
HAL Id: hal-03555313
https://hal.science/hal-03555313

Submitted on 3 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

L-STAP: Learned Spatio-Temporal Adaptive Pooling for
Video Captioning

Danny Francis, Benoit Huet

To cite this version:
Danny Francis, Benoit Huet. L-STAP: Learned Spatio-Temporal Adaptive Pooling for Video Cap-
tioning. AI4TV 2019, 1st International Workshop on AI for Smart TV Content Production, Access
and Delivery, Oct 2019, Nice, France. pp.33-41, �10.1145/3347449.3357484�. �hal-03555313�

https://hal.science/hal-03555313
https://hal.archives-ouvertes.fr


L-STAP: Learned Spatio-Temporal Adaptive Pooling
for Video Captioning

Danny Francis
danny.francis@eurecom.fr

EURECOM
Biot, France

Benoit Huet
benoit.huet@eurecom.fr

EURECOM
Biot, France

ABSTRACT
Automatic video captioning can be used to enrich TV programs
with textual informations on scenes. These informations can be
useful for visually impaired people, but can also be used to enhance
indexing and research of TV records. Video captioning can be seen
as being more challenging than image captioning. In both cases,
we have to tackle a challenging task where a visual object has to
be analyzed, and translated into a textual description in natural
language. However, analyzing videos requires not only to parse
still images, but also to draw correspondences through time. Re-
cent works in video captioning have intended to deal with these
issues by separating spatial and temporal analysis of videos. In this
paper, we propose a Learned Spatio-Temporal Adaptive Pooling (L-
STAP) method that combines spatial and temporal analysis. More
specifically, we first process a video frame-by-frame through a Con-
volutional Neural Network. Then, instead of applying an average
pooling operation to reduce dimensionality, we apply our L-STAP,
which attends to specific regions in a given frame based on what
appeared in previous frames. Experiments on MSVD and MSR-VTT
datasets show that our method outperforms state-of-the-art meth-
ods on the video captioning task in terms of several evaluation
metrics.

CCS CONCEPTS
• Information systems→Content analysis and feature selec-
tion; • Computing methodologies → Natural language gen-
eration; • Applied computing → Annotation.

KEYWORDS
deep learning, neural networks, video captioning

ACM Reference Format:
Danny Francis and Benoit Huet. 2019. L-STAP: Learned Spatio-Temporal
Adaptive Pooling for Video Captioning. In 1st International Workshop on AI
for Smart TV Content Production, Access and Delivery (AI4TV ’19), October
21, 2019, Nice, France. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3347449.3357484

1 INTRODUCTION
Automatic video captioning can be used to enrich TV programswith
textual informations on scenes. These informations can be useful for
visually impaired people, but can also be used to enhance indexing
and research of TV records. The video captioning task consists in
automatically generating short textual descriptions for videos. It is
a challenging multimedia task as it requires to grasp all information
contained in a video, such as objects, persons, context, actions,
location, and to translate this information into text. This task can
be compared to a translation task: except instead of translating a
sequence of words in a source language into a sequence of words
in a target language, the aim is to translate a sequence of frames
into a sequence of words. Therefore, most of recent works in video
captioning rely on the encoder-decoder framework proposed in [25],
initially for text translation. In video captioning, the encoder aims at
deriving a video representation. Recent advances in deep learning
have shown to fit very well to that task. In particular, Convolutional
Neural Networks (CNNs) have proved to give excellent results
in producing highly descriptive image representations or video
representations. The decoder part aims at generating a sentence
based on the representation produced by the encoder. Long Short-
Term Units (LSTMs) [12] and Gated Recurrent Units (GRUs) [5]
are usually chosen for that task. Image captioning [30] and video
captioning can seem to be similar tasks, as both of them require
to "translate" a visual object into a textual one. However, video
captioning poses a problem that makes it more challenging than
image captioning: it requires to take into account temporality.

