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Abstract—The attitude estimation of a rigid body by magnetic,
angular rate, and gravity (MARG) sensors is a research subject
for a large variety of engineering applications. A standard
solution for building up the observer is usually based on the
Kalman filter and its different extensions for versatility and
practical implementation. However, the performance of these
observers has long suffered from the inaccurate process and
measurement noise covariance matrices, which in turn entails
tedious parameter turning procedures. To overcome the laborious
noise covariance matrices regulation, we propose in this paper
a Q-learning-based approach to autonomously adapt the values
of process and measurement noise covariance matrices. The Q-
learning method establishes a reinforcement learning mechanism
that forces the noise covariance matrices pair with the least
difference between predictions and measurements of output to
be found in a predetermined candidate set of noise covariance
matrices. The effectiveness of the Q-learning approach, applied
to Extended Kalman filter-based attitude estimation, is validated
through the Monte Carlo method that uses real flight data on
an unmanned aerial vehicle.

Index Terms—Extended Kalman filter, Q-learning, Attitude
estimation, Reinforcement learning

I. INTRODUCTION

The determination of attitude and position are involved
in navigation applications of any moving rigid bodies. The
Kalman filter (KF) and especially its Extended version (EKF)
for nonlinear dynamic models have been widely used for
several years for this purpose [1]–[4]. A linearization step
should be achieved for the nonlinear models of navigation at
the current state estimate to approximate the KF equations.
In such algorithms, it is well known that the model and
measurement noise covariance matrices play essential roles,
while it is challenging to design an optimal estimator in the
absence of exact statistical knowledge about these matrices
when using inertial and magnetic sensors, for example. The

improper values of the noise covariance matrices in the fil-
tering algorithm cause underestimation or overestimation of
the uncertainty in model or sensor measurements, leading to
degradation in attitude estimation performance, for example,
usually represented by quaternions, rotation matrices, or Euler
angles. Several approaches have been presented in the litera-
ture to overcome this problem of covariance matrix by using
different strategies of adaptation of the measurement noise
covariance matrix [5]–[7] or process noise one only [8]. An
improvement is targeted if the adaptation is applied to the two
noise covariance matrices. The main endeavor of this paper
is to adapt the two noise covariance matrices simultaneously
and in an autonomous way.

Recent advancements in Reinforcement Learning (RL) have
made it appealing to be implemented to cope with uncer-
tain environments. Specifically, this work is motivated by
the strength of the Q-learning method [9]–[12] in which an
intelligent agent learns how to take action in an environment
with uncertain parameters. To the best of our knowledge, the
process and measurement noise covariance matrices adaptation
for the EKF based on Q-learning has not been solved yet
within the scope of attitude and related states estimation by
MARG sensors.

In this paper, we first formulate the attitude estimation
problem of a rigid body, in which the rotation is represented
by quaternion and the state vector to be estimated is com-
posed of quaternion and gyroscope bias. In the following,
the dynamic and observation models are illustrated, and the
traditional EKF for this purpose is also formulated. Next, we
propose a Q-learning-based extended Kalman filter (QLEKF)
approach, which consists of three parallel filters. The first
filter, a traditional EKF with initial values of noise covariance
matrices, is run for filtering performance comparison. The
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second filter, a learning EKF, is implemented to evaluate
the estimation performance and search for appropriate noise
covariance matrices. A reward is defined by comparing a pre-
described index for the performance of the traditional EKF
and the learning EKF, and the best couple of the process
and measurement noise covariance matrices are selected. The
third filter, the learned EKF, uses the noise covariance matrices
returned by the learning EKF filter to provide the final esti-
mated states. The estimator gradually adopts the most suitable
noise covariance matrices selected by the Q-learning algorithm
according to the cumulative reward.

