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Flow Redirection for Epidemic Reaction-Diffusion
Control

Pierre-Yves Massé†‡∗, Quentin Laborde†∗, Maria Cherifa†, Jules Olayé† and Laurent Oudre†
† Centre Borelli ‡ Corresponding author ∗ Equal contribution

Abstract—We show we can control an epidemic SEIR reaction-
diffusion process on a directed, and heterogeneous, network by
redirecting the flows, thanks to the optimisation of well-designed
loss functions, in particular the basic reproduction number of
the model. We provide a final size relation linking the basic
reproduction number to the epidemic final sizes, for diffusions
around a reference diffusion with basic reproduction number less
than 1. Experimentally, we show control is possible for different
topologies, network heterogeneity levels, and speeds of diffusion.
Our numerical simulations results highlight the relevance of the
basic reproduction number loss, compared to more common
losses.

Keywords—Networked Control Systems, Optimization, Biological
Networks, Reaction-Diffusion

I. INTRODUCTION

NETWORKS are important infrastructures, whether they
are transportation [1], telecommunication [2] [3], or

supply [4] networks. However, they may be invaded by un-
desirable process, such as diseases [5] or virus malwares [6].
A typical modeling of these processes is based on systems
of coupled ordinary differential equations (ODE), where the
equations associated with each node (representing populations
such as cities or countries) are coupled in some way by
the network [7]. The ODEs used are deterministic and were
introduced at the beginning of the 20th century, following
notably Kermack and McKendrick [8]. This formalization
described originally how individuals transitioned from state
to state — healthy, infected, recovered, for instance — when
confronted with a disease [9].

Two major classes of coupling have emerged. On the one
hand, the interactions between populations may be described
by a static contact structure [7], [10], [11], where individuals
in a node remain in the same one, and may be infected by
others in the neighboring nodes. On the other hand, in the
epidemic reaction-diffusion models, also known as metapop-
ulation models with explicit movement [12], individuals can
only be infected by others in the same node, but are allowed
to move to neighboring nodes. Following their appearance in
ecology [13], these models have sparked considerable interest
in mathematical epidemiology [12], [14]–[20].

To contain the spread of the disease, a first option consists in
acting on the disease parameters, such as the infection rate and
the curing rate [21]–[24]. For instance, treatments may reduce

This work was partially supported by the French Agence de l’innovation
de défense as part of the project Onadap.

the likelihood for an individual to get infected, or speed up
recovery. Another option is to modify the network structure.
Notably, Preciado and Zargham [25] reduce the flows between
cities, in a static contact model, in order to limit the spread of
an epidemic. Recently, Umar B. Niazi et al. [26] have shown
how to lower the flows of a model with diffusive dynamics
in order to optimally control the epidemic. In our work, we
propose to merely redirect the flows of the diffusion dynamics:
indeed, redirection involves a smaller alteration of the network
structure, and can help it keep functioning as normally as
possible, which is desirable. Our goal is to reduce the final
size of the epidemic, that is the final number of individuals
who have been infected. We use the basic reproduction number
of the system [27]–[29] as a criterion to redirect the flows. We
aim at minimizing it by gradient descent, with respect to some
relevant parameterization of the diffusion dynamics.

We start by discussing related works and presenting our
contributions, in Section II. We then define our model, state
the problem we study, and describe our methodology, in
Section III. Section IV gathers our theoretical results, the main
one being a final size relation linking the basic reproduction
number, and the final size of the epidemic. We present the
results of our numerical simulations in Section V1. The bulk
of the proofs is deferred to Section VII for ease of reading.

II. RELATED WORKS AND CONTRIBUTIONS

We first present related works on epidemic control (Sec-
tion II-A) and final size relations (Section II-B). Then, we state
our contributions (Section II-C), before discussing our work
in light of some closely related references (Section II-D).