In [18], authors showed that for text translation tasks based
on the encoder-decoder framework, results could be improved if
the decoder attended to hidden states of the encoder based on its
hidden states. Some other works showed that the same attention
mechanisms could be applied to video captioning [10, 31, 38, 39].
The improvement induced by that attention mechanism can be
interpreted as follows: when the decoder is predicting the next
word of a sentence, it attends to relevant frames to perform that
task accurately. Some other works have also shown that attending
to relevant regions in a video during the encoding phase could
lead to better representations of videos, and thus better results
[32, 40]. However these works attend to local regions based on
frame-level considerations, without taking into account previous
frames. In our work, we aim at attending to relevant regions of a
video based on previous frames, because the relevance of objects,
persons or actions relies on the context in which they appear;
and that context should be inferred from previous frames. More
precisely, after deriving frame-level local features using the last
convolutional layer of a ResNet-152 [11], we do not apply an average
pooling to pool these local features. We process them by Learned

https://doi.org/10.1145/3347449.3357484
https://doi.org/10.1145/3347449.3357484


Figure 1: Overview of our L-STAP method. Frame-level lo-
cal features are derived using a ResNet-152. Then, an LSTM
processes these local features, and updates its hidden state
by attending to them based on previous frames. The result
is that space and time are jointly taken into account to build
video representations.

Spatio-Temporal Adaptive Pooling (L-STAP). L-STAP attends to
specific regions of a frame based on what occurred previously in
the video. Our pooling method is learned because it is based on an
LSTM whose parameters are learned. It is spatio-temporal because
it takes into account space and time in a joint fashion. In addition,
it is adaptive because the attention paid to local regions is based
on previous hidden states of the LSTM; pooling depends not only
on the processed frame but also on previous ones. A high-level
schematic view of our proposed model is depicted in Figure 1.

We evaluated our results on two common datasets used for bench-
marking video captioning tasks: MSVD [4] and MSR-VTT [36].
Results show that our model based on L-STAP outperforms state-
of-the-art models in terms of several metrics. An ablation study
also shows that our method leads to significant improvements with
respect to state-of-the-art methods.

Our contributions can be summarized as follows: we propose a
novel pooling method for video processing, which we evaluate on
the video captioning task, even though it could be applied to any
other task involving video processing, such as video classification.
Moreover, we demonstrate the interest of our pooling method over
usual approaches. The paper is organized as follows. In Section
2, we introduce previous works on video captioning. In Section 3,
we present our model based on L-STAP. Section 4 is dedicated to
experiments. We conclude the paper in Section 5.

2 RELATEDWORK
Video captioning can be seen as a translation task: a sequence
of frames, which can be compared to a sequence of words in a
source language, have to be translated in a target language. Some
pioneering works such as [23] make use of Statistical Machine

Translation techniques to generate captions from videos. However
nowadays, most of recent works on video captioning rely on Deep
Learning techniques, and more particularly on the encoder-decoder
framework that has been developed in [25] for text translation [8].
Moreover, attending to the hidden states of the encoder during
the decoding phase has shown to give significant improvements in
Neural Machine Translation [18], which have been confirmed in
by [38] in the context of video captioning.

In some works, videos are split into frames, global features are
derived for each frame using a CNN [11, 13, 24, 26], and the obtained
features vectors are sequentially processed by the encoder [10, 14,
17, 19, 31, 34]. The drawback in such approaches is that spatial
information is lost. In our approach, we aim at taking into account
this spatial information.

Other approaches take into account locality. However, these
approaches have some significant differences with our approach.
In [38], the authors separate their model into two parts: a usual
encoder-decoder based on global features of frames, and a 3D-CNN
that derives a single representation for a whole video. The 3D-CNN
they employ does take into account locality, but it has two major
conceptual differences with respect to our method. First, it is based
on handcrafted features, which do not provide as much semantic
information as CNN features. Moreover, the pooling operations that
are used to get their video representations are neither learned nor
adaptive. In our approach, pooling takes into account the relevance
of local features in a frame with respect to previous frames. In [39],
authors use local features to trace semantic concepts along videos,
which is conceptually different from our approach, as we aim to
derive a video representation based on these local features. In [35],
authors propose another method to compute trajectories through
videos. In both papers, these trajectories are combined with global
features to build video representations. In [32], local features are
used to generate video representations. However, local features
from different spatial locations are not related together, contrary to
our work, which proposes to attend to local features based on all
local features from previous frames. Eventually, some other works
used 3D-CNN architectures [33] or convolutional RNNs [32] to
relate local features through time. However, due to the nature of
convolution operations, relations drawn through these methods
remain local: they are not able to spatially relate objects from the
video which are far from each other in a video for instance. Our
method, as we will show in the following, is build to grasp jointly
spatial and temporal information, by attending to relevant locations
of a frame with respect to previous ones.

