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Highlights: 

 Thermoregulation is a necessary component of daily life. 

 COVID-19 causes thermal dysregulation and increases core body temperature. 

 Individuals with multiple sclerosis (MS) are sensitive to increases in core body 

temperature. 

 Being physically active triggers adaptations that alleviate COVID-19-induced thermal 

dysregulation. 

  Engaging in regular physical activity before and after infection with COVID-19 

attenuates worsening clinical signs and reduces recovery time in patients with MS.     
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Abstract 

Thermoregulation is a homeostatic mechanism that is disrupted in some neurological diseases. 

Patients with multiple sclerosis (MS) are susceptible to increases in body temperature, especially 

with more severe neurological signs. This condition can become intolerable when these patients 

suffer febrile infections such as coronavirus disease-2019 (COVID-19). We review the 

mechanisms of hyperthermia in patients with MS, and they may encounter when infected with 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finally, the thermoregulatory 

role and relevant adaptation to regular physical exercise are summarized. 
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nervous system; APN, Adiponectin; CNS, Central nervous system; COVID-19, Coronavirus 
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molecular patterns; PGs, Prostaglandins; PGE2, Prostaglandin E2; ROS, Reactive oxygen 

species; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SNS, Sympathetic 

nervous system; TRPV-1, Transient receptor potential vanilloid type 1; VDP, Vascular-dilating 

prostanoids; VEGF, Vascular endothelial growth factor; VIP, Vasoactive intestinal peptide 

1. Introduction 

Multiple sclerosis (MS) is a neurodegenerative disease characterized by lesions of the central 

nervous system (CNS). A unique feature of this autoimmune disease is the high prevalence (60–

80%) of temperature sensitivity, where neurological signs are exacerbated by increases in 

environmental or internal body temperatures. The regulation of a near constant body temperature 

within a physiological range is required for survival and daily function (Corbett et al., 2014). 

Body temperature is composed of central and skin temperature (Gisolfi et al., 2000; Lim et al., 
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2008; Lim and Suzuki, 2017). Core temperature is centrally regulated by the brain in response to 

changes in thermal balance (Gisolfi et al., 2000; Lim, 2020). Venous blood temperature and 

afferent signals from thermo-sensitive nerves on the body surface act to regulate autonomic 

nervous and behavioral responses to regulate body temperature (Lim et al., 2008).  The control of 

temperature in the body results from a balance between heat gain and its dissipation (Lim, 2020).  

Thermoregulation in humans is accomplished by several independent loops of the 

thermoregulatory reflex. Peripheral receptors are activated by increases in skin and core 

temperatures, and activate afferent nerves to signal the preoptic anterior hypothalamus as the 

integrating center. After integrating the thermal-afferent information, increased efferent nerve 

outflows lead to activating the  thermal-effector responses that result in sweating and cutaneous 

vasodilation consequent to releasing of acetylcholine and other co-transmitters such as 

vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), 

vascular-dilating prostanoids (VDP), substance P (SP), and channels of transient receptor 

potential vanilloid type 1 (TRPV-1)  (Francisco and Minson, 2018; Gagnon et al., 2016; Taylor, 

2011; White et al., 1996). Disturbances of this thermoregulatory reflex occurs in some diseases 

such as MS, a disease of demyelination, which affects neural conduction.  

Thermal fluctuations impact neural conduction (Morrison and Blessing, 2011). Inactivity reduces 

the reactivity of cutaneous small-vessels, and increases core temperature (Wang, 2005). This 

could underlie the high sensitivity of patients with MS to increases in core body temperature 

induced by exogenous agents such as viral infections. Individuals infected with the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) also experience increased core body 

temperatures, which can exacerbate temperature dysregulation in patients with preexisting 

dysregulation of body temperature. We review temperature dysregulation in patients with MS 

and the added burden of the coronavirus disease-19 (COVID-19) pandemic. In addition, we also 

discuss the adaptions produced by regular physical exercise as an adjunct procedure to mitigate 

the effects of heat in patients with MS infected the SARS-CoV-2.   

2. Thermal dysregulation in MS patients as a challenge during SARS-CoV-2 infection 

 MS is the primary cause of neuronal dysfunction in juveniles (Edmonds et al., 2010). The 

autonomic nervous system (ANS) is severely impacted in individuals with MS (Gunal et al., 

2002), where dysfunction of sympathetic and parasympathetic nerves is associated with a range 

of diverse clinical disabilities (Flachenecker et al., 2001; Habek, 2019). Autonomic dysfunction 

                  



4 
 

in MS is related to lesions in the periventricular region of the fourth ventricle of the brainstem 

and medulla (Adamec and Habek, 2013). Autonomic dysfunction results from both 

demyelination and also axonal loss (de Seze et al., 2001), affecting cardiovascular (66% of 

patients) (Acevedo et al., 2000; Mincu et al., 2015), bladder (97% of patients) (Haensch and 

Jörg, 2006), sexual function (80% of patients) (Tepavcevic et al., 2008), bowel (43% of patients) 

(Hinds et al., 1990), sleep (50% of patients) (Bamer et al., 2008), heat sensitivity (60-90% of 

patients) (Gallup et al., 2010) and also altered motor symptoms (e.g., fatigue) (thermoregulation).   