A. Network Deterministic Epidemic Control

Control of deterministic epidemic processes on networks is an
alive direction of research: see for instance Nowzari et al. [7]
and Zino and Cao [30]. A usual aim is the stabilization of
the disease-free-equilibrium (DFE) of the system (the point at
which no disease is present in the population). The control rep-
resents a preventive intervention undertaken by some regulator
(e.g. the distribution of prophylactic treatments). To assess the
amount of intervention needed, one common strategy consists
in tracking its effect on the reduction of the maximum real part
of the eigenvalues of the Jacobian of the system at the DFE,
known as the spectral abscissa. Indeed, once the abscissa is

1The code for the simulations, written in Python, is available on the git
repository https://reine.cmla.ens-cachan.fr/masse/flow_redirection.
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negative, the DFE becomes exponentially stable. The Jacobian
typically writes J = βA−δ, where A is the adjacency matrix
of the network, β contains the infectivity parameters and δ
contains the curing parameters. Two types of interventions are
possible. First, one may act on the network structure, that is
on A. For instance, Preciado and Jadbabaie [31] design well-
suited values for the connectivity radius of a random geometric
graph, ensuring the stability of the DFE, while Preciado and
Zargham [25] reduce the flows between cities. Second, the
control may be exercised on the epidemic parameters. In
Preciado et al. [22] and Preciado et al. [23], the infectivity and
curing parameters are optimised under two objectives. First,
the authors seek to minimize as much as possible the spectral
abscissa, under a given budget. Conversely, they look for the
minimal budget ensuring the abscissa is taken below some
threshold. In particular, Nowzari et al. [24] show that these
optimization problems may be cast as geometric programs, and
can be solved with standard solvers. Rather than the Jacobian,
Knipl [32] uses as a criterion the spectral radius of some
next-generation like matrices [29]. She leverages the fact these
spectral radius act as thresholds for the spectral abscissa of the
Jacobian at the DFE. She identifies a subset of entries of the
next-generation matrices, and the target values they must have,
in order to stabilize the DFE. Then, she reverse-engineers the
alteration of the parameters of the model needed to reach these
target values.

Let us discuss works focusing on the network as a control
parameter. Umar B. Niazi et al. [26] propose an optimal
control of solutions to mitigate an outbreak while maintaining
as much as possible economic activity, in a metapopulation
model with diffusive coupling. Ottaviano et al. [33] leverage
the structure of the network to optimally distribute curing
treatments on the network. Notably, their use of equitable
partitions means the optimization problem they need to solve
is lower-dimensional than the system they aim at controlling.
Paré et al. [34] act on the network structure of a time-varying
system to reduce the spread of the disease. Meanwhile, some
works act on both network and disease-related parameters,
like Knipl [32] mentioned earlier: for instance, Cenedese et
al. [35] solve a Nonlinear Model Predictive Control problem
to design the most cost-efficient way to both reduce infection
and contact rates specified by the network adjacency matrix.
Finally, time-varying networks exhibit specific epidemic be-
haviors compared to static [36], therefore require tailor-made
procedures in order to control epidemics [37].

B. Final Size Relations

The final size of an epidemic is the asymptotic number
of individuals confronted to the disease. It is an important
outcome of the epidemic: estimating it and studying its de-
pendency on the model’s parameters has been given plenty
of attention: see notably Junling and David [38]. Kermack
and McKendrick [8] established the following well-known
equation for a scalar, deterministic model: the final size r(∞)
(the lowercase emphasizes it is a real number) and the basic
reproduction number R0 are linked by

R0r(∞) + log (1− r(∞)) = 0. (1)

The basic reproduction number — see for instance Macdonald
[27] — is a key statistic governing the behavior of epidemic
models. It is often interpreted as the number of secondary
infections caused by an initial infected individual in a fully
susceptible population, though this needs qualifying (see dis-
cussion in Section II-D). One major property of Equation (1)
is the monotonous link it shows between R0, which concerns
the onset of the epidemic, and its final size, which concerns its
outcome. Several studies have since been devoted to extending
this relation to more evolved models [39]. Magal et al. [40]
and Magal et al. [41] study the final size of a multi-group
SIR epidemic model. Andreasen [42] proves the unicity of
the solution of the final size equation in the open unit cube,
when R0 > 1, in a network model with static contacts.
See also Brauer [43] about the final size for models on
networks with static contacts, also known as mixing models.
Final size relations have also been derivated in continuous-
space settings [44]. Finally, Gao [45] study the influence
of the speed of diffusion on the total infection size of the
endemic state of an SIS-metapopulation model. They show
in particular that the basic reproduction number diminishes
when the speed of diffusion increases, but the infection size
may not be monotonic. However, up to our best knowledge,
there is no general result expressing the final size of an
epidemic reaction-diffusion process as a function of its basic
reproduction number.