The main contributions of the paper are twofold. First,
the proposed algorithm successfully adapts the process and
measurement noise covariance matrices for attitude and bias
estimation using MARG sensors through the combination of
Q-learning and EKF. Second, the superiority of the proposed
algorithm over the traditional EKF in estimating attitude and
gyroscope bias is validated through multiple Monte Carlo
simulations based on real flight data.

The rest of the paper is organized as follows. Section II
formulates the attitude representation and sensor models. Sec-
tion III details the dynamic process and observation models,
the traditional EKF, and the proposed QLEKF to estimate the
rigid body attitude and gyroscope bias. Random Monte Carlo
simulations that use real flight data are performed in Section
IV. Conclusion and future research directions are given in
Section V.

II. ATTITUDE AND GYRO BIAS MODELS FORMULATION
FOR NAVIGATION

In this section, we first introduce quaternion to represent
the attitude of rigid body and then formulate the sensor
models. These materials are used later to establish the pro-
cess/observation models and the estimation approaches.

A. Attitude representation with quaternion

In this paper, the attitude of the rigid body is represented by
a quaternion-based formulation for its simplified algebra and
universal application in 3D orientation. We first introduce the
quaternion definition [13]:

q = q1i+ q2j + q3k + q4, (1)

where q4 is the scalar part, q1i+ q2j + q3k is the vector part
and i, j, k are hyperimaginary numbers.

The quaternion can also be written in a column vector,
without loss of generality and for a concise formulation, the
quaternions that appear in the rest of the paper are assumed
with unit norm, that is:

q = [q1 q2 q3 q4]
T , ∥q∥ = 1. (2)

Given a rigid body, let B denote its body frame and N denote
the navigation (inertial) frame, then its position expressed in
B (e.g. pb ∈ R3) and in N (e.g. pn ∈ R3) can be related by
a rotation matrix as

pb = Cb
n(q

b
n)p

n, (3)

where Cb
n(q

b
n) ∈ R3×3 is the rotation matrix from N to B

expressed in B using quaternion elements [14],

Cb
n

(
qb
n

)
=

 1− 2q22 − 2q23 2 (q1q2 + q3q4) 2 (q1q3 − q2q4)
2 (q1q2 − q3q4) 1− 2q21 − 2q23 2 (q2q3 + q1q4)
2 (q1q3 + q2q4) 2 (q2q3 − q1q4) 1− 2q21 − 2q22

 .

Without arising ambiguity, we denote q = qb
n hereinafter in

the paper. As the rigid body moves in 3D space, its associated
quaternion time derivative can be formulated as [13]:

q̇ =
1

2
Ω(ω)q, (4)

where ω = [ωx, ωy, ωz]
T ∈ R3 is the true angular velocity of

B w.r.t. N expressed in B, and

Ω(ω) =

[
−⌊ω×⌋ ω
−ωT 0

]
, ⌊ω×⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 .

Let Te = tk+1− tk denote the sampling interval. To render
(4) to be computationally efficient, we consider a discrete
model under the assumption that the evolution of ω during
Te is linear. In correspondence, the first order derivative of ω
can be expressed as a constant:

ω̇ = (ωk+1 − ωk)/Te,

and higher order derivatives are accordingly zero.
Applying Taylor series expansion to qk+1 around time

instant tk by substituting the first order derivative (4) and
neglecting items of higher order derivatives yield the first order
quaternion integration [15] as

qk+1 = qk +
Te

2
Ω(ωk)qk. (5)

B. Sensor models

The MARG sensors considered in this paper are composed
of a 3-axis gyroscope, a 3-axis magnetometer and a 3-axis
accelerometer. These sensors measure respectively real angular
velocity ωr ∈ R3, magnetic field m ∈ R3 and acceleration
a ∈ R3 of the rigid body in B w.r.t. N . The simplified
measurement equations are formulated as follows [16]:


ωr = ω + bg + vg,

a = Cb
n(q)g + va,

m = Cb
n(q)h+ vm,

(6)

where g ∈ R3 is the gravity vector, h ∈ R3 is the earth
magnetic field, bg ∈ R3 is the bias of gyroscope, and vg ∈
R3, va ∈ R3, vm ∈ R3 are assumed to be uncorrelated
Gaussian noises with zero mean and covariance matrices Σg =
σ2
gI3, Σa = σ2

aI3 and Σm = σ2
mI3.