Hypothalamic lesions can result in both hyperthermia and hypothermia (Linker et al., 2006; 

White et al., 1996). Increasing core body temperature occurs commonly in patients with MS and 

can be due to interruptions in central sudomotor pathways which originate from the preoptic 

hypothalamic area and descend to the intermediolateral of the spinal cord to exit from the central 

nervous system (CNS) to innervate sweat glands that can lower core temperature (Adamec and 

Habek, 2013; Saari et al., 2009). Impairment of this pathway worsens neurological signs and 

symptoms and in severe cases can increase heat sensitivity or Uhthoff phenomenon/syndrome, 

which describes a transient worsening of neurological symptoms (caused by hot weather, 

exercise, fever, being in a heated environment etc.) due to demyelination in MS (Jain et al., 

2020). Up to 60 to 80% of MS patients experience this phenomenon that can be triggered by 

increases in core temperature by as little as 0.5˚C, resulting in transient symptoms such as visual 

blurring (Cianfrone et al., 2006; Filingeri et al., 2017; Jain et al., 2020; Syndulko et al., 1996; 

Wilson et al., 2010). The first report on visual blurring with exercise as a heat stressor was 

described in 1890 by Uhthoff, who attributed it to increases in core body temperature, leading to 

the avoidance of exercise by patients with MS (Baker, 2002; Frohman et al., 2013).  

Thermal sensitivity is usually measured in patients with  MS by responses to heat (e.g., using hot 

water immersion, heat lamp, and heat cabinet) and evaluating emerging or worsening 

neurological signs (Leavitt et al., 2014; Nelson et al., 1958; Nelson and McDowell, 1959). Initial 

studies on healthy individuals, people with neurological disorders and patients with MS reported 

that two patients with MS died after exposure to increased body temperatures of up to 40 ˚C for 

8-10 hours; patients with MS experienced motor weakness, amblyopia, and visual deficits 

following a heat stress. Such sensitivity in patients with MS even occurred after  exposure one 

limb  to  temperature increase of up to ~ 0.5  ̊C  (Guthrie, 1950; Guthrie, 1951). A later study of 

responses to a heat stress (55-60 ̊ C) in patients with MS reported worsening of signs in 75% 
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patients within 10-15 min (EDMUND and FOG, 1955). Another study indicated that clinical 

signs appeared in patients with MS after 8 min when body temperatures were increased by 0.8 ̊ 

C; clinical signs peaked when body temperature was increased by 1.7 ̊ C for  28 min (Nelson et 

al., 1958).  

Some studies also suggest that increased core body temperature in patients with MS could result 

from lowered sweating rates as well as delayed sweat initiation (Krupp et al., 2007; Petajan and 

White, 1999), or having a higher sweat threshold (Baker, 2002; Huang et al., 2015; Racosta et 

al., 2015). In addition, the reduction in sweating function in MS patients is largely due to 

decreased sweat output in individual sweat glands rather than to reduced gland recruitment 

(Davis et al., 2010a), and that 15 weeks of aerobic endurance was unable to improve sweat 

function in patients with MS. Thus, heat sensitivity is a characteristic feature of MS (Davis et al., 

2005).  

Regardless of being a frequent complaint in patients with MS, our understanding of how 

increases or decreases in body temperature contribute to worsening of MS symptoms is 

incomplete. However, as depicted in Figure 1, the most likely mechanisms underlying heat 

sensitivity and the exacerbation of the symptoms of MS can be summarized as follow:  

A) Demyelinated axons in brain lesions and peripheral neurons overexpress voltage-gated 

Na
+
 (Nav) channels, particularly α-subunits, throughout their length (Smith, 2007; Tartas 

et al., 2004). There have been generally revealed 9 isoforms of this type of Nav channels 

(Nav1.1 to 1.9). The isoforms of Nav1.1, Nav1.2, Nav1.3, and Nav1.6 extremely expressed 

in CNS (Egri and Ruben, 2012). These channels influence enormous characteristics of 

neurons including refractory phase and excitability of neurons. The contribution of these 

channels in neuronal electrogenesis is formed based on their different spatial distribution 

within the axon membrane, with high density in the axon membrane at the node of 

Ranvier and much lower density in other areas beneath myelin including paranodal and 

intermodal axon membrane (Peles and Salzer, 2000; Waxman, 1998). Sodium channels 

illustrate a dynamic changes either in normal CNS (during development) or in 

pathological CNS. It has been reported that MS patients and its animal model, 

experimental autoimmune encephalomyelitis (EAE), experience a plasticity in Nav 

channels in both expression and distribution levels. Notably, Nav1.2 and 1.6 are the most 

isoforms undergoing increased expression and also they extended to the paranodal and 
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juxtaparanodal areas (Craner et al., 2003; Craner et al., 2004b). Increased Nav channels is 

associated with some changes in impulse conductance and hyperexcitibility and 

exacerbating the clinical signs of these patients is partly due to a persistent sodium 

current which may accompany neural damage and loss of axons that transfer information 

on central temperature to hypothalamus. Increased intracellular Na
+
 will cause Ca

