Marina Costantini

Thrasyvoulos Spyropoulos

Theodoros Giannakas

Pavlos Sermpezis

Approximation Guarantees for the Joint Optimization of Caching and Recommendation

Caching popular content at the network edge can benefit both the operator and the client by alleviating the backhaul traffic and reducing access latency, respectively. Recommendation systems, on the other hand, try to offer interesting content to the user and impact her requests, but independently of the caching policy. Nevertheless, it has been recently proposed that designing caching and recommendation policies separately is suboptimal. Caching could benefit by knowing the recommender's actions in advance, and recommendation algorithms could try to favor cached content (among equally interesting options) to improve network performance and user experience. In this paper we tackle the problem of optimally making caching and recommendation decisions jointly, in the context of the recently introduced "soft cache hits" setup. We show that even the simplest (one user, one cache) problem is NP-hard, but that the most generic problem (multiple users, femtocaching network) is approximable to a constant. To the best of our knowledge, this is the first polynomial algorithm with approximation guarantees for the joint problem. Finally, we compare our algorithm to existing schemes using a range of real-world data-sets.

I. INTRODUCTION

Storing popular content at the edge of future wireless networks has recently rekindled interest in caching research. Placing content in caches close to the user ensures a better delivery with higher bitrate, shorter delay, etc. [START_REF] Doan | Tracing the path to youtube: A quantification of path lengths and latencies toward content caches[END_REF] as well as reduced congestion on the transport links and core servers. At the same time, recommendation systems greatly affect user requests. It is reported that up to 80% of requests on popular content distribution platforms come from user recommendations [START_REF] Gomez-Uribe | The netflix recommender system: Algorithms, business value, and innovation[END_REF], [START_REF] Zhou | The impact of youtube recommendation system on video views[END_REF]. Nevertheless, the traditional role of a recommendation system has been to bring forward items from a vast catalogue that best match the users' interests. Where the content is cached and how this affects delivery (e.g., streaming rate) does not usually play a role in the decision of most recommenders.

Recently, major content providers like Netflix and Google started partnering with Internet Service Providers (ISPs) to implement their own CDN solutions inside the network [START_REF]Netflix open connect[END_REF], [START_REF]Google global cache[END_REF]. This naturally brings together content caching and recommendations, as now the same entity can control and coordinate both, towards better user experience, lower network costs, or both. As a result, some recent works propose caching and recommendation policies that take into account this interplay [START_REF] Krishnappa | Cachecentric video recommendation: an approach to improve the efficiency of youtube caches[END_REF]- [START_REF] Song | Making recommendations bandwidth aware[END_REF]. Nevertheless, many of these works still focus on one side of the problem, e.g., network-friendly recommendations [START_REF] Giannakas | Show me the cache: Optimizing cache-friendly recommendations for sequential content access[END_REF], [START_REF] Song | Making recommendations bandwidth aware[END_REF], or recommendation-aware caching policies [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF]. Some works that do try to modify both the caching and recommendation policies are usually based on heuristics [START_REF] Chatzieleftheriou | Caching-aware recommendations: Nudging user preferences towards better caching performance[END_REF], [START_REF] Lin | Joint pushing and recommendation for susceptible users with time-varying connectivity[END_REF].

Our focus, in this paper, is in the recently proposed context of soft cache hits [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF]. There, if the requested content is not locally cached, the user might agree to accept an alternative (but related) content that is locally available. One reason for this acceptance might be better streaming quality for similarly interesting content (e.g., it is known that low bitrate can lead to increase in the abandonment rate [START_REF] Nam | Qoe matters more than qos: Why people stop watching cat videos[END_REF]). Another reason is that the network or content provider that benefits thus from network cost reduction, is willing to offer appropriate incentives to counterbalance the occasional utility loss (e.g. zero-rating). While soft cache hits were formally introduced in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF], [START_REF] Spyropoulos | Soft cache hits and the impact of alternative content recommendations on mobile edge caching[END_REF], other related works also implicitly or explicitly assume soft cache hits. E.g, the pliable index coding of [START_REF] Song | Making recommendations bandwidth aware[END_REF] allows for content of lower preference to be served to the user, if that benefits the transmission scheme, while the works of [START_REF] Chatzieleftheriou | Caching-aware recommendations: Nudging user preferences towards better caching performance[END_REF], [START_REF] Chatzieleftheriou | Jointly optimizing content caching and recommendations in small cell networks[END_REF] introduce a "distortion" parameter that allows lower (but bounded) relevance content to be recommended, if that content is cached. Hence, the framework of soft cache hits targetted in this work has more general applicability.