3 PROPOSED MODEL
Let us first formulate the problem we are to deal with. Given a video
V , which is a sequence of T frames (v(1), ...,v(T )), our goal is to
derive a descriptive sentence Y = (y1, ...,yL). The approach that we
have followed is based on the encoder-decoder framework. The en-
coder first derives frame-level representations (x (1), ...,x (T )) = X ,
and then pool these representations together to form frame-level
video representations (h

(1)
, ...,h

(T )
). Based on these representa-

tions, the decoder reconstructs a descriptive sentence in a recurrent
fashion. Figure 2 summarizes the important steps our model. In the



Figure 2: Illustration of our model, based on the proposed L-STAP method. Frames are processed sequentially by a CNN (a
ResNet-152 in this case). However, instead of applying an average pooling on local features as some recent works do, we make
use of an LSTM to capture time dependencies. Local hidden states are computed to obtain a 7x7x1024-dimensional tensor.
These local hidden states are then pooled together (using average pooling or soft attention), and processed by an LSTMdecoder
to output a sentence.

following section, we will describe it in detail and report how we
train it.

3.1 Grasping Spatio-Temporal Dependencies
with L-STAP

As we stated above, the first step is to produce a representation of
the input video. In the following subsections, we will explain how
we derive frame-level features, and how we pool them together.

3.1.1 Image-Level Features. Given a video V = (v(1), ...,v(T )), we
need to derive features for each framev(t ). A common way to do so
is to process each frame using a CNN, which has been previously
pretrained on a large-scale dataset. In works such as [17], the out-
puts of the penultimate layer of a ResNet-152 have been chosen as
frames representations, which consist of 2048-dimensional vectors.
However, such representations discard locality, which results in
loss of information. Therefore, in this work, we choose to take
the output of the last convolutional layer of a ResNet-152. Thus,
we obtain frame-level representations (x (1), ...,x (T )) = X , where
x (t ) ∈ R7×7×2048 for all t . The next step is to process these dense
frame-level representations to derive compact frame-level represen-
tations, using the proposed L-STAP method instead of conventional
pooling.

3.1.2 How L-STAP Works. L-STAP aims at replacing the average
pooling operation after the last convolutional layer in a CNN, and
to pool local features according to previous frames. The goal is
to capture where important actions are occurring, and to discard
locations that are not relevant to summarize what is happening in
a video. For that purpose, we use an LSTM, taking local features as
inputs, resulting in local hidden states, which are then combined
in a way we will describe later in this subsection. More formally,

given local features x (t )i j ∈ R2048, the aggregated local features h(t )i j
are computed recursively as follows:

i
(t )
i j = σ (Wixx

(t )
i j +Wihh

(t−1)
+ bi ) (1)

f
(t )
i j = σ (Wf xx

(t )
i j +Wf hh

(t−1)
+ bf ) (2)

o
(t )
i j = σ (Woxx

(t )
i j +Wohh

(t−1)
+ bo ) (3)

c
(t )
i j = f

(t )
i j ◦ c(t−1) + i(t )i j tanh(Wcxx

(t )
i j +Wchh

(t−1)
+ bc ) (4)

h
(t )
i j = o

(t )
i j ◦ tanh(c(t )i j ) (5)

whereWix ,Wih , bi ,Wf x ,Wf h , bf ,Wox ,Woh , bo ,Wcx ,Wch and

bc are trainable parameters, and c(t−1) and h
(t−1)

are respectively
the memory cell and the hidden state of the LSTM. Please note
that memory cells and hidden states are shared for computing all
aggregated local features. The memory cell and the hidden state at
time t are computed as follows:

c(t ) =
7∑
i=1

7∑
j=1

α
(t )
i j c

(t )
i j (6)

h
(t )
=

7∑
i=1

7∑
j=1

α
(t )
i j h

(t )
i j (7)

where α (t )i j are local weights. In our work, we experimented with
two types of local weights. We first tried to use uniform weights:

