, that has the same instruction set as Mach but
has PC and RA registers and a memory-embedded stack similar to
the Asm one. Not only we can factor the translation from Mach
to Asm into two distinct ones, one from Mach to PseudoAsm and
the other one from PseudoAsm to Asm. We can also define an
inverse translation from PseudoAsm to Mach, under a state match
relation that restricts Mach states to those with a stack that can be
faithfully embedded in memory. An analogous restriction can be
introduced in the translations from Linear to Mach, and from Mach
to PseudoAsm. The advantage of this approach (currently work in
progress) is not only to achieve better modularity, but also to make
it possible to express security properties which can be preserved
down to PseudoAsm, thus localizing their possible break-down to
the shift from the Mach instruction set to the Asm one.

ACKNOWLEDGMENTS
This work has been partially supported by the IRT Nanoelec (ANR-
10-AIRT-05), funded by the French national program “Investisse-
ment d’Avenir”.
We also wish to thank Olivier Savry, Thomas Hiscock, Marie-

Laure Potet and David Monniaux for their helpful collaboration.

REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. 2005. A Theory of Secure Control

Flow. In ICFEM (LNCS), Vol. 3785. Springer, 111–124.
[2] T. Hiscock, O. Savry, and L. Goubin. 2019. Lightweight instruction-level encryption

for embedded processors using stream ciphers. Microprocessors and Microsystems
64 (2019), 43–52.

[3] X. Leroy, S. Blazy, Z. Dargaye, Jourdan J. H., M. Schmidt, B. Schommer, and J. B.
Tristan. 2020. The CompCert C Compiler, Version 3.8. http://compcert.inria.fr/
compcert-C.html

[4] O. Savry, M. El-Majihi, and T. Hiscock. 2020. Confidaent: Control FLow protection
with Instruction and Data Authenticated Encryption. In DSD 2020. IEEE, 246–253.

[5] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi. 2014. The RISC-V instruction
set manual (TR EECS-2014-54). Univ. of Calif. Vol. 26.

http://compcert.inria.fr/compcert-C.html
http://compcert.inria.fr/compcert-C.html

	Abstract
	1 IntrinSec
	2 Resetting crypto-blocks
	3 Pseudo-ASM
	Acknowledgments
	References