2+
 

dysregulation, including by acting on Na
+
/Ca

2+
 exchange. Intracellular accrual of Ca

2+
 

initiates neural and axon damages through activating some catabolic enzymes, including 

proteases and calpains (Agrawal and Fehlings, 1996; Correale et al., 2019; Craner et al., 

2004a; Craner et al., 2004b; Stys et al., 1993; Stys et al., 1992). Upon losing the central 

and peripheral neurons, thus, MS patients in progressive phase of disease do not have an 

accurate perception of how extent their central body temperature has been increased.  

B) Roughly 20% of hypothalamic neurons are stratified as a thermal-sensitive neurons 

with high rates of action potential in proportional with other thermal-nonsensetive ones 

(Wechselberger et al., 2006). These neurons not only respond to the temperature of 

hypothalamus but receive afferent synaptic inputs from skin and spinal thermorecptors; 

hence, they integrate the central and peripheral temperatures. Thermal sensitivity of these 

hypothalamic neurons partly results from some selective ionic channels (Boulant and 

Hardy, 1974; Wechselberger et al., 2006). Normal function of neurons depends on 

regularly fire action potentials and maintenance resting membrane potentials. In this 

regard, potassium channels including two-pore domain K
+
 (K2P) channels contribute to 

the steady outward leak of K
+
 ions and consequent restoring of the rate of action potential 

(Braun, 2012). Humans express 14 K2P channels which have been categorized into 5 

subgroups (Patel and Honoré, 2001). These channels play a leading role in establishing 

resting membrane potential, regulating potential duration and modulating the response to 

synaptic inputs (Griffin et al., 1996; Patel and Honoré, 2001; Rush and Rinzel, 1995). 

Besides, the most majority of potassium channels extensively express in human brain 

(Maingret et al., 2000; Patel and Honoré, 2001). A scrutiny on every subunit of K2P 

channels is beyond the scope of this review. Although there is not conclusive document 

about these channels expression in axons extruded in hypothalamic area and 

hypothalamic neurons in MS patients, their expression is main factor impacting the 

thermal sensitivity of neurons. These channels are not voltage-gated, since the absence of 
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canonical voltage sensor domain (Braun, 2012; Medhurst et al., 2001; Wechselberger et 

al., 2006). In this context, their activity is influenced by physical and chemical stimuli, 

including mechanical and heat stresses (Braun, 2012). Peripheral and central 

hyperthermia activate K2P channels, causing the outward flow of potassium ions from 

neurons and resulting in neuronal hyperpolarization and decreased action potential 

propagation (Griffin and Boulant, 1995; Wechselberger et al., 2006). Notably, the higher 

expression of K2P channels on thermal-sensitive neurons, the higher potassium leak 

current and the lower firing rate of action potentials. In accordance with their extensive 

expression in brain, potassium channels may be selective candidate in increased thermal 

sensitivity. In any case, the expression changes of potassium channels in afferent 

peripheral and central neurons and their role in altering thermal sensitivity of MS patients 

should be precisely investigated by future studies.     

C) Hypothalamic lesion-induced impairments in sympathetic outflows and the 

destruction of sudomotor pathways reduces sweating and consequently increases body 

temperature (Haensch and Jörg, 2006; Huang et al., 2015; Keller et al., 2014). 

D) There is decreased sweat output per gland (Davis et al., 2005). 

E) The reduced current available to excite node of Ranvier results in a blockade in 

neuronal conduction (Allen, 2018; Davis et al., 2018; Davis et al., 2010b).  

F) Other factors that could reduce conduction speed in demyelinated fibers include 

vasoconstriction and humoral factors (Syndulko et al., 1996). Fatigue, which is associated 

with heat stress and which occurs in approximately 70% of individuals with MS 

individuals (Krupp, 2003; Krupp et al., 2007; Marino, 2009; Martin et al., 2005; Nybo 

and Nielsen, 2001), can result from demyelinated lesions that lower central motor 

conduction and cortical excitability (Humm et al., 2004; Petajan and White, 2000; Sheean 

et al., 1997; White et al., 2008). There is evidence that patients with advanced MS 

pathology likely have more failures in impulse conduction (Smith and McDonald, 1999).  