In this paper we depart from the assumption of [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF] that any content in the cache can be recommended to the user. This new setting is significantly more realistic, since standard caches at the edge can contain in the order of 100-1000 contents [START_REF]Netflix open connect[END_REF], while only a few 5-20 contents may be recommended to the user in small devices such as smartphones or laptops. However, we now need to choose not only the contents to cache but also the recommendations offered to the user, which renders the problem considerably more challenging.

Our main contributions can be summarized as follows:

• Starting from the framework of [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF], we introduce (per user) recommendation variables, and formulate the problem of jointly optimizing both sets of (caching and recommendations) variables. • We show that even the simplest version of the joint problem (one user, one cache) is NP-hard, and that straightforward application of existing submodularity-based frameworks [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF], [START_REF] Golrezaei | Femtocaching: Wireless video content delivery through distributed caching helpers[END_REF] does not lead to approximation guarantees. • We show that using a primal decomposition of the joint problem into an inner (recommendation related) problem and an outer (caching related) problem, leads to an iterative yet efficient (i.e., polynomial) algorithm with constant approximation to the jointly optimal solution. To our best knowledge, this is the first approximability result of such a joint problem. • Using a range of real-world datasets we show that the proposed algorithm always outperforms existing heuristics, and discuss the implications of different content types on relative and absolute performance of these schemes.

II. PROBLEM SETUP

We tackle the problem of jointly designing which contents to cache at each small cell (SC) and what contents to recommend to each user in the network. The goal is to maximize the number of requests served with the local caches either by (i) providing the user with her original request ("direct" cache hit) or (ii) offering her an alternative content related to her request and stored locally ("soft" cache hit). Our model relies on the hypothesis that since most of the material distributed by content providers such as Netflix and YouTube is entertainment-oriented, the user can be flexible and may accept (with a certain probability) a substitute that is close enough to her original request. Indeed, recommendations have shown to have a significant impact on the user behavior when browsing in entertainment-oriented platforms [START_REF] Zhou | The impact of youtube recommendation system on video views[END_REF]. Thus our model seeks to provide the user with good recommendations not only from the point of view of showing relevant content that might interest her, but that can also be retrieved easily to have it fast and in good quality. We describe each of the components of our system model in detail below.

A. Network and Caching Model

We consider a set of SCs M and a set of users I, each of them connected to at least one SC in M. We indicate whether a user i can retrieve content from a base station m with the binary variables q im 2 {0, 1}. Our model can be easily extended to consider the uncertainty in the user-SC association by making q im 2 [0, 1] the probability of finding user i in the range of SC m. Each SC is equipped with a cache memory of capacity C, i.e. that can store up to C contents 1 . We use variables x km 2 {0, 1} to indicate whether content k is stored in the cache of helper m. A user can only retrieve contents from the SCs she is connected to and only if the cache contains the file.