C. Contributions

We show we can control an epidemic running on a directed,
heterogeneous network, by redirecting flows of individuals.
Theoretically, we provide a final size relation linking the
basic reproduction number and the final size of the epidemic
(Theorem 3). It applies to reaction-diffusion processes with
diffusion matrices close to a reference diffusion matrix, whose
reproduction number is strictly less than 1. To obtain this
result, we prove a uniform stability of the Disease Free
Equilibrium (Corollary 6) which extends uniformly, in some
neighborhood of the reference diffusion matrix, the standard
stability criterion is given by the next-generation matrix.

Then, we present our methodology based on the control of
the basic reproduction number to control the epidemic spread.
We design a parameterization of the diffusion allowing us to
redirect the flows, and define several loss functions that we
compare to the base loss in reproduction number. The losses
are differentiable so that even though the optimization problem
is nonlinear and nonsymmetric, it can be solved by gradient
descent.

Finally, we validate our approach with numerical simulations,
using synthetic data presenting different topologies, different
levels of network heterogeneity, and a range of diffusion
speeds. The procedure works for general reaction models
although, for the sake of clarity, we only work with a SEIR
model. We use SEIR because it allows us to show the
procedure works in a slightly involved setting, while not
overburdening the analysis with technical details.
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D. Comparison with some Related Works

Let us highlight our differences with some closely related
works, first as far as control is concerned, and second as far
as the final size relation is concerned.

Contrary to Knipl [32], we do not identify a target next-
generation matrix, but directly optimize the basic reproduction
number. In contrast to Umar B. Niazi et al. [26], we do not
aim at lowering the flows, but redirect them. Moreover, we do
not cast the problem as an optimal control one, but optimize
the basic reproduction number. Extending our methodology
to an optimal control framework is beyond the scope of our
work, but would represent an interesting direction of future
research.

Unlike Andreasen [42], we study a model with a diffusive
coupling, and do not analyze the structure of a final size
equation, but bound the final size. Contrary to Gao [45], we do
not consider changes in the speed of the diffusion dynamics,
but redirection of it. Moreover, we show numerically, and
argue theoretically, that even though R0 and the final size
may not be monotonically related, lowering R0 enough ends
up diminishing the epidemic final size. Note that we consider
a system with no possibility of reinfection, and therefore no
endemic state, so that the final size we study is different from
the infection size at the endemic state in Gao [45].

Our approach uses the basic reproduction number R0 as a
stability criterion. Note that it is not uniquely defined [46],
and its common interpretation is often incorrect. We retain its
definition as the spectral radius of the next-generation matrix
and use it as a threshold for the eigenvalues of the Jacobian.
We thus are not liable to the issues identified in Li et al. [46],
and can benefit from the following advantages. First, as it acts
as a threshold, taking it below 1 is equivalent to ensuring the
eigenvalues of the Jacobian of the system of Equation (2) at
the DFE have negative real parts. Second, as the spectral radius
of the next-generation matrix, it is obtained through the study
of a matrix of order |N |, whereas the Jacobian is of order
4|N |. Finally, the next-generation matrix is positive, so that
its spectral radius is differentiable, and an analytical formula
exists for its derivative (see Section IV-B).

III. MODEL, PROBLEM STATEMENT AND METHODOLOGY

We first define our model, together with our notations, in
Section III-A. The main notations are gathered in Table I.
Second, we give our problem statement, and introduce our
methodology, in Section III-B.

A. Background Material, Definitions and Notations on
Metapopulation Models with Diffusion

Let G = (N , E) be a strongly connected, directed graph, with
node set N , and edge set E . For each node n ∈ N , we write
βn, δn and γn the positive infection, incubation and curing
rates respectively, of a scalar SEIR model [9]. We write β =
diag

(
β1, . . . , β|N |

)
the corresponding diagonal matrix, and

likewise for the other coefficients. Capital letters like S, E,
I or R are vectors of size |N |, such that for instance, Sn

is the numbers of individuals in compartment “S” of node
n ∈ N . Coupling between nodes is realised by a diffusion
matrix, which definition we now recall.

Definition 1 (Diffusion Matrix). A diffusion matrix M on G
has nonzero off-diagonal entries only for coordinates (i, j)
such that the edge i  j belongs to E . M is Metzler, that
is for i, j ∈ N , i 6= j, we have Mij ≥ 0. It is irreducible.
Finally, the coordinates of each column sum to zero.

Since G is strongly connected, such matrices do exist. Standard
Perron-Frobenius theory guarantees that a diffusion matrix M
admits a stationary distribution µ̃M, that is a positive right
eigenvector such that Mµ̃M = 0, and which coordinates sum
to 1. The reaction-diffusion extension of the standard SEIR
system to a network evolves according to2, for all t ≥ 0,

dS

dt
= −βS � I + MS

dE

dt
= βS � I − γE + ME

dI

dt
= γE − δI + MI

dR

dt
= δI + MR.