α
(t )
i j =

1
7 × 7

(8)



which actually correspond to an average pooling of aggregated
local features. The second solution that we tried was to derive local
weights using an attention mechanism, as follows:

α̃
(t )
i j = w

T tanh(Wαxx
(t )
i j +Wαhh

(t−1)
+ bα ). (9)

α
(t )
i j =

exp(α̃ (t )i j )∑7
k=1

∑7
l=1 exp(α̃

(t )
kl )
, (10)

whereWαx ,Wαh , bα are trainable parameters.

3.2 Encoding Videos
In our model, we encode videos using the L-STAP method we
presented previously. We initialized the memory cell and the hidden
state of the LSTM using the output of an I3D [3] (before the final
softmax) which had been trained on Kinetics-600 [3]. More formally,
if V is an input video:

c
(0)
i j = tanh(W e

c e(V ) + bec ) (11)

h
(0)
i j = tanh(W e

h e(V ) + beh ) (12)

whereW e
c , bec ,W e

h and beh are trainable parameters. The decoder

produces c(T ) andh
(T )

as outputs, whereT is the length of the input
video. These outputs will be used to initialize the sentence decoder
that we will introduce in the next section.

3.3 Decoding Sentences
For decoding sentences, we chose to use an LSTM. In the following,
we assume that sentences Y are represented by sequences of one-
hot vectorsy1, ...,yL ∈ RN where N is the vocabulary size. The aim
of the LSTM is to compute the probabilities P(yl |yl−1, ...,y1,V ;θ )
for l ∈ {1, ...,L}, where θ is the set of all parameters in the encoder
and the decoder, and V an input video. In the following, we will
describe formally how we compute these probabilities.

We initialize the memory cell and the hidden state of the decoder
LSTM using the last memory cell and the last hidden state of the
decoder:

cd0 = c
(T ), (13)

hd0 = h
(T )
. (14)

It has been shown in [18] for text translation tasks that attend-
ing to hidden states of the encoder during the decoding phase
improved results. Some works in video captioning have followed
that approach successfully [37, 38]. We followed a similar approach
for our decoding phase. More precisely, at each step l , we compute
a weighted sum of hidden states of the encoder:

φ(h,hdl−1) =
T∑
t=1

β
(t )
l h

(t )
(15)

where β (1)l , ..., β (T )l are computed as follows:

β̃
(t )
l = w

T
β tanh(Wβeh

(t )
+Wβhh

d
l−1 + bβ ), (16)

β
(t )
l =

exp(β̃ (t )l )∑L
k=1 exp(β̃

(t )
k )
, (17)

whereWβe ,Wβh , bβ are trainable parameters. Assuming that the
word yl−1 has been decoded at step l −1, we aim to decode yl based
on yl−1 and φ(h,hdl−1). For that purpose, we first compute a word
embedding xdl :

wd
l =Wembyl−1, (18)

whereWemb is a learned embedding matrix. Then, we concatenate
wd
l and φ(h,hdl−1) to obtain and xdl :

xdl = [wd
l ;φ(h,h

d
l−1)] (19)