B. Content Model

We denote with K the catalogue of contents from which the users make their requests. Since many pairs of contents in K may be related to each other, the catalogue can be represented by a graph where each content is a node and related contents are linked by a weighted edge indicating the level of relevance of one content with respect to the other. For example, if K is a catalogue of music videos, two songs of the same artist will be linked with a high weight and two songs from different artists but of the same genre will be linked with a low weight. Thus the relations between the contents in K can be represented with an adjacency matrix U = {u kn 2 [0, 1]}, k, n = 1, . . . , K indicating the relative value that a content has to replace another. The values are normalized to have u kn = 1 if n = k. 1 We assume for simplicity that each content has roughly equal size (e.g., video chunks), as is commonly assumed in related work [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF], [START_REF] Golrezaei | Femtocaching: Wireless video content delivery through distributed caching helpers[END_REF], [START_REF] Poularakis | Approximation algorithms for mobile data caching in small cell networks[END_REF]. However, our method can be applied to variable size content as well, giving rise to 'knapsack-type' constraints [START_REF] Krause | Submodular function maximization[END_REF].

C. Recommendation-driven Content Access Model

In our model each user generates random i.i.d requests for contents in catalogue K where content k is requested with probability p k that might be different for each user (in which case we will have p i k). In our simulations the p k follow a Zipf distribution as shown in related literature [START_REF] Adamic | Zipf's law and the internet[END_REF].

When a new request for a content k arrives from a user i three things can happen: 1) Direct hit (q im = 1, x km = 1): The content is found in one or more caches that the user is connected to.

2) Soft hit (x km = 0 8m/q im = 1; 9 n, m : u kn > 0, x nm = 1, q im = 1): The caches do not contain the requested content k but the user is offered a maximum of N alternative contents n (the recommendations) that are related to the request and found in the caches. If the user accepts to take any of the recommendations instead, a soft hit occurs whose value depends on the u kn .

3) Cache miss (x km = 0, u kn = 0 8i, k, n, m/q im = 1, x nm = 1): Neither the requested item nor any related content is found in the accessible caches.

Our model assumes that given a request for content k that is not locally available, the user will be sequentially offered alternative contents n that she might accept with a certain probability v kn 2 [0, 1]. It is reasonable to assume that the probability of accepting a substitute depends directly on how related the substitute is to the content originally requested (and this is what standard recommenders do, e.g. through collaborative filtering). Thus, in the following we will assume v kn = u kn , and discard the notation v kn . This model for soft cache hits was first introduced in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF]. However, here we make the assumption that the number of contents accessible by the user is limited by the number of recommendations. While in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF] it was assumed that any content stored in the cache could be offered to the user as a substitute of her request, this is actually unrealistic, since the number of contents in the cache may be much larger than what is practical to recommend through an application interface. This new assumption, however, introduces an additional variable to optimize over (the y kn) and an additional constraint (⌃ n y kn  N).

We also consider the possibility that even if two contents k and n are related, the utility of getting one of them when the other is requested depends on the user's particular preferences and thus it may differ between users. Thus in the multi-user case we will consider individual matrices

U i = {u i kn }
for each user i. Since the utility of each content has a direct impact on whether it is recommended or not, we will define the user-specific recommendation matrices Y i = {y i kn } analogously. Table I summarizes the notation of the variables described above.

III. PROBLEM FORMULATION AND ALGORITHMS

Based on the previous problem description, it is clear that there are two sets of variables to optimize: what is cached where (variables x km) and what to recommend to each user (variables y i kn). We formalize our objective below. q im User i is in range of SC (q im = 1) or not (q im = 0)

C Storage capacity of a SC x km Content k is stored in SC m (x km = 1) or not (x km = 0) K Set of contents (|K| = K) u i kn
Utility of content n for a user i requesting content k p k Probability of content k being requested

y i kn
Recommend n when i requests k (y i kn = 1) or not (y i kn = 0)

A. Joint Optimization for a Single Cache

In order to better illustrate the problem's hardness, our methodology, and intuition behind it, we will first tackle the problem of designing the caching and recommendation variables in the single-user single-cache scenario, and we will then extend this result to the multi-user femto-caching setting. Optimization Problem 1 (Joint Caching and Recommendation -Single User Single Cache).

maximize x,Y K X k=1 p k " 1 K Y n=1 (1 xn • u kn • y kn) # (1) s.t. K X k=1 x k  C (2) K X n=1 y kn  N, 8k (3)
xn, y kn 2 {0, 1}