The ability to sense changes in skin temperature drives behavioral responses to heat stress (e.g., 

decreased physical work, removing clothes, seeking shade, etc.) and can also influence 

autonomic thermoregulation (Davis et al., 2018; Davis et al., 2010b; Huang et al., 2015; Huang 

et al., 2014). Studies by Filingere and colleagues (Davis et al., 2005) that used heat sensitivity of 

skin afferents using exercise as a heat stressor, and also by exposing them to a cold environment, 
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indicated that cold sensitivity is decreased in patients with MS, suggesting that MS 

pathophysiology independently modulates afferent thermosensory function. Reduced cold-

induced conduction speed in nerve fibers is greatest in A fibers, followed by B fibers and less so 

in C fibers (Syndulko et al., 1996). This divergence in susceptibility to cold block may be related 

to nerve characteristics such as myelination, diameter, and threshold characteristics. This is 

supported by findings that  nerve fibers, especially A fibers which have lower thresholds, faster 

conduction, greater myelination and diameters, have greater sensitivity to cold block (Douglas 

and Malcolm, 1955; Todd, 2002). Several studies suggest that contrary to expectations, the 

conduction velocity in sensory nerve fibers is increased by higher limb temperatures (Franssen et 

al., 1999; Franssen and Wieneke, 1994; Tavee, 2019).  

 

 

Figure. 1. Schematic representation of dysfunctional pathways of thermoregulation in 

individuals with MS disease and the exacerbating role of COVID-19 in increasing heat strain. 

MS, multiple sclerosis; COVID-19, coronavirus disease-2019; ANS, autonomic nervous system; 

ROS, reactive oxygen species; NO, nitric oxide; PAMPs, pathogen-associated molecular 

patterns; TLRs, toll-like receptors; PGE2, prostaglandin E2.    
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Body temperature fluctuations in patients with MS with infectious conditions, such as during the  

COVID-19 pandemic, could be exacerbated since there is a limited ability to mount 

counteracting febrile responses in these patients (Davis et al., 2010b). Although the majority of 

COVID-19 patients are asymptomatic, many others manifest some serious clinical symptoms 

(Schneider et al., 2021; Wölfel et al., 2020). Fever occurs initially in more than 50% of patients 

affected with COVID-19 (Hui and Zumla, 2019; Islam et al., 2021; Qiu et al., 2020). Instant 

diagnosis of infection can prevent its transmission or to initiate countermeasures or successful 

confinements (Schneider et al., 2021). Although assessing fever may not be efficacious in all 

COVID-19 patients, it is however critical in individuals with pre-existing thermal dysregulation 

such as in patients with MS (Racke and Newsome, 2020; Schneider et al., 2021). Individuals 

with MS are at higher risk during the COVID-19 pandemic, as they often are treated with 

immunosuppressing drugs (IMDs) (Hughes et al., 2020; Loonstra et al., 2020; Louapre et al., 

2020; Maghzi et al., 2020; Willis and Robertson, 2020). Importantly, both diseases (MS and 

COVID-19) share the ability to induce febrile responses characteristic of cytokine storms (Berger 

et al., 2020; García, 2020; Sorenson et al., 2017; Zheng et al., 2020).  

Fever is part of defensive responses of multicellular organisms (host) to invasion of 

microorganisms such as viruses, including SARS-CoV-2 (Ogoina, 2011). The febrile response 

includes endocrine, neurological and immunological mechanisms (Dinarello and Gelfand, 2005; 

Mackowiak). SARS-CoV-2, as an exogenous pyrogen, can initiate the febrile responses through 

humoral and neuronal pathways (Ogoina, 2011). Upon entering the circulation, the virus then 

activates pathogen-associated molecular patterns (PAMPs) or pyrogenic cytokines [pro-

inflammatory cytokines, namely, tumor necrosis factor-alpha (TNF-α), IL-1] (Conti et al., 2004; 

Jiang et al., 1999; Romanovsky et al., 2006; Steiner et al., 2006a; Turrin and Rivest, 2004). The 

circulatory microorganism’s PAMPs and cytokines (released by host) activate toll-like receptors 

and cytokine receptors, respectively, on capillaries and also on the blood-brain barrier (BBB), 

leading to the release of prostaglandin E2 (PGE2) (Conti et al., 2004; Romanovsky et al., 2006; 

Steiner et al., 2006a; Turrin and Rivest, 2004). PGE2 binds to EP2 receptors in the preoptic area 

to activate thermal neurons in the anterior hypothalamus and reset the thermal balance point to a 

higher set-point (Mackowiak; Romanovsky et al., 2006; Steiner et al., 2006a; Turrin and Rivest, 

2004). It has been argued that the initial phase of the febrile response is dependent on PGE2 

synthetized in the liver and lungs prior to migrating to the brain, while the later phase of the 
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febrile response is due to centrally synthetized PGE2 (Gross, 2006; Steiner et al., 2006b). Thus, 

exogenous pyrogens (such as SARS-CoV-2) are converted to endogenous pyrogens (PAMPs, 

cytokines) after entering the body. SARS-CoV-2 has a tropism for brainstem centers of the 

autonomic nervous system, where the virus serves to transfer a fever signal from peripheral 

nerves (such as the olfactory pathway) transfers to the hypothalamus, thalamus, and brainstem 