Eventually, we input xdl to the decoder LSTM:

idl = σ (W
d
ixx

d
l +W

d
ihh

d
l−1 + b

d
i ) (20)

f dl = σ (W
d
f xx

d
l +W

d
f hh

d
l−1 + b

d
f ) (21)

odl = σ (W
d
oxx

d
l +W

d
ohh

d
l−1 + b

d
o ) (22)

cdl = f dl ◦ cdl−1 + i
d
l tanh(W d

cxx
d
l +W

d
chh

d
l−1 + b

d
c ) (23)

hdl = o
d
l ◦ tanh(cdl ) (24)

whereW d
ix ,W

d
ih , b

d
i ,W

d
f x ,W

d
f h , b

d
f ,W

d
ox ,W d

oh , b
d
o ,W d

cx ,W d
ch and

bdc are trainable parameters.
The last step is to infer a word yl . For that purpose, we derive ỹl

as follows:

ỹl = softmax(Wdh
d
l ) (25)

whereWd is a trainable parameter. We state that yl is the one-hot
vector corresponding to the maximum coordinate of ỹl .

3.4 Training
Assuming that y1, ...,yL correspond to ground-truth words, we aim
to minimize the following cross-entropy loss:

Ld (θ ) = −

L∑
l=1

log P(ỹl |yl−1, ...,y1,V ;θ ) (26)

where V is a video corresponding to the caption (y1, ...,yL).
In addition to that, some works have shown that regularizing

the cross-entropy loss with a matching loss between video encod-
ings and ground-truth sentences could improve results by bridging
the semantic gap between them [10, 17]. As reported in Section
4.4, such improvement has been noticed in our experiments. The
matching model we employed is described in the following. Let
us assume that Y = (y1, ...,yL) is a sentence corresponding to a
video V . First, we translate this sequence of one-hot vectors into a
sequence of word embeddings (xs1 , ...,x

s
L) using the matrixWemb

from Section 3.3. Then, we compute a sentence embeddingψ (Y ) by
processing this sequence of word embeddings into another LSTM:
each word embedding is entered sequentially as an input to that
LSTM, and ψ (Y ) is defined to be its last hidden state. We want
the initialization of the decoder to be as close as possible to an
accurate representation of its corresponding sentence. Therefore, if



Figure 3: Overview of our training losses. The first train-
ing loss is the Cross-Entropy loss, which aims to make the
probability distribution of sentences in the training set and
the probability distribution of the inferred sentences match.
The second one is a ranking loss, aiming to bridge the se-
mantic gap between video representations and sentences.

φ(V ) = h
(T )

is the initial hidden state of the decoder, we will aim
to minimize the following ranking loss from [9]:

Lm (θ ) = max
V,V

(
max(0,α − S(φ(V ),ψ (Y )) + S(φ(V ),ψ (Y )))

)
+max
Y,Y

(
max(0,α − S(φ(V ),ψ (Y )) + S(φ(V ),ψ (Y )))

)
(27)

where V is a negative video sample, and Y is a negative sentence
sample coming from another video than V . The final loss is the
following:

L(θ ) = Ld (θ ) + λLm (θ ) (28)
where λ is a hyperparameter that we set to 0.4 according to results
on validation.

4 EXPERIMENTS
4.1 Datasets
We evaluated our models on two video captioning datasets: MSVD
[4] and MSR-VTT [36]. MSVD is a dataset composed of 1,970 videos
from YouTube, which have been annotated by Amazon Mechanical
Turks (AMT). Each video has approximately 40 captions in English.
We split that dataset following [29]: 1,200 videos for training, 100
videos for validation and 670 videos for testing. MSR-VTT is a
similar dataset, but with much more videos, and less captions per
video. It is composed of 10,000 videos, and 20 captions per video.
Following [36], we split that dataset into 6,513 videos for training,
497 videos for validation and 2,990 videos for testing.

For both datasets, we uniformly sampled 30 frames per video
as done in [40], and extracted features for each frame based on
the last convolutional layer of a ResNet-152 [11], which had been
trained on the image-text matching task on MSCOCO [16], after

pre-training on ImageNet-1000 [6] following [9]. In addition, we
extracted activity features for each video using an I3D pretrained on
Kinetics-600 [3]. For MSVD, we converted sentences to lowercase
and removed special characters, which lead to a vocabulary of
about 14k words. We converted each word into an integer, and cut
sentences after the thirtieth word if their lengths were higher than
thirty. The same approach for MSR-VTT lead to a much bigger
vocabulary size of about 29k words. Therefore, we kept only the
15k most common words, and replaced all the others by an <UNK>
token. We applied the same process otherwise.