(2)

Standard results — see Arino [12] and references therein
— guarantee that, for all nonnegative initial condition(
S(0), E(0), I(0), R(0)

)
, the solution to Equation (2) is

global, remains nonnegative, and converges to a fixed point of
the form

(
S(∞), 0, 0, R(∞)

)
. Moreover, the total population

is preserved:
∑
n∈N Sn(t)+En(t)+In(t)+Rn(t) is constant.

In what follows, we assume it equals 13.

The “Disease Free Equilibrium” (DFE) (µ̃M, 0, 0, 0) is a
fixed point of Equation (2), where there is no disease: all
individuals are in the compartment S. We want it to be stable,
and therefore we recall here a well-studied stability criterion,
which we make extensive use of. The stability of the DFE is
governed by the spectral radius of the next-generation matrix
[28], [29], which is called the basic reproduction number, and
written R0. The DFE is stable if, and only if, we have R0 < 1
[47]. The next-generation matrix in the sense of Diekmann and
Heesterbeek [29] associated with the system of Equation (2)
is GM := β diag (µ̃M) (M− δ)

−1
γ (M− γ)

−1, where
diag (µ̃M) is the diagonal matrix which diagonal coefficients
are those of µ̃M. The basic reproduction number depends on
the diffusion matrix M, and we write it R0 = R0(M) =
ρ (GM), where ρ indicates the spectral radius.

Finally, we use the following notion of policy over the
network.

Definition 2 (Policy over a Network). We call policy a
stochastic matrix π of order |N | such that, for every node
n ∈ N , the row (πn,i)i∈N is a probability distribution over
the outgoing neighbours of n4.

2For instance, for a node n ∈ N , the equation on Sn reads: dSn/dt =
−βnSn(t)In(t) +

∑|N|
i=1 Mn,iSi(t).

3This is standard: see for instance Andreasen [42] or Gao [45].
4Therefore, for i ∈ N , πn,i is nonzero if, and only if, E contains an edge

n i.
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For every n  i ∈ E , the quantity πn,i is the proportion of
individuals who leave the node n through the edge n i. We
consider diffusion matrices of the form

M(θ) = f
(
π(θ)− Id|N |

)T
,

where the outrate diagonal matrix f , and the policy π(θ),
both in M|N |(R), are defined below. For every node n ∈
N , we call outrate in n a positive real number fn, which is
the rate at which individuals leave the node. We write f =
diag(f1, . . . , f|N |). Let us define the parameter space

Θ = R|E|.

We index θ ∈ Θ by the edges in E : for instance, if n, i ∈ N are
such that n i belongs to E , we write θn,i the corresponding
entry of θ. For every θ ∈ Θ, we define the policy π(θ) over N
such that, for every node n, i 7→ πn,i(θ) is a softmax function
over the outgoing neighbours of n5. As a result, for every θ,
π(θ) is indeed a policy, and the mapping θ 7→ π(θ) is regular.

The matrices M(θ) are diffusion matrices in the sense of
Definition 1. Indeed, let us fix θ. For every node n, for every
edge n  i ∈ E , πn,i(θ) is positive by construction. Now,
since G is strongly connected, we know π(θ) is irreducible,
therefore M(θ) is as well, as f is positive. Finally, the columns
of M(θ) sum to 0, as π(θ) is stochastic.

In what follows, we fix f , as we only want to redirect the
flows, by modifying π(θ). Therefore, all quantities related to
the diffusion dynamics are functions of θ, and we write ac-
cordingly G(θ), R0(θ) and µ̃θ the associated next-generation
matrix, basic reproduction number, and stationary distribution,
respectively.

B. Problem Statement and Methodology

We want to minimize the final number of infected individuals,
by optimising over the parameter θ6:

min
θ∈Θ

∑
n∈N

Rn(∞).

To do this, we define the three following loss functions on θ.

Epidemic loss. The main loss is the epidemic loss, defined by

EPILOSS(θ) = R0(θ).

The associated policy, π(θ∗), with θ∗ ∈ arg minθ EPILOSS(θ),
is called the epidemic policy. It aims at stabilising the DFE,
taking R0(θ) below 1, and reducing the final size: see Sec-
tion IV-A.