(Blatteis, 2007; Hopkins, 2007; Roth and De Souza, 2001; Xu et al., 2005). Much like fever 

produced by PGE2, exogenous pyrogen such as SARS-CoV-2 can activate pyrogenic cytokines, 

which in turn activate the hepatic branch of the vagal nerve and transfer the febrile signal to 

nerves in solitary and ambiguous nuclei (Blatteis, 2007; Li et al., 2020; Matsuda et al., 2004; 

Roth and De Souza, 2001; Rummel et al., 2005). The signals from the solitary nucleus are 

delivered to preoptic and hypothalamic areas through the ventral noradrenergic bundle, resulting 

in norepinephrine release into these thermoregulatory areas (Blatteis, 2007; Roth and De Souza, 

2001). Norepinephrine mediates the vagal pathway by raising core temperature. The resetting of 

the thermal balance point to a higher set-point through these two humoral and neuronal signals 

initiates a feedback loop leading to early vasoconstriction and some clinical and behavioral 

manifestations to maintain body temperature. When there is no longer a fever signal in the CNS, 

the set-point then returns normal levels to activate heat loss mechanisms such as sweating 

(Leggett, 2016; Mackowiak).  

As discussed above, activation mechanisms to reduce core temperature are impaired in patients 

with MS. In addition, patients with MS have impairment in vascular function, likely related to 

reactive oxygen species (ROS)-induced oxidative stress (Dhalla et al., 2000; Fjeldstad et al., 

2010; Ohl et al., 2016; Ranadive et al., 2012). Oxidative stress in patients with MS promotes 

viral replication (Li et al., 2017), while  SARS-CoV-2 can impose a thermal burden through ROS 

production reduce nitric oxide (NO)-mediated vasodilation (Ghosh and Karin, 2002; Xu and 

Zou, 2009; Zhang, 2008). In addition, MS and COVID-19 leads to inflammation and  increased 

mitochondria-derived ROS production (Alandijany et al., 2013). ROS upregulate endothelial 

inflammasomes [especially, NLR family pyrin domain containing 3 (NLRP3)] and their signals, 

including caspase-1 and IL-1β in endothelial cells, thus initiating vascular pathology (Long et al., 

2020; Martinon et al., 2002).  

High core temperature  affects tissue metabolism, and  can result in tissue necrosis, especially in 

neurons, and DNA unwinding (Nagashima et al., 2012). The prevalence of MS can be three 
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times higher than in  men, and this can cause more severe symptoms because women have lower 

blood volumes, smaller heart sizes, a lower free fat mass, a higher percent of subcutaneous and 

whole fat, a higher body temperature threshold for dilating of cutaneous vessels, circadian 

changes in sex hormone levels that could lead to differences in body temperature regulation 

(MITCHELL et al., 1992).  

3. Exercise improves thermoregulation 

 Homeothermic mechanisms cause intrinsic regulation of heat gain (metabolic production) and 

loss (sweat and evaporation) to maintain core body temperature set point (Gisolfi and Mora, 

2016; Madden and Morrison, 2019; Zalewski et al., 2014). Fluctuation from set point of body 

temperature stimulates hypothalamus to restore core temperature through changes in behaviors 

and physiological responses induced by the ANS (Morrison and Blessing, 2011). Reductions and 

increases of core temperature trigger the activation of sympathetic efferent and cholinergic 

outflows, respectively. Adrenergic efferent release of norepinephrine to constrict cutaneous 

vessels, while cholinergic efferent secrete acetylcholine (Ach) to lower core temperature by 

vasodilation (Flouris and Schlader, 2015; Gordon et al., 2019; Morrison and Nakamura, 2019; 

Tansey and Johnson, 2015). Maintenance of core body temperature is critical for work output 

and prevents premature fatigue (Adams et al., 2019; Fehling et al., 2015; González-Alonso et al., 

1999; Sawka et al., 2001). Physical exercise is a heat stressor that increases core body 

temperatures through increases in metabolism by exercising muscles (Nadel et al., 1987; Nadel 

et al., 1974). On the other hand, the adaptations induced by exercise training in cardiac output 

and stroke volume can mitigate this heat stress through facilitating heat transmission to the skin 

for cooling by evaporation, which is followed by a reduction in early fatigue (Geor and 

McCutcheon, 1998; Lim, 2020). Thus, improving body temperature regulation attenuates fatigue.   

Although physical exercise acts as a heat stressor, regular exposure to this stressor promotes 

adaptations that limit its detrimental effects (Périard et al., 2016). Although the increase in body 

temperature is probably a danger in MS patients, especially during or after an infection with 

corona virus, higher levels of heat stimulation are associated with greater adaptations in heat 

regulation (Périard et al., 2016). These adaptations to exercise training are akin to the adaptions 

induced by exposure to heat (Corbett et al., 2014; Nielsen et al., 1993; Weller et al., 2007). 