In the problem above the objective function (1) computes the expectation of a cache hit over all contents in the catalog. A (potentially soft) hit occurs when a content k is requested and a related (u kn > 0) content n that is cached (x n = 1) is recommended (y kn = 1). In case of a direct hit, we assume that u kk = 1 for all k, and we set y kk = 1, i.e. a requested content is always recommended if it is cached (and the user accepts it with probability 1, since she got what she wanted). It is easy to see that the product term in (1) corresponds to the probability that no content n leads to a cache hit: this is clear if the content is not cached (x n = 0), or it is not recommended (y kn = 0); if it is cached and recommended, then the user rejects it with probability 1 u kn . Constraint (2) states that we cannot cache more contents than the capacity of the cache and constraint (3) limits the number of recommended items to N . Altogether, our general objective could be loosely described as "maximizing the cache hit rate for the operator, while at the same time making sure that the recommendations to each user are relevant".

Previous works considering the possibility of enhancing the cache hits through recommendations [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF]- [START_REF] Chatzieleftheriou | Jointly optimizing content caching and recommendations in small cell networks[END_REF] solve a different or partial version of this problem. In [START_REF] Chatzieleftheriou | Caching-aware recommendations: Nudging user preferences towards better caching performance[END_REF], [START_REF] Chatzieleftheriou | Jointly optimizing content caching and recommendations in small cell networks[END_REF] the model captures the "distortion" by alternative recommendations in a different manner (as a constraint outside the objective), and the algorithm solves the problem for x n only and amends the recommendations in a posterior step. In [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF] only the caching problem (choosing x n) is solved without accounting for the selection of the limited number of recommendations to show to the user. Problem 1 can be reduced to that of [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF] by setting N = C and making y kn = 1 8k, n.

Note that the above problem is already NP, even for a single cache and one user, since the simpler problem in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF] considering variables x n only is already NP. However, the objective can be decomposed to optimize over each variable separately and iteratively, which allows to define a polynomial-time algorithm with approximation guarantees. We remark that this is not always the case, and submodularity methods such as those in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF], [START_REF] Golrezaei | Femtocaching: Wireless video content delivery through distributed caching helpers[END_REF] cannot always be extended directly on both sets of variables (this is easy to see with a counterexample and was proved formally in [START_REF] Chatzieleftheriou | Jointly optimizing content caching and recommendations in small cell networks[END_REF]).

Our method solves a primal decomposition of the joint problem in (1): An outer problem that maximizes its objective respect to x and an inner problem that, for a given x, maximizes the objective in (1) respect to y. This decomposition is equivalent to the original problem and allows to define a "nested" algorithm where the outer loop tries to find the best content to add to the cache, and the inner loop selects the best recommendations for the user for each potential cache configuration. We provide the details in the following.

B. Submodularity-based Approximation Algorithm for Problem 1

Let us first assume that the caching vector (variables x n) are given and consider the subproblem of maximizing (1) with respect to variables y kn . We will show first that this can be done in polynomial time, so that it can be used as a subroutine next.

Let us denote the terms in the objective as

f k (x, Y) = 1 ⇧ n (1 x n • u kn • y kn) .
(5) Let us further denote as

f ⇤ k (x) = max Y {1 ⇧ n (1 x n • u kn • y kn)}. (6)
Lemma 1. Let

F ⇤ (x) = max Y {⌃ k p k [1 ⇧ n (1 x n • u kn • y kn)]}, then F ⇤ (x) = P k p k • f ⇤ k (x).
Proof. This follows easily from the fact that the constraints for Y (i.e. Eq. (3)) are decoupled per line, so finding the optimal recommendations, given a caching vector, decouples to K independent subproblems of maximizing one term in the sum (corresponding to a row k of Y) subject to the respective constraint (3) for line k.

Hence, we can focus on optimizing each term in the sum (corresponding to each line k of matrix Y) separately. Let us denote set S as S = {j 2 1, K : x j = 1}, i.e. the set of cached elements, and use notation f ⇤ k (S) and f ⇤ k (x), interchangeably.