No diffusion loss. The second loss, or NODIFFLOSS for “No
Diffusion Loss”, is defined by, for every θ,

NODIFFLOSS(θ) = Sa
(
βδ−1µ̃θ

)
,

5Namely, for every edge n  i ∈ E , we impose πn,i(θ) =
eθn,i/

∑
j,n j∈E e

θn,j , while for every node i such that there is no edge
n i, we impose πn,i(θ) = 0.

6The quantities Rn(∞) depend on the diffusion matrix M(θ), which itself
depends on θ.

Notation Definition Meaning
G — Directed, strongly connected,

graph
N — Nodes set of the graph
E — Edges set of the graph
n integer, 1 ≤ n ≤ N Node of the graph
|N | positive integer Cardinal of the nodes set
|E| positive integer Cardinal of the edges set
u� v (unvn)1≤n≤|N| ∈ R|N| Coordinate-wise product
1|N| (1, . . . , 1) ∈ R|N| Unit vector
Id|N| Id|N| ∈ M|N|(R) Identify matrix of size |N |
βn βn > 0 Infection rate of node n
γn γn > 0 Incubation rate of node n
δn δn > 0 Curing rate of node n
β diag

(
β1, . . . β|N|

)
∈ M|N|(R) Diagonal matrix

γ diag
(
γ1, . . . γ|N|

)
∈ M|N|(R) Diagonal matrix

δ diag
(
δ1, . . . δ|N|

)
∈ M|N|(R) Diagonal matrix

S, I , R S, I, R ∈ R|N|+ Vectors of numbers of individ-
uals in compartments

R0 R0 ≥ 0 Basic reproduction number
M M ∈ M|N|(R), with constraints Diffusion matrix, Definition 1
µ̃M µ̃M ∈ R|N|+ Stationary distribution of M
G G ∈ M|N|(R) Next-generation matrix
π π ∈ M|N|(R) Policy, Definition 2
fn f > 0 Outrate of node n
f diag

(
f1, . . . f|N|

)
∈ M|N|(R) Matrix of outrates

θ θ ∈ M|N|(R), with constraints Parameter to optimise over
Θ Θ = R|E| Parameter space

TABLE I: Main notations

where Sa : R|N | → R, is the a-smooth max function defined,
for a > 0 and u = (u1, . . . , u|N |), by

Sa(u) =

∑|N |
i=1 ui exp(aui)∑|N |
i=1 exp(aui)

.

It is a smoothed maximum of the individual basic reproduction
numbers βnδ−1

n µ̃θ(n) of each node n, computed when there
is no diffusion7. The maximum of these reproduction numbers
is therefore the limit, when τ →∞, of the basic reproduction
number of the system of Equation (2), when the diffusion is
replaced by M/τ . Here, τ acts as the typical time at which
diffusion occurs.

Quick diffusion loss. Conversely, the third loss, QUICKDIF-
FLOSS for “Quick Diffusion Loss”, is the limit, when τ → 0,
of the basic reproduction number — see Beaufort et al. [48]
for a proof in the special case of a SIR reaction, but the same
reasoning applies to SEIR. It is defined for every parameter θ
by,

QUICKDIFFLOSS(θ) =

∑
n∈N βnµ̃θ(n)2∑
n∈N δnµ̃θ(n)

.

For each loss, the optimal parameter θ∗ we obtain defines a
control policy π(θ∗). The policies obtained by minimising the
three losses are called respectively EPIPOL, NODIFFPOL and
QUICKDIFFPOL.

Note that NODIFFLOSS and QUICKDIFFLOSS — which are
simpler than EPILOSS — only consider the diffusion dynam-
ics through its static part, the stationary distribution, while
EPILOSS also takes into account its “dynamic” part, through
its explicit dependency on M(θ), which governs the transfers
of population between the nodes during the epidemic. They

7Or an infinitely slow diffusive dynamics, with respect to the speed of the
epidemic reaction.
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both attempt at redistributing the population on the network,
by sending it to nodes with low βn, and high δn coefficients.
Indeed, when βn is small, and δn is high, the epidemic is
less severe. Moreover, they balance it by taking into account
the stationary distribution µ̃M, as increasing the number of
individuals in a node also increases its individual reproduction
number βnδ

−1
n µ̃θ(n), which is bad for epidemic control.

Second, the losses NODIFFLOSS and QUICKDIFFLOSS are
limit cases, as far as the speed of the diffusive dynamics is
concerned. Now, our numerical simulations — see Section V
— show that results are better with EPILOSS, justifying the
greater complexity of use it entails.