In this paper, we consider that the body linear acceleration
expressed in N is zero since the rigid body is just rotating
on itself and its center of mass is not moving. In addition,
to be more focused on the attitude estimation, namely atti-
tude of rigid body and gyroscope biases, accelerometer and
magnetometer biases are omitted in the sensor models.



III. DYNAMIC PROCESS AND OBSERVATION MODELS AND
LEARNING-BASED KALMAN FILTERING FOR NAVIGATION

In this section, we first build up the navigation dynamic
model, based on which the traditional EKF is introduced to
perform the attitude and bias estimation. In the continuation,
the Q-learning method is proposed to recursively adapt the
process and measurement noise covariance matrices in the
EKF using a feedback from the uncertain environment.

A. Model design

The state vector consists of rotation quaternion and bias of
gyroscope, and the state transition equation is formulated as

xk+1 =

[
qk+1

bgk+1

]
= f(xk) +wk

=

[
I3 +

1
2Ω(ωr

k − bgk)Te 0
0 I3

] [
qk
bgk

]
+

[
wq

k

wg
k

]
, (7)

where bgk is the gyroscope bias at time step k and modeled
as standard random walk, and wq

k and wg
k form the process

noise, assumed to be uncorrelated Gaussian with zero mean
and covariance matrices Σq

w = σ2
w,qI3 and Σg

w = σ2
w,gI3. As

such, the process noise covariance matrix Qk can be expressed
as

Qk =

[
Σq

w 0
0 Σg

w

]
. (8)

In what follows, we construct the observation model by
grouping those of accelerometer and magnetometer as

yk =

[
ak

mk

]
= g(xk) + vk

=

[
Cb

n(qk) 0
0 Cb

n(qk)

] [
g
h

]
+

[
va
k

vm
k

]
, (9)

where va
k and vm

k are the measurement noises of accelerometer
and magnetometer, and are assumed uncorrelated with a zero
mean covariance matrices Σv

a = σ2
v,aI3 and Σv

m = σ2
v,mI3.

Correspondingly, the measurement noise covariance matrix
Rk is expressed as

Rk =

[
Σv

a 0
0 Σv

m

]
. (10)

B. The traditional extended Kalman filter

In this section, based on dynamic process and observation
models presented before, first we introduce the EKF for state
estimation, summarized in Alg. 1. We express the EKF in a
higher level of abstraction as function format since it will be
used to construct the QLEKF in the following subsection.

In Alg. 1, x̂k|k−1 is the a priori state estimate at step k
given the knowledge of the process model prior to step k,
A is the Jacobian matrix of partial derivatives of f w.r.t. x,
Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)

T ] is the a priori
error covariance matrix estimate at step k given knowledge of
the process model prior to step k, C is the Jacobian matrix
of partial derivatives of g w.r.t. x, Kk is the Kalman gain at
step k (derived from conditional probability density function
given that x and y are jointly Gaussian distributed), ỹk is

the measurement innovation term at step k, x̂k|k is the a
posteriori state estimate at step k given measurement yk,
Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)

T ] is the a posteriori error
covariance matrix at step k given measurement yk.