Lemma 2. Let u (j) k (S) denote the j th order statistic of elements {u kn : n 2 S}, i.e., the j th largest element in that set. Then,

f ⇤ k (S) = 1 (1 u (1) k (S))•(1 u (2) k (S)) . . . (1 u (N) k (S)). (7)
Proof. Our choice per line consists of choosing at most N contents to recommend, so as to maximize 1 ⇧ n2S (1 u kn • y kn). Assume that choosing the N elements with the highest u kj is not optimal, as claimed above, and recommending another element l 2 S leads to a better objective. Let us further assume that l replaces the N th highest content. Then,

1 (1 u (1) k (S)) . . . (1 u (N 1) k (S)) • (1 u kl) > 1 (1 u (1) k (S)) . . . (1 u (N) (S))) (1 u (N) (S)) > (1 u kl)) u (N) (S)
< u kl which is clearly a contradiction, since we assumed that l is not among the N -highest u kj values in set S.

It is easy to see that the proof holds (in fact strengthens) when replacing any other order statistic(s) in Eq. [START_REF] Giannakas | Show me the cache: Optimizing cache-friendly recommendations for sequential content access[END_REF].

Lemma 3. f ⇤ k (S)
is a monotonically non-decreasing function of |S|, the cardinality of set S.

Proof. The proof can be found in Appendix A.

Theorem 1. The function f ⇤ k (S) is submodular in S, for any k.

Proof. The proof can be found in Appendix B.

Corollary 2. The objective of Problem 1, i.e., eq. (1) is monotone submodular in x.

Proof. The objective of Problem 1 is equivalent to maximize

x F ⇤ (x) ⌘ maximize x X k p k • f ⇤ k (x)
since it holds that [START_REF] Boyd | Convex optimization[END_REF]: max

X,Y g(X, Y) = max X ⇣ max Y g(X, Y) ⌘
Therefore the objective is a positive weighted sum of monotone submodular functions f ⇤ k (S), and hence the sum is monotone submodular as well [START_REF] Krause | Submodular function maximization[END_REF].

The submodularity and monotonicity properties of the objective function of Problem 1 allow us to define a primal decomposition algorithm with performance guarantees. We propose Algorithm 1 to design the cache vector x and recommendation matrix Y defined in the problem.

The Algorithm works as follows: in an outer loop (lines 4-13) it looks for the content j that maximizes the marginal gain obtained from adding that content to the cache, as is standard with greedy algorithms for submodular problems. However, for each candidate content it performs an inner loop that resorts the utility values for the new cache configuration and chooses the recommendations in accordance with Lemma 2 (function ChooseRecommendations() in line 9), i.e. for each content k it selects the N cached items with highest u kn and sets y kn = 1. The procedure is then repeated until the cache is full.

Theorem 3 states the approximation guarantees of Algorithm 1 for the Joint Caching and Recommendation problem for a single cache: Theorem 3 (Approximation Guarantee of Greedy). Let x OP T be the optimal caching vector to Problem 1 and x ⇤ the caching vector returned by Algorithm 1.2 It holds that

F ⇤ (x ⇤) > ✓ 1 1 e ◆ F ⇤ (x OP T)
Proof. As stated by Corollary 2, the objective function of Problem 1 is monotone submodular, and the problem has x aux = x, R = 0 K 4:

for j = 1, . . . , K do 5:

if x j == 1 then . If content j is already cached 6:
R j = ⌃ k p k (1 ⇧ n (1 x aux n • y kn • u kn))
11:

x aux j = 0

12:

end if 13:
end for 14:

j ⇤ = arg max j R 15:
x j = 1 16: end while 17: Y = ChooseRecommendations(x, N, U) 18: return x, Y a cardinality constraint. It is known that for this class of problems the greedy algorithm achieves in the worst case a (1 1 e)-approximation solution [START_REF] Krause | Submodular function maximization[END_REF].