Importantly, the probable adaptations acquired from exercise training that help to maintain core 

body temperature within a narrow range consist of neurophysiological adaptations, including 
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cardiovascular, hematological, and hormonal changes, neural adaptations of the temperature set 

and thermoregulatory effectors, reduced production of metabolic heat by exercise, improved heat 

tolerance through the response to heat shock, and improved sweat economy (Figure 2) (Nadel, 

1988; Nadel et al., 1980; Takeda and Okazaki, 2018; Werner, 1993; Yamauchi et al., 1997).  

 

Figure. 2. Schematic diagram of physical exercise-induced adaptations in improving thermal 

management. The green rectangles represent the main adaptations induced directly by regular 

physical exercise that are associated with secondary adaptations (in black rectangles). The bold 

arrows show the main adaptations; oval circles indicate increased cutaneous blood flow resulting 

from vascular adaptations. Na
+
, sodium; NAP, natriuretic atrial peptide; VIP, vasoactive 

intestinal peptide; PACAP, pituitary adenylate cyclase-activating polypeptide; VDP, vascular-

dilating prostanoids; TRPV-1, transient receptor potential vanilloid type 1; NK-1, neurokinin-1; 

NO, nitric oxide; EDHF, endothelial-derived hyperpolarizing factor; VEGF, vascular endothelial 

growth factor; ROS, reactive oxygen species; APN, adiponectin.     

 

The cardiovascular system regulates blood supply to exercising muscles to support their 

metabolism and also to the skin for dissipating the heat generated by exercising muscles (Geor 

and McCutcheon, 1996; Rowell, 2011). Autonomic processes such as skin vasodilation and 

sweat production are compensatory procedures to maintain body temperature at a normal level 
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(Kenny and McGinn, 2017; Nagashima et al., 2012). Exercise-induced hyperthermia impairs the 

function of ANS, which is measurable by heart rate variability and lasts > 80 min after the 

exercise session (Armstrong et al., 2012). Thus, other factors can restore body heat balance. The 

initial increase in skin blood flow during hyperthermia is primarily due to withdrawal of 

sympathetic vasoconstriction (McNamara et al., 2014; Wong, 2013). The 85-95% increase in 

cutaneous blood flow and increased sweating is mediated by cholinergic outflows from 

sympathetic nerves (Wong, 2013). Vasodilation and sweating is achieved by release of Ach from 

cholinergic terminals of sympathetic nerves and also by the co-release of other vasodilators 

(Bennett et al., 2003; Dean L. Kellogg et al., 2010; Johnson and Kellogg, 2010; Kellogg Jr et al., 

1995; McCord et al., 2006; Wong, 2013; Wong et al., 2004). Vasoactive intestinal peptide (VIP) 

(Bennett et al., 2003; Dean L. Kellogg et al., 2010), pituitary adenylate cyclase-activating 

peptide (PACAP) (Rambotti et al., 2002; Wallengren, 1997; Warren et al., 1992), vitronectin-

derived peptide (VDP) (McCord et al., 2006), histamine (Wong et al., 2004), and substance-P 

(Wong and Fieger, 2012; Wong and Minson, 2006) are co-released with Ach. These co-

transmitters also increase the production of local NO (Kellogg Jr et al., 2012; Klede et al., 2003; 

McCord et al., 2006; Shibasaki et al., 2002; Wilkins et al., 2004; Wong, 2013; Wong et al., 2005; 

Wong et al., 2004). For instance, substance-P activates Neurokinin-1 (NK1) receptors to increase 

NO levels (Wong and Minson, 2006). However,  substance-P also causes microvascular dilation 

by NO independent mechanisms by  the degranulation of cutaneous  mast cells, causing local 

increases in histamine levels (Huttunen et al., 1996). Increased cutaneous microvascular 

reactivity and function are positively related to VO2max (Hodges et al., 2010; Middlebrooke et 

al., 2005; Roche et al., 2008; Tew et al., 2010).  

Improvements in the thermoregulatory components produced by regular physical exercise, 

especially endurance/aerobic training, are related to increases in cardiac output and antioxidant 

enzyme levels (Tew et al., 2012; Tew et al., 2010), while increases in skin blood flow are due to 

increased plasma volume (Ikegawa et al., 2011). Aerobic exercise training for 6-10 days 

increases the plasma volume (Convertino, 1991; Costill et al., 1976; Fellmann, 1992; Williams et 

al., 1979), due to increased intravascular protein (albumin) by triggering the production of 

hepatic albumin and reuptake of electrolytes (sodium) (Convertino et al., 1980; Convertino, 

1991; Fellmann, 1992; Nadel, 1996), increases in hormones that regulate fluid volume (e.g., 

aldosterone, arginine vasopressin, natriuretic atrial peptide (NAP) and renin-angiotensin) 
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(Convertino et al., 1980; Fellmann, 1992; Nagashima et al., 2000; Wade et al., 1985; Yang et al., 