Algorithm 1 Traditional Extended Kalman Filter

1: x̂k|k,Pk|k, ỹk

= EKF (x̂k−1|k−1,Pk−1|k−1,yk,Qk,Rk)
2: Input x̂k−1|k−1,Pk−1|k−1,yk,Qk,Rk

3: x̂k|k−1 = f(x̂k−1|k−1) {time update of state estimate}
4: A = ∂f

∂x |x̂k−1|k−1

5: Pk|k−1 = APk−1|k−1A
T + Qk {time update of error

covariance matrix}
6: C = ∂g

∂x |x̂k|k−1

7: Kk = Pk|k−1C
T (CPk|k−1C

T + Rk)
−1 {compute the

Kalman gain}
8: ỹk = yk − g(x̂k|k−1) {compute the innovation term}
9: x̂k|k = x̂k|k−1 + Kkỹk {measurement update of state

estimate}
10: Pk|k = Pk|k−1 −KkCPk|k−1 {measurement update of

error covariance matrix}
11: Output x̂k|k,Pk|k, ỹk

C. Preliminaries on Q-learning approach

Q-learning is a method in reinforcement learning that max-
imizes the long-term reward in a multistate environment. That
environment typically consists of discrete state-action pairs,
each of which is assigned with a scalar, called Q-value.

In Q-learning, the agent learns to achieve a larger Q-value
under uncertainty through a trial-and-error process by shifting
among these state-action pairs. Suppose that the agent is at
state s, and it needs to determine an action a to reach the next
state s′. Commonly, there are various methods to determine
how to choose the action [17] in Q-learning. In this paper, we
adopt the ϵ-greedy algorithm [18]: a standard algorithm in the
RL domain where the agent chooses a random action with a
probability of ϵ or pick the action that maximizes the Q-value
with the probability of (1-ϵ). The value of ϵ defines how much
the agent should rely on the exploration or exploitation; the
greater the ϵ, the higher the probability to explore.

Each time after executing an action a, the agent receives a
response from the environment, which is translated to a reward
(R) showing how good the action is. Significantly, Q-learning
at its core seeks to maximize the cumulative reward by
performing the best action at each state [12]. The cumulative
reward is stored as Q-value through the Q-learning update rule
as

Q(s, a) = Q(s, a) + α[R+ γmax
a

Q(s′, a)−Q(s, a)], (11)

where Q(s, a) ∈ R is the Q-value for the action a in state s,
R ∈ R is the reward gained by exeuting action a in state s,
α is the learning rate, and γ is the discount factor.



D. Q-learning-based EKF for covariance matrices adaptation

In the QLEKF approach, the agent attempts to find appro-
priate values of process and measurement noise covariance
matrices to improve the performance of the traditional EKF.

To implement the QLEKF, a states set S, composed
of M candidates of process noise covariance matrices
{Q(1)

k ,Q
(2)
k , ...,Q

(M)
k } and N candidates of measurement

noise covariance matrices {R(1)
k ,R

(2)
k , ...,R

(N)
k }, is first con-

ceived to form a M × N grid. As such, element (i, j) in
the grid, namely state (i, j), represents the couple of noise
covariance matrices (Q

(i)
k ,R

(j)
k ). In the continuation, an ac-

tion set Ai,j is formed with valid actions that can transit
(i, j) to its adjacent states in the grid or keep it at (i, j).
It is worth mentioning that the subset of valid actions at
each element of the grid depends on the location of the agent
comprising the corner area, the boundary area, and the central
area. The last thing that needs to be defined is the reward.
One can assume the reward is the difference of the innovation
sequences between the EKF with the nominal (initial) process
and measurement noise covariance matrices and the EKF with
Q

(i)
k and R

(j)
k corresponding to the current state of the agent.

The QLEKF comprises three EKFs as shown in Figure 1:
the traditional EKF, which uses an initial value of covariance
matrices; the learning EKF, which searches appropriate covari-
ance matrices by the Q-learning algorithm; and the learned
EKF, which outputs the result of estimation according to the
covariance matrices found by the learning EKF.