C. Joint Optimization: Multi-User Multi-Cache

The results obtained above for a single cache can be extended to prove submodularity and monotonicity also in the multi-user femtocaching (i.e. multi-cache) scenario. In this new setting, a user i 2 I may be connected to one or more helpers m 2 M. We will indicate this association with the indicator matrix q im . We also consider now that the utility of a content to replace another may be user-dependent, and thus now we have a per-user content relation matrix U i = {u i kn } and an associated recommendation matrix Y i = {y i kn }. We will use U and Y to denote the 3-dimensional arrays resulting from the concatenation of the U i and Y i matrices, respectively. The problem of maximizing the cache hit ratio with soft cache hits and limited number of recommendations in this new scenario is stated in Problem 2. Optimization Problem 2 (Joint Network Caching and User-specific Recommendation).

X,Y K X k=1 U X i=1 p i k " 1 K Y n=1  M Y m=1 (1 xnm • qim)+ (8) ⇣ 1 M Y m=1 (1 xnm • qim) ⌘ (1 u i kn • y i kn) # s.t. K X k=1 x km  C, 8m 2 M (9) K X k=1 y i kn  N, 8k 2 K, 8i 2 U (10) xnm, y i kn 2 {0, 1} (11)
The steps in the proof of Theorem 1 allow us to easily extend the submodilarity and monotonicity results to the multi-user femtocaching scenario of Problem 2, as shown next.

Corollary 4. The problem of joint "femto-caching" (i.e. multiple co-dependent caches) and recommendation is also submodular (subject to matroid constraint).

Proof. The proof can be found in appendix C.

A greedy algorithm analogous to Algorithm 1 can be defined for Problem 2, where now the outer loop goes through all potential (content, cache) assignments (see appendix C). This algorithm can guarantee a 1 2approximation of the optimal solution, since Problem 2 is a maximization problem with a submodular objective and a matroid constraint [START_REF] Fisher | An analysis of approximations for maximizing submodular set functions-ii[END_REF].

IV. EXPERIMENTAL RESULTS

We performed simulations with both synthetic and realworld data to test the performance of our algorithms for jointly designing the caching and the recommendation (from now onward denoted JCR) against two alternative approaches. These are two suboptimal decomposition algorithms that correspond to existing approaches for which the caching and recommendation decisions are taken separately:

Caching policies: 1) Soft Cache Hits (SCH): Chooses the contents to store taking into account the possibility of having soft cache hits but without considering the limited number of recommendations. This method is identical to that in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF] and implicitly assumes that all cached contents can be recommended.

2) Popularity (POP): Caches the most popular contents until the cache is full. This approach is completely blind to the possibility of the user acquiring benefit through accepting related content.

Recommendation policy: The recommendations in the two approaches above are chosen after having filled the cache with their respective criteria, and these are chosen in accordance with Lemma 2 (for each content k, the N contents with highest u kn are recommended).

For our implementation of the greedy-based approaches (JCR and SCH) we used the lazy evaluations method, which exploits the submodularity property of the objective to significantly accelerate the greedy search process (due to lack of space we redirect the interested reader to [START_REF] Krause | Submodular function maximization[END_REF] for a nice explanation of this method).

We performed experiments with synthetic data to observe the effect of the graph structure and the network parameters on the performance of the algorithms. This allowed us to appreciate the relative performance of the schemes in a controlled environment for different setup parameters before testing them on the real-world data. Figure 1 shows these results for a synthetic content graph generated with the Barabassi-Albert model and two different scenarios: (1) catalog size K=500, cache size C=50 and number of links added by each new node n=10, and (2) K=1000, C=75 and n=2. In both cases the recommendations were N =1, the popularity Zipf exponent ↵=1 and the u kn =0.5.