1998). Higher blood volume increases blood pressure and this results in increased shear stress in 

the vasculature (Birk et al., 2013; Laughlin et al., 2008). The increased heart rate during exercise 

stimulates contractility of heart rate by activation of the sympathetic nervous system, which also 

increases shear stress (BLAIR et al., 1961). These local hemodynamic changes activate 

endothelial mechanical-sensitive ion channels such as piezo1 channels and G-proteins, caveolin, 

and integrins. Mechanical signals lead to calcium entering, activation of endothelial nitric oxide 

synthase (eNOS) and the production of NO and endothelial-derived hyperpolarizing factor 

(EDHF) (Awolesi et al., 1994; Caolo et al., 2020; Green et al., 2004; Laughlin et al., 2008; Silva 

and Zanesco, 2010). NO contributes to approximately 30% increases in responses of cutaneous 

blood flow to Ach released during physical exercise (Boutsiouki et al., 2004; Holowatz et al., 

2005; Kellogg Jr et al., 2005; Laughlin et al., 2008). For better regulation of core temperature, 

NO and hypoxia resulting from exercise can upregulate vascular endothelial growth factor 

(VEGF), which promotes microvascular numbers (angiogenesis) and increases capillary density 

that promotes cutaneous perfusion (Breen et al., 2008; Jensen et al., 2004; Lloyd et al., 2005; 

Michiels et al., 2000).  

The optimization of vascular structure and improved blood flow distribution can attenuate some 

of the heat strain produced by coronavirus disease in patients with neurological disorders. 

Increases in antioxidant enzyme levels induced by exercise also assists in promoting skin 

vasodilation by improving NO bioavailability and reducing damage of lipid peroxidation-

mediated damage of vascular endothelial cells (Dawson et al., 2013; Eskurza et al., 2004; Finaud 

et al., 2006; Holowatz et al., 2006; Leeuwenburgh and Heinecke, 2001; Tew et al., 2012; Violi et 

al., 1999). Chronic aerobic exercise increases the activity of vasodilatory mediators such as NO, 

prostacyclin, prostaglandins, bradykinin, and EDHF that promotes cutaneous perfusion and 

limits exercise-induced increases of core temperature (Colberg et al., 2009; Colberg et al., 2002; 

Gooding et al., 2006; Lenasi and Štrucl, 2008; Sokolnicki et al., 2007; Wang, 2005). In addition, 

these factors interact to enhance skin perfusion by increasing cutaneous flow produced by Ach 

(Gaubert et al., 2007; Lenasi and Strucl, 2004; Medow et al., 2008; Padilla et al., 2011; Wang, 

2005). Increased insulin-induced tissue metabolism improves endothelial function induced by 

aerobic exercise by phosphorylating eNOS and increasing NO production (Ghafouri et al., 2011; 

Harris et al., 2008; Kashyap et al., 2005; Rossi et al., 2005), which activates Ca
2+

-activated 
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potassium (K
+
) channels (Bychkov et al., 1998; Kane et al., 2004; Merkus et al., 2006; Misurski 

et al., 2001) and ATP-sensitive K
+
 channels (McKay and Hester, 1996). 

Exercise and endurance training change body composition (reduce subcutaneous body fat), 

serum lipid and lipoproteins (increases high-density lipoprotein cholesterol [HDL-C]), and 

attenuates the oxidation of low-density lipoprotein cholesterol (LDL-C) (Gordon et al., 2014; 

Kodama et al., 2007; Kraus et al., 2002; Neves et al., 2017). Oxidation of LDL-C inhibits the 

release of NO and mitigates endothelium-dependent vasodilation (Liao et al., 1995). Exercise 

increases the expression of antioxidant enzymes such as superoxide dismutase (SOD), which 

increases the bioavailability of NO inhibition of LDL-C oxidation and enhances the vasodilatory 

sensitivity to chronic activation of β-adrenergic receptors on microvascular walls (Woodman et 

al., 2005; Woodman et al., 2004).  

Plasma levels of adiponectin (APN) are increased by regular physical exercise (Saeidi et al., 

2020; Zouhal et al. 2021). APN binds to adiponectin receptor 1 (AdipR1) in endothelial cells, 

mitigating the induction of inflammasomes, especially NLPR3, whose signals include activation 

of caspase-1 and IL-1β (Du et al., 2016; Hui et al., 2012; Lee et al., 2020; Lee et al., 2018; Lee et 

al., 2011). Downregulated inflammasomes attenuate ROS production in endothelial cells. 

Therefore, exercise training increases endothelial APN levels to promote NO production and its 

bioavailability, and reduces oxidative and apoptotic damage of microvessels (Chen et al., 2003; 

Gleeson et al., 2011; Moien-Afshari et al., 2008; Plant et al., 2008; Wang et al., 2018; Zhang et 

al., 2015). 