Learning	EKF

Traditional
EKF

Learned	EKF

Q-learning	
algorithm

𝒚𝒌
"𝒚𝒌𝒕

𝑸𝒌
𝒊 , 𝑹𝒌

𝒋

&𝒙𝒌|𝒌, 𝑷𝒌

𝑸𝒌
𝒊 , 𝑹𝒌

𝒋

"𝒚𝒌𝒍

Fig. 1: Schematic diagram of QLEKF

Based on the description of EKF in Subsection III-B, the
QLEKF is presented in Alg. 2. Steps 12, 13, and 15 indicate
the traditional EKF, the learning EKF, and the learned EKF
respectively. Step 20 ensures the identical initial conditions at
each iteration for the traditional EKF and the learning EKF,
which brings a fair and reliable reward accumulation in Step
14. In Alg. 2, superscripts t and l stand for the traditional and
learning EKF, respectively.

Algorithm 2 Q-learning Extended Kalman Filter

1: Initialize x̂t
0|0, x̂l

0|0, P t
0|0, P l

0|0, s and ϵ
2: k ← 1, Q(s, a)← 0, R← 0
3: for each iteration do
4: Generate N from uniform distribution N ∼ U(0, 1)
5: if N < ϵ then
6: select action a randomly
7: else
8: a = argmaxa Q(s, a)
9: end if

10: Execute action a and obtain state s′

11: for each time step in one iteration do
12: [x̂t

k|k,P
t
k|k, ỹ

t
k]

= EKF (x̂t
k−1|k−1,P

t
k−1|k−1,y

t
k,Qk,Rk)

13: [x̂l
k|k,P

l
k|k, ỹ

l
k]

= EKF (x̂l
k−1|k−1,P

l
k−1|k−1,y

l
k,Q

(i)
k ,R

(j)
k )

14: R← R+ {[(ỹt
k)

T ỹt
k]

0.5 − [(ỹl
k)

T ỹl
k]

0.5}
15: [x̂k|k,Pk|k, ỹk]

= EKF (x̂k−1|k−1,Pk−1|k−1,yk,Q
(i)
k ,R

(j)
k )

16: k ← k + 1
17: end for
18: Q(s, a) = Q(s, a) + α[R+ γmaxa Q(s′, a)−Q(s, a)]
19: s← s′, R← 0
20: x̂l

k|k ← x̂t
k|k,P

l
k|k ← P t

k|k
21: end for
22: return {x̂k|k} and {Pk|k}

IV. NUMERICAL SIMULATIONS WITH REAL DATA

In this section, the effectiveness of the learned EKF in Alg. 2
is validated and compared with the traditional EKF using data
from a real flight trajectory of an unmanned aerial vehicle.

A. Simulation setup

We use the ground truth data from the real flight tra-
jectory of an unmanned aerial vehicle extracted from the
experiments Euroc [19] at http://robotics.ethz.ch/∼asl-datasets/
ijrr euroc mav dataset/machine hall/MH 01 easy. From the
ground truth data, we select the bias of gyroscope bg and
quaternion. The latter is first transformed into unit quaternion
and then substituted into (5) to solve out the true ω using
matrix pseudo inverse.

For the numerical simulations, the sampling rate of the
MARG sensors is set to 100Hz, the gravity and the earth
magnetic field vectors are set to g = [0, 0, 9.81] m/s2,
h = [0.23, 0.01, 0.41] Gauss. For the initialization of each
Monte Carlo simulation, the quaternion is set as the first
quaternion of the ground truth data1, and the gyroscope bias
and the error covariance matrix are set to bg0 = [2.2, 2, 2]
mrad/s, P0 = 10I7.

In terms of the traditional EKF, we set σw,q = 1 × 10−3,
σw,g = 0.01 rad/s, σv,a = 0.01 m/s2, and σv,m = 1 ×

1It needs to be normalized as unit quaternion to keep all the quaternion
along the simulation being unit quaternion.