Figure 1 shows that JCR can beat the other two algorithms in both scenarios and achieve over a 10% of difference with the weakest, but there is a trade-off that (with this particular graph structure) does not allow it to significantly beat both at once. In Scenario 1 the high C/K ratio and the large number of edges favor the "confusion" of SCH, which adopts the strategy of trying to accumulate many soft hits but in the end its performance is constrained by the limited number of recommendations. On the contrary, POP can accrue a lot of direct hits thanks to the large C, and its CHR is further boosted by the soft hits obtained thanks to the high connectivity of the graph. The situation is reversed in Scenario 2: low connectivity and low C/K ratio harm the performance of POP but push SCH towards adopting a strategy more similar to that of JCR, where the fractions of soft and direct hits are more balanced than in Scenario 1. The differences between JCR and SCH will be more notorious when N ⌧ C ⌧ K, as in real scenarios. However, to appreciate them in our limited-size datasets we had to set it to N = 1. As can be expected, increasing N with C fixed makes SCH perform more similarly to JCR, and identically in the limit N = C. For our experiments with real data we considered four datasets:

MovieLens (K=3306): for this dataset we built U from the user ratings using collaborative filtering (see details of preprocessing in [START_REF] Sermpezis | Soft cache hits: Improving performance through recommendation and delivery of related content[END_REF]).

YouTube (K=2098) [START_REF]Dataset for statistics and social network of youtube videos[END_REF]: here we built matrix U setting u kn to non-zero if k is in the list of recommended videos for n or vice versa.

We also considered two datasets not related to video content to further compare the algorithms:

Amazon Videogames (Azn-VG, K=5614) and Amazon for Android applications (Azn-Apps, K=8229) [START_REF] Mcauley | Imagebased recommendations on styles and substitutes[END_REF]: For these we built U from the "also bought" list of the datasets, setting u kn 6 = 0 when items k and n were bought together.

In all cases we kept the largest component of the dataset graphs, and we set the off-diagonal elements of U to u kn = 0.5. Since the Amazon datasets did not contain the content popularity distribution, we synthetically generated random popularity values for each content following a Zipf distribution with exponent ↵ = 2. In our experiments we set the cache size C to be 5% the size of the dataset catalog and N = 1 recommendation was shown to the user for each content request.

Figure 2 shows the performance of our algorithms in the single-cache scenario for all datasets. We have indicated the fraction of cache hits coming from direct and soft hits in dark and light colors, respectively. Our experiments with the femto scenario (not included here) showed very similar trends. Below we make some remarks on these results.

The joint approach outperforms the other two in all cases. In all cases JCR achieves a higher CHR that the other two approaches (both in real and synthetic datasets). This demonstrates the importance of not only accounting for the possibility of soft cache hits, but also for the limited number of recommendations. It is worth noticing that even if greedy has a worst case approximation in theory, in practice it performs very close to optimal.

The magnitude of the difference between JCR and the other algorithms depends very much on the source of the greatest fraction of hits (direct or soft). Whether JCR can beat one or both of the other algorithms by a large difference depends on how it does so. In the YouTube dataset, for example, all approaches perform similarly and they go for a lot of direct hits. This suggests that for this dataset the gains are dominated by the popularity values and even JCR and SCH tend to adopt the strategy of POP. Conversely, for MovieLens it seems that the graph structure benefits the acquisition of soft hits. Thus in this case the approaches accounting for soft hits (JCR and SCH) prioritize this source of CHR and adopt a similar strategy that significantly outperforms POP. The greatest gains of JCR respect to the other two are better appreciated when similar gains can be obtained either by caching popular items or by exploiting the soft hits, as observed in the Azn-VG and Azn-Apps datasets.

The overall performance of each algorithm and the differences between them highly depend on the graph structure. As shown in the experiment with synthetic data, by just modifying the graph properties we can invert "who JCR beats by a large difference". The real traces provide further insight into this effect, but due to their complex structure interpreting what is happening in these cases is harder. In future work we will further explore how graphspecific properties affect the algorithm performance when cache hits can be accrued through recommendations. V. CONCLUSION Caching and recommendation are two distinct technologies that impact on each other but that are currently optimized separately. We have proposed a simple algorithm with provable approximation guarantees that can jointly design the caching and recommendation strategies in very general scenarios and consistently outperform schemes that take these choices separately. We observed how the magnitude of the gains highly depends on the graph structure of the dataset. Future work will be dedicated to better understand how the graph properties of the content matrix impact on the algorithm performance when soft cache hits are allowed.