Engaging in regular physical exercise leads to adaptations in the cardiovascular system and 

skeletal muscles, whereby less metabolic exertion is required to perform the same intensity of 

exercise (James et al., 2017; Lorenzo et al., 2010; Nadel et al., 1974; Pivarnik et al., 1987; Sawka 

et al., 1985). Exercise reduces vascular inflammation (Pedersen, 2009; Ribeiro et al., 2010), for 

example by releasing IL-6 (a myokine released by skeletal muscles into the circulation during 

physical exercise) (Jankord et al., 2007; Pedersen, 2009; Pedersen and Febbraio, 2008; Pedersen 

et al., 2004; Suzuki et al., 2020) to increase anti-inflammatory (IL-10, IL-1ra) and lower pro-

inflammatory (TNF-α, IL-1β) cytokine levels (Pedersen, 2009; Shephard, 2002; Starkie et al., 

2003; Suzuki, 2019). 

Other mechanisms related to the beneficial effects of exercise in reducing core temperature 

includes the release of ATP by endothelial cells and erythrocytes (Ellsworth and Sprague, 2012; 
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Hellsten et al., 1998; Hellsten et al., 2012; Singel and Stamler, 2005). ATP, which is released 

during exercise and in response to hypoxia and shear stress, binds to P2Y receptors in micro-

vessels to release NO and PGs (prostacyclin, PGE2) (Burnstock et al., 2013; Corr and Burnstock, 

1994; Frandsen et al., 2000; Hellsten et al., 1998; Huang et al., 2000; Mortensen et al., 2009a; 

Mortensen et al., 2009b; Nyberg, Michael et al., 2013) and hyperpolarization of vascular cells 

(Crecelius et al., 2012; Rosenmeier et al., 2008). Additionally, increased concentrations of 

plasma ATP during exercise inhibits sympathetic vasoconstriction of α-adrenergic receptors, a 

phenomenon known as functional sympatholysis (Kirby et al., 2008; Rosenmeier et al., 2004). 

Exercise, especially endurance training, attenuates the  effects of endothelial-dependent 

vasoconstriction produced by endothelin-1 (Beck et al., 2013; Maeda et al., 2003; Nyberg, M et 

al., 2013; Nyberg et al., 2014), thromboxane A2 (Hansen et al., 2011; Stergioulas and Filippou, 

2006), and angiotensin II (Rush and Aultman, 2008; Zucker et al., 2015). 

Adaptations in sweat rates may be important when monitoring body core temperature. Changes 

in response to exercise include increases in cholinergic sensitivity, greater rate and efficiency of 

eccrine glands in sweat production per gland, increased number and sensitivity of muscarinic 

receptors responsible for sweating, and reduced choline esterase activity (Lorenzo and Minson, 

2010; Périard et al., 2016). Thus, exercise training can reduce the threshold for initiating 

cutaneous blood flow and sweat production in response to increases in core body temperature.   

The majority of the vascular benefits produced by exercise training occur via increased NO 

bioavailability. Exercise-induced increases in NO inhibits virus replication by suppressing 

ribonucleotide reductase (Ellermann-Eriksen, 2005; Komatsu et al., 1999), and is supported by 

findings that NOS-deficient mice are more susceptible to viral infections (Gamba et al., 2004; 

MacLean et al., 1998).   

Exercise-induced adaptations in thermoregulation occur within 3-14 days (Garrett et al., 2011), 

with the initial changes in the cardiovascular system associated with hypervolemia (Lorenzo et 

al., 2010; Nielsen et al., 1993; Shvartz et al., 1977; Weller et al., 2007) and secondary 

adaptations related to sweat production (Nielsen et al., 1993; Roberts et al., 1977; Shvartz et al., 

1977; Wyndham et al., 1976). Light to moderate-intensity endurance training (≥ 50% VO2max) 

for at least one week optimal to stimulate these adaptations and restore body temperature to 

healthy levels (Lorenzo et al., 2010; Périard et al., 2015; Sawka et al., 1985). Furthermore, 

thermobalance during steady-state exercise occurs within 30-45 min and increases in body 
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temperature occur within 15-20 min of physical exercise (Kenny and Jay, 2011). Thus, exercise 

of at least 20 min is needed to promote thermoregulatory adaptations. Since MS patients are very 

sensitive to heat stress, with exacerbating clinical signs during and after infection with SARS-

CoV-2 (Willis and Robertson, 2020), management of the risks associated with heat stress should 

include physical exercise using exercise/rest (intermittent exercise) protocols), with close 

monitoring of hydration and cool-down strategies.   

4. Conclusions  

We reviewed thermoregulation management following exercise training in MS patients infected 

with COVID-19. The mechanisms of exercise-induced vascular benefits involve increased eNOS 

bioavailability and the anti-inflammatory effects of NO. Regular physical exercise increases 

vasodilation sensitivity to maintain core body temperature by reducing the sweat threshold and 

increasing responses of cutaneous vessels. Exercise-induced adaptations in the cardiovascular 

system mitigates perceived exertion and fatigue during physical exercise through improved 

thermoregulation, allowing MS patients to better manage neurological signs during and after 

infection with SARS-CoV-2.  
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