4.2 Implementation Details
Our models have been implemented with the TensorFlow frame-
work [1]. We use 1024-dimensional LSTMs in both encoder and
decoder. Soft attention spaces are 256-dimensional. Word embed-
dings are 300-dimensional.

We trained our model using the RMSProp algorithm [27], with
decay = 0.9, momentum = 0.0 and epsilon = 1e-10. Batch size is
set to 64. Learning rate is 1e-4, and we apply gradient clipping to
a threshold of 5. Eventually, we apply dropout on the output of
the decoder (before the prediction layer) with a rate of 0.5 to avoid
overfitting.

4.3 Results on MSVD and MSR-VTT
We evaluated our models in terms of BLEU [20], ROUGE [15], ME-
TEOR [7] and CIDEr [28] scores, which are metrics commonly used
to evaluate automated captioning tasks. We compared them to the
following recent models for video captioning. Our results on MSVD
are presented in Table 1. Results on MSR-VTT are presented in
Table 2.

OnMSVD, it can be noticed that L-STAP achieves the best results
on six out of seven metrics. It is also relevant to mention that E2E
[14], which achieves better CIDEr results than our model, has been
trained using reinforcement learning techniques to be optimized
regarding that CIDEr metric. Works on image captioning and video
captioning have shown that significant improvements could be
done using such techniques [2, 22, 34], at the price of much longer
training times. We did not use reinforcement learning to train our
models, instead we use cross-entropy minimization which has the
advantage of being fast and simpler to implement.

Results on MSR-VTT show that our model outperforms mod-
els trained using a cross-entropy loss on two metrics out of four
(METEOR and ROUGE). HRL [34] obtains better results overall,
however it makes use of reinforcement learning techniques, which
leads to better results as stated in the previous paragraph.

We report some qualitative results of our model on MSR-VTT
in Figure 4. On the second video, the man who is singing appears
during a very limited amount of time. This shows that our model
has been able to attend to important frames to identify what the
main action of the video was. In the first video, a woman starts
talking about makeup, and then puts some lipstick on her lips. The
caption generated by our model shows that it has been able to
draw a relation between the first and the second parts of the video.
Moreover, the lipstick is applied on a very localized part of the
video frames: we can infer that our model could efficiently attend
to the right part of the frame to generate a caption. The fourth video



Figure 4: Some qualitative results of L-STAP on MSR-VTT.



Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE METEOR CIDEr
TSL [35] - - - 51.7 - 34.0 74.9
RecNet [31] - - - 52.3 69.8 34.1 80.3
mGRU [21] 82.5 72.2 63.3 53.8 - 34.5 81.2
AGHA [40] 83.1 73.0 64.3 55.1 - 35.3 83.3
SAM [32] - - - 54.0 - 35.3 87.4
E2E* [14] - - - 50.3 70.8 34.1 87.5
SibNet [17] - - - 54.2 71.7 34.8 88.2
L-STAP (Ours) 84.0 74.1 64.5 55.1 72.7 35.4 86.7

Table 1: Results on theMSVD dataset. The * signmeans that themodel is using reinforcement learning techniques to optimize
over the CIDEr metric. Best results are in bold characters.

Figure 5: Our second interpretation about the efficiency of
the second term of our loss function. Skip connections be-
tween video representations and ground-truth sentences im-
prove results.

shows that results could be improved by adding sound processing
to our model: it was not possible from the video only to know that
colors were said.

4.4 Ablation Study
Results of an ablation study on the MSVD dataset are reported in
Table 3. The encoder we used in our baseline model is an Long-term
Recurrent Convolutional Network (LRCN) [8]. As shown in pre-
vious works such as [10, 17], adding a component to the training
loss to make video representations match sentence representations
improves results. Two interpretations can be given to these results.
A first one is that adding a ranking loss to match video represen-
tations and sentence representations helps bridging the semantic
gap between these two modalities. A second one could be that

propagating the gradient across all the layers of the decoder could
make it vanish through depth. Thus, adding a matching loss to the
cross-entropy loss could be seen as a skip-connection between the
sentence to be generated and the video representation used by the
decoder. We illustrate that second interpretation in Figure 5.