IV. THEORETICAL RESULTS: FINAL SIZE AND
OPTIMISATION PROBLEM

We first present our final size relation in Section IV-A.
Second, we prove the losses we study are differentiable in
Section IV-B.

A. Final Size Relation

Consider some diffusion matrix Mref such that R0(Mref) <
1. Then, for diffusion matrices M close enough to Mref ,
the ratio between the final size and the initial number of
infected individuals is controlled by monotonic functions of
the basic reproduction numbers R0(M). First, we define
two quantities needed to formally state this result. For every
diffusion matrix M, we write vM a non-negative eigenvector
(thus, not zero) summing up to 1, associated to the spectral
radius of the next-generation matrix with large domain [29].
Vectors vM exist because this matrix is non-negative (see
the first result of Section 8.3 in Meyer [49]). Then, for
every couple

(
EM(0), IM(0)

)
of vectors, we write IM(0) =∑

n∈N
(
EM
n (0) + IMn (0)

)
the initial number of individuals

either exposed or infected. We can now state our final size
relation.

Theorem 3 (Final size relation). Let Mref be a dif-
fusion matrix, such that R0(Mref) < 1. Then, for
every ε > 0 small enough, there exists a ball B
of diffusion matrices around Mref , and η > 0 such
that, for every M ∈ B, for every initial condition∥∥(SM(0), EM(0), IM(0), RM(0)

)
−
(
µ̃Mref

, 0, 0, 0
)∥∥ < η,

such that the relation
(
EM(0), IM(0)

)
= IM0 (0)vM holds

for some vector vM, we have

IM0 (0)

1− (1− ε)R0(M)
≤
∑
n∈N

RM
n (∞) ≤ IM0 (0)

1− (1 + ε)R0(M)
,

(3)

where RM(∞) is the asymptotic vector of individuals in
compartment R of the solution of Equation (2).

This result shows that, for diffusions M close enough to Mref ,
the final size is controlled by monotonic functions of the basic
reproduction numbers R0(M): the smaller the R0(M), the
closer the final size gets to the initial number of infected
people, IM0 (0), meaning the epidemic has not spread widely
within the population. Note that the proof could be extended

to other compartmental models, e.g SIR or SEPIR (see the
supplementary materials for a description of the latter).

Our relation has two main limitations. First, it only applies
for R0(Mref) < 1, that is when the DFE is already stable.
Therefore, in this case, our control only aims at lowering the
final size. However, even when the DFE is stable, the final size
may be deemed unacceptably high, so that studying if it can
be lowered remains relevant. Moreover, we show numerically
(Figure 1) that, even when R0 < 1, lowering it still entails
a reduction of the final size. Second, we restrict to initial
conditions of the form IM(0)vM. However, by doing so, we
only constrain their orientation, but not the absolute number of
individuals IM0 (0), which can be any sufficiently small value.

We have therefore addressed — albeit partially — the question
of the extent to which the basic reproduction number influ-
ences the final size. Another question is the extent to which
redirecting the flows modifies the basic reproduction number.
We do not address this theoretically in this paper, but the
subsequent sections show experimentally that by redirecting
the flows, we manage to reduce the basic reproduction number,
and the corresponding final size. Theorem 3 is proved in
Section VII-C.

B. Differentiability of the Losses

The optimizations of the losses we use are nonlinear, and not
symmetrical, optimisation problems, therefore we solve them
by direct gradient descent (see Section V-A). This is possible
because the losses are differentiable with respect to θ.

Proposition 4 (Differentiability of the Losses). EPILOSS,
NODIFFLOSS and QUICKDIFFLOSS are differentiable with
respect to θ on Θ.

Since all three losses depend on a smooth way on the ba-
sic reproduction number, and the stationary distribution, we
only need to prove these are differentiable, which we do in
Lemma 5.

Lemma 5 (Differentiability of Relevant Quantities). The map
θ 7→ µ̃θ is differentiable. Moreover, the map θ 7→ R0 (θ) is
differentiable and, for every θ ∈ Θ, its euclidean gradient is
given by

∂R0

∂θ
(θ) =

(〈
r(θ) l(θ),

∂

∂θi,j
G(θ)

〉)
1≤i,j≤|N|

,

where 〈·, ·〉 stands for the dot product on the space of matrices,
and l(θ) and r(θ) are, respectively, a left and a right Perron-
eigenvectors, (associated to the eigenvalue R0(θ)) of the next-
generation matrix G(θ), such that l(θ)r(θ) = 1.