Algorithm 1

 1 Joint Caching and Recommendation Design Input: U, N, C, p Output: x, Y 1: x = 0 K , Y = 0 K⇥K 2: while t < C do 3:

 maximize

Fig. 1 .

 1 Fig. 1. Expected cache hit ratio (CHR) of the three algorithms tested in the two synthetic scenarios. The fraction of CHR earned by direct and soft hits have both been indicated in each bar in dark and light color, respectively.

Fig. 2 .

 2 Fig. 2. Expected CHR of the three tested algorithms in all four datasets.

Note that the optimal recommendation matrices Y OP T and Y ⇤ are immediately obtained from x OP T and x ⇤ respectively by recommending the N cached elements with the highest utility (seeLemma 2)

ACKNOWLEDGEMENTS

This work was partially funded by the IMT F&R program, by the ANR-17-CE25-0001 Jeunes Chercheuses et Jeunes Chercheurs project 5C-for-5G, and by Greece and EU (European Social Fund) in the framework of the Operational Programme "Human Resources Development, Education and Lifelong Learning" within the Action "Support to Postdoctoral Researchers, 2nd round" (MIS 5033021) of the Greek State Scholarships Foundation.

APPENDIX A PROOF OF LEMMA 3

According to Lemma 2, for set S, it holds that f ⇤ k (S) = 1 (1 u

(1)

k (S)) . . . (1 u (N) k (S)). Now, assume that we add some element i in S. Then, there exist two cases:

, where in (a) we used the fact that f ⇤ k (S)  1. This completes the proof.

APPENDIX B PROOF OF THEOREM 1

Consider the powerset F of {1, 2, . . . , K}. Now, assume that we add element i to some set S 2 F. We denote

) Then, we can consider the following cases: ⇣ (Case 2)

k (S)], according to eq. (13), which is strictly higher than 0.

(Case 3) f (A, i) > 0, f (B, i) > 0: In this case, it is easy to see according to Lemma 3, that the highest order statistics of sets A and B will coincide up to some order m, and will differ from order m + 1 up to N Then, we can write

Let's denote the common term in the product as C, and as C A and C B the different terms in each product, respectively. Then,

Eq. (16) follows from the fact that f ⇤ k (S) is monotonically increasing and thus 17) also follows easily from Lemma 3, as all order statistics are monotonically increasing in the cardinality of the considered set.

Finally, the case f (A, i) = 0, f (B, i) > 0 cannot occur due to f ⇤ k being monotonically increasing in the cardinality of the chosen set of elements. This concludes the proof that f (A, i) f (B, i) 0 for all possible cases, and thus that f ⇤ k is submodular.

APPENDIX C PROOF OF COROLLARY 4

We may denote the terms between the outer square brackets as

). We may then repeat the argument of Lemma 1 to show that F ⇤ (X) =

, since we can maximize the terms in the sum for each k and i independently.

Let us denote S = {(`, m), `2 {1, K}, m 2 {1, M} :

x `m = 1} the pairs (content, helper) such that content `is stored in helper m. We will use the notation f ⇤ ki (S) and f ⇤ ki (X) interchangeably. Furthermore, let S i ⇢ S be the subset of pairs in S such that user i has access to a helper m 2 S, i.e. q im = 1. Note that since a user cannot get any benefit (cache hit) from a helper that she is not connected to, f ⇤ ki (S) = f ⇤ ki (S i), and furthermore

k (S i)) by the same arguments used in Lemma 2. Therefore if we decouple the problem per user and take the elements of S to be the pairs (`, m) we can repeat the steps of Lemma 3 and Theorem 1 to show submodularity and monotonicity for f ⇤ ki (S). Since the objective F ⇤ (X) of Problem 2 is a positive weighted sum of f ⇤ ki (S), it is monotone submodular as well.