Replacing the average pooling at the end of a CNN by our L-STAP
induces a major improvement with respect to all metrics as reported
in Table 3. On top of that, results shown in Table 1 demonstrate
that L-STAP leads to better results than other models based on local
features such as AGHA and SAM, and results shown in both Table
1 and Table 2 show the interest of L-STAP over average pooling.

We can notice in Table 3 that using a soft-attention mechanism to
pool local hidden states in the encoder does not provide significant
improvements over average pooling for all metrics except from
CIDEr. Our interpretation is that the LSTM of the encoder can learn
to attend to relevant local features by itself: before applying the
average pooling, attention has already been drawn quite efficiently.

5 CONCLUSION
Video captioning is a way for TV broadcasters to enhance user
experience, in particular regarding accessibility. In this paper, we
presented a novel Learned Spatio-Temporal Adaptive Pooling (L-
STAP) method for video captioning. It consists in taking into ac-
count spatial and temporal information jointly in a video to produce
good video representations. As we have shown, these video rep-
resentations can be successfully used to perform automated video
captioning. We demonstrated the quality of our models based on
L-STAP by comparing them with state-of-the-art models on MSVD
and MSR-VTT, which are two video captioning datasets. On top of
that, we assessed the interest of L-STAP through an ablation study.
Although this paper concentrates on video captioning we believe
that the proposed L-STAP method could be also applied to other
video-related tasks such as video classification.

ACKNOWLEDGMENTS
This work was partially funded by ANR (the French National
Research Agency) via the ANTRACT project and the European
H2020 research and innovation programme via the project MeMAD
(GA780069).

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.



Model Bleu-4 ROUGE METEOR CIDEr
RecNet [31] 39.1 59.3 26.6 42.7
E2E* [14] 40.1 61.0 27.0 48.3
SibNet [17] 40.9 60.2 27.5 47.5
HRL* [34] 41.3 61.7 28.7 48.0
L-STAP (Ours) 40.7 61.2 27.6 44.8

Table 2: Results on the MSR-VTT dataset. The * sign means that the model is using reinforcement learning techniques to
optimize over the CIDEr metric. Best results are in bold characters.

Model Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE METEOR CIDEr
Baseline 83.2 72.5 63.1 52.7 71.4 34.1 79.5
Baseline + matching 83.4 72.8 63.3 53.3 71.2 34.5 82.2
L-STAP (avg) + matching 84.1 74.0 65.0 55.1 72.3 35.4 84.3
L-STAP (attention) + matching 84.0 74.1 64.5 55.1 72.7 35.4 86.8

Table 3: Results of ablation study on MSVD. Results show that a significant improvement can be reached using our Learned
Spatio-Temporal Adaptive Pooling instead of the usual average pooling. Pooling hidden states of the encoder using soft-
attention (line 4) instead of average pooling (line 3) does not always improve results. Our interpretation of that outcome
is that the LSTM actually performs a kind of attention on local features before local hidden states are pooled together.

2016. Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265–
283.

[2] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,
Stephen Gould, and Lei Zhang. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 6077–6086.

[3] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a new
model and the kinetics dataset. In proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 6299–6308.

[4] David L Chen and William B Dolan. 2011. Collecting highly parallel data for
paraphrase evaluation. In Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Language Technologies-Volume 1.
Association for Computational Linguistics, 190–200.

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[6] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[7] Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language spe-
cific translation evaluation for any target language. In Proceedings of the ninth
workshop on statistical machine translation. 376–380.

[8] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recognition and description. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2625–2634.

[9] Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2017. Vse++:
Improving visual-semantic embeddings with hard negatives. arXiv preprint
arXiv:1707.05612 (2017).