Proof. First, the stationary distribution is differentiable, as
for δt small enough, it is that of the irreducible stochastic
matrix IdN +δtM (θ)

T , which depends in a smooth way
on the matrix [49], and θ 7→ M(θ) is smooth. Second,
θ 7→ G (θ) is smooth. Indeed, from Section III-A we know that
G (θ) = β diag (µ̃θ) (M(θ)− δ)

−1
γ (M(θ)− γ)

−1. Now,
the maps θ 7→ µ̃θ and θ 7→ M (θ) are smooth, and so is
matrix inversion. Third, for every θ ∈ Θ, G (θ) is positive.
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We said in Section III-A that β and γ are diagonal positive
matrices. Moreover, we also recalled that, since M (θ) is a
diffusion matrix, µ̃θ is a positive vector. Finally, we know
that − (M(θ)− δ)

−1 and − (M(θ)− γ)
−1 are positive: see

for instance Lemma 1 of Arino [17]. Fourth, θ 7→ R0(θ)
is differentiable. Indeed, thanks to Caswell [50], the map
G 7→ ρ (G) is differentiable on the set of non-negative,
irreducible matrices. Since G(θ) is positive, it is a fortiori
irreducible. The formula then follows from Caswell [50] and
the chain rule.

V. NUMERICAL SIMULATIONS

First, we describe the numerical simulations set-up in Sec-
tion V-A, and discuss some algorithmic issues in Section V-B.
Next, we study numerically the relation between the final
size, and the basic reproduction number, in Section V-C. We
compare the overall performances of the policies for various
graphs sizes and topologies in V-D, before studying the effect
of the network heterogeneity, and the rate of diffusion, in
Sections V-E and V-F, respectively. Finally, we study a semi-
real example in V-G.

A. Numerical Simulations Set-up

For each numerical simulation, we start by generating a graph
from a random graph generator, specified below. Then, to
obtain f , we draw the outrates uniformly on [0, 4 × 10−1].
We draw uniformly in [−10−1, 10−1] the coefficients of a
parameter matrix θref , with which we construct a reference
softmax policy. In turn, this reference policy is used to con-
struct a reference diffusion matrix, the associated trajectories
of which provide the baseline against which we compare our
results. Finally, when needed, we renormalise the diffusion
matrix by the typical time of diffusion τ > 0, which values
we specify below.

The epidemiological coefficients are distributed according to
the absolute values of normal variables, which parameters
are available in the configuration files in the code. Having
drawn the δn’s, we compute the βn’s coefficients in such
a way that the basic reproduction numbers of the nodes,
R0(n) = βnµ̃Mref

(n)/δn, are distributed around the threshold
1: some R0(n)’s are greater than 1, and some lesser. For each
loss, we write θ∗ the parameter obtained at the end of training.
With it, we can compute the optimal policies π(θ∗) associated
with the different losses.

We then simulate the epidemic with the different policies on
the time interval [0, 1000]. We use a uniform time discreti-
sation step of ∆t = min(1, τ), where τ is the typical time
at which diffusion occurs, and a time-discretisation scheme
coinciding at first order with an Euler scheme, but preserving
the positivity of the vectors S, E, I and R. For each setting,
the population is initially distributed according to the reference
stationary distribution µ̃πref

, and in 2 nodes chosen at random,
5% of the population is changed from susceptible to exposed.

Finally, we measure the worth of every policy by the relative
final size of the epidemic with respect to the reference policy.

Parameter Influence of
size

Influence of
graph

Influence of
heterogene-
ity

Influence
of diffusion
rate

Number of
nodes |N |

10 to 50 40 25 25

Stepsize ζα 1.25 ·10−1 1.25 ·10−1 1.25 ·10−1 1.25 ·10−1

Momentum
parameter ζβ

10−1 10−1 10−1 10−1

Optimisation
step

4 · 102 4 · 102 4 · 102 4 · 102

Mean R0(n) 1 1 1 1

S.d. R0(n) 7 · 10−1 7 · 10−1 7 · 10−2 to
7 · 10−1

7 · 10−1

Mean γn, δn 3 · 10−1 3 · 10−1 3 · 10−1 3 · 10−1

S.d. γn 4 · 10−1 4 · 10−1 4 · 10−1 4 · 10−1

S.d. δn 4 · 10−1 4 · 10−1 4 · 10−2 to
4 · 10−1

4 · 10−1

Typical time τ 1 1 1 1 · 10−2 to
1 · 102

Simulation
length

1 · 103 1 · 103 1·103 to 1·
105

1 · 103

TABLE II: Parameters used for the numerical simulations
presented in Section V-D to V-F (S.d. : standard deviation).