TABLE I: Average statistics of mean of quaternion error norm
and Root Mean Square Error (RMSE) of gyroscope bias after
convergence in 50 Monte Carlo simulations

Mean of quaternion
error* (×10−3)

RMSE of gyroscope bias (mrad/s)
x-axis y-axis z-axis

Traditional
EKF 1.419 9.944 4.449 6.078

Learned
EKF 0.866 4.893 2.846 3.912

* For a ground truth unit quaternion qtrue, the quaternion error of its unit
estimate q̂ is computed as ∥q−1

true ⊗ q̂ − qI∥, where qI = [0 0 0 1]T is
the identity quaternion.

10−3 m/s2. The size of Q-learning grid is set to M = N = 5,
of which {Q(i)

k } and {R(j)
k } are set as a geometric progression

with ratio of 10 and Q
(3)
k = Qk, R(3)

k = Rk. The Q-learning
search starts at the grid (Q

(1)
k ,R

(1)
k ). For each Monte Carlo

simulation, we run 200 iterations and 100 time steps for each
iteration. The learning rate, discount factor and random action
selection probability are fixed to α = 0.1, γ = 0.9 and ϵ = 0.1.

B. Results and analysis

Table I shows that after convergence of 50 Monte Carlo sim-
ulations, the learned EKF evidently outperforms the traditional
EKF in estimating the rigid body attitude and the gyroscope
bias, where the learned EKF averagely improves 39.0% of the
mean of quaternion error norm and 50.8%, 36.0% and 35.6%
of RMSE of gyroscope bias of x, y, and z axes compared to
the traditional EKF.
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Fig. 2: Trajectory of average quaternion error between tradi-
tional EKF and learned EKF after convergence in 50 Monte
Carlo simulations

In Fig. 2-5, we plot the evolution of quaternion error
norm and gyroscope bias error, in which each point on the
curve stands for the mean of 20 consecutive samplings of 50
Monte Carlo simulations after convergence, making 5 points
collected during the period of 1 sec. As shown in Fig. 2,
the 2 curves share similar tendency and fluctuations after
convergence, while the quaternion error of the learned EKF
is always distinctly lower than that of the traditional EKF in
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Fig. 3: Trajectory of average error of gyroscope bias on x axis
between traditional EKF and learned EKF after convergence
in 50 Monte Carlo simulations
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Fig. 4: Trajectory of average error of gyroscope bias on y axis
between traditional EKF and learned EKF after convergence
in 50 Monte Carlo simulations

the whole convergence period, which indicates that the reward
update (Step 14 in Alg. 2) and Q-value update (Step 18 in Alg.
2) force {Q(i)

k } and {R(j)
k } to search for values with better

innovation term, thus leading to a better attitude estimate after
convergence. Similar behaviors of error of gyroscope bias can
be observed in Fig. 3-5 as well, which again demonstrates
the advantage of the learned EKF in the tuning process and
measurement noise covariance matrices over the traditional
EKF.

V. CONCLUSIONS

In this paper, we have first introduced a traditional EKF to
estimate the attitude and gyroscope bias of a rigid body in
rotation movement. To address the often-cumbersome tuning
of process and measurement noise covariance matrices in
the EKF, we have then introduced a Q-learning algorithm
to enforce the filter to search for more accurate covariance
matrices along the estimation course. This is realized by
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Fig. 5: Trajectory of average error of gyroscope bias on z axis
between traditional EKF and learned EKF after convergence
in 50 Monte Carlo simulations

assigning a reward to covariance matrices that can produce
better innovation terms than the traditional EKF, which encour-
ages covariance matrices associated with better measurement
estimation to be more likely selected by the reinforcement
learning process.

Through Monte Carlo numerical simulations based on real
flight data of an unmanned aerial vehicle, the proposed learned
EKF on average has revealed an improvement of 39.0%
in attitude estimation and at least 35.6% in gyroscope bias
estimation compared to the traditional EKF after convergence.

Future work on the QLEKF can be undertaken by incor-
porating the position and linear velocity in the estimation,
and combining vision data with an inertial measurement unit
(IMU) for better navigation.
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