[10] Zhao Guo, Lianli Gao, Jingkuan Song, Xing Xu, Jie Shao, and Heng Tao Shen.
2016. Attention-based LSTM with semantic consistency for videos captioning.
In Proceedings of the 24th ACM international conference on Multimedia. ACM,
357–361.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[14] Lijun Li and Boqing Gong. 2019. End-to-end video captioning with multitask re-
inforcement learning. In 2019 IEEE Winter Conference on Applications of Computer
Vision (WACV). IEEE, 339–348.

[15] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[17] Sheng Liu, Zhou Ren, and Junsong Yuan. 2018. SibNet: Sibling Convolutional
Encoder for Video Captioning. In 2018 ACMMultimedia Conference on Multimedia
Conference. ACM, 1425–1434.

[18] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[19] Yingwei Pan, Ting Yao, Houqiang Li, and Tao Mei. 2017. Video captioning with
transferred semantic attributes. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 6504–6512.

[20] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[21] Ramakanth Pasunuru and Mohit Bansal. 2017. Multi-task video captioning with
video and entailment generation. arXiv preprint arXiv:1704.07489 (2017).

[22] Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jerret Ross, and Vaibhava
Goel. 2017. Self-critical sequence training for image captioning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 7008–7024.

[23] Marcus Rohrbach, Wei Qiu, Ivan Titov, Stefan Thater, Manfred Pinkal, and Bernt
Schiele. 2013. Translating video content to natural language descriptions. In
Proceedings of the IEEE International Conference on Computer Vision. 433–440.

[24] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 1–9.

[27] T. Tieleman and G. Hinton. 2012. Lecture 6.5—RmsProp: Divide the gradient by
a running average of its recent magnitude. COURSERA: Neural Networks for
Machine Learning.

[28] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider:
Consensus-based image description evaluation. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. 4566–4575.

[29] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In
Proceedings of the IEEE international conference on computer vision. 4534–4542.

[30] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show
and tell: A neural image caption generator. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 3156–3164.



[31] Bairui Wang, Lin Ma, Wei Zhang, and Wei Liu. 2018. Reconstruction network
for video captioning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 7622–7631.

[32] Huiyun Wang, Youjiang Xu, and Yahong Han. 2018. Spotting and aggregating
salient regions for video captioning. In 2018 ACM Multimedia Conference on
Multimedia Conference. ACM, 1519–1526.

[33] Junbo Wang, Wei Wang, Yan Huang, Liang Wang, and Tieniu Tan. 2018. M3:
multimodal memory modelling for video captioning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 7512–7520.

[34] Xin Wang, Wenhu Chen, Jiawei Wu, Yuan-Fang Wang, and William Yang Wang.
2018. Video captioning via hierarchical reinforcement learning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 4213–4222.

[35] XianWu, Guanbin Li, Qingxing Cao, Qingge Ji, and Liang Lin. 2018. Interpretable
Video Captioning via Trajectory Structured Localization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 6829–6837.

[36] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 5288–5296.
[37] Ziwei Yang, Yahong Han, and Zheng Wang. 2017. Catching the temporal regions-

of-interest for video captioning. In Proceedings of the 25th ACM international
conference on Multimedia. ACM, 146–153.

[38] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo
Larochelle, and Aaron Courville. 2015. Describing videos by exploiting temporal
structure. In Proceedings of the IEEE international conference on computer vision.
4507–4515.

[39] Youngjae Yu, Hyungjin Ko, Jongwook Choi, and Gunhee Kim. 2017. End-to-end
concept word detection for video captioning, retrieval, and question answering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
3165–3173.

[40] Junchao Zhang and Yuxin Peng. 2019. Hierarchical Vision-Language Align-
ment for Video Captioning. In International Conference on Multimedia Modeling.
Springer, 42–54.


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Model
	3.1 Grasping Spatio-Temporal Dependencies with L-STAP
	3.2 Encoding Videos
	3.3 Decoding Sentences
	3.4 Training

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results on MSVD and MSR-VTT
	4.4 Ablation Study

	5 Conclusion
	References