Namely, if the parameter of the policy is θ∗, we compute∑
n∈N R

M(θ∗)
n (∞)/

∑
n∈N R

Mref
n (∞).

B. Algorithmic Aspects

The parameter space Θ is of size at most |N |2 (in the case
of a complete graph). Given the softmax parameterisation
introduced above, the differential of the stationary distribution
is of size |N |3, while that of the next-generation matrix, used
to compute the differential of R0(θ), is of size |N |4. As a
result, optimising EPILOSS is costlier than optimising the other
two losses. An explicit formula exists for the differential of
µ̃θ [51] but in our numerical simulations, we computed the
differential through automatic differentiation, using the Python
library TensorFlow.

Losses are optimised using a momentum gradient descent,
iterated for 400 steps. Polyak’s momentum, also known as
the heavy ball method [52], introduces a “momentum” term
ζβ(θk − θk−1) to the k-th optimisation step, where ζβ is a
hyperparameter — typically ζβ ∈ [0, 1], although not limited
to it. The full momentum update rule is given, denoting L the
optimised loss, by:

θk+1 = θk − ζα∇L(θk) + ζβ(θk − θk−1),

where ζα is the the step size. Concerning the convergence
properties of this approach, it has been shown by Polyak that,
for strongly convex and twice continuously differentiable loss
functions, a good choice of the hyperparameters ζα and ζβ
produces trajectories that converge to the global minimum
faster than the trajectories of the classical gradient descent
method. Unfortunately, losses defined above — in particular
the EPILOSS— are not convex. However, the convergence
properties of the heavy ball algorithm in application to non-
convex problems have been studied in the specific case of
loss functions with L-Lipschitz continuous gradient, L > 0, on
their domain [53] [54]. Future works should explicitly address
this question by exploring the Lipschitz continuity of loss
gradients involved in our approach.
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Fig. 1: Final size as a function of the R0, for various graphs
of size |N | = 30. The lines are the regression lines.

C. Basic Reproduction Number and Final Size

First, we study the relation between the basic reproduction
number and the final size of the epidemic. We display in
Figure 1 the logarithm of the final size as a function of the
basic reproduction number. We run the simulation for four
random graphs: the Erdős-Rényi, which is a standard model,
the Waxman graph, which is a geometric graph, and the
Relaxed Caveman graph and Barabási-Albert, which exhibit
a somewhat more constrained structure. We see the relation is
increasing (the bigger the R0, the bigger the final size), and
that this applies to all types of graphs. That reducing the R0

would ultimately reduce the final size was expected, but we
also knew the relation was not straightforward (Sections II-B
and IV-A). We notably see the final size continues to diminish
for R0 < 1. Therefore, even if R0 < 1 implies the DFE is
stable, it is still possible to lower the final size by lowering
R0, which is valuable. Therefore, these results validate our
approach. The lines on the plot are the regression lines. We
see the relation is closer to linear for the Barabási-Albert
and Relaxed Caveman graphs (with sum of squared residuals
R2 ≤ 7), than for the other graphs (R2 ≥ 8), which suggests
a slightly better correlation between R0 and the final size for
sparser graphs8.

D. Policies Comparison

In this section, we compare the performances of the three
policies obtained from the corresponding three losses. The
parameters used to construct numerical simulations presented
in this section — and the next two sections — are summarised
in Table II. First, we consider standard Erdős-Rényi graphs of
size ranging from 10 to 50 nodes, and show their relative final
sizes. We see on Figure 2 EPIPOL performs best overall. On
the other hand, QUICKDIFFPOL shows poor results for every
graph size while NODIFFPOL performs better for large graphs.
Second, in Figure 3, we report the performance of the losses,
for different network topologies. We use the four random

8That the relationship between R0 and the topology is not clear-cut was
also noted by Li et al. [46]: “the correspondences among R0 and the
topological properties of the contact network are not one-to-one.”

graphs already used in Section V-C. All graphs have size 40
nodes. Again, we show the median relative final sizes obtained
from 15 runs. The performances remain quite good for every
type of graph and every policy, except QUICKDIFFPOL which
performs poorly. EPIPOL performs best in all cases, with the
median consistently below the 50% level, and often much be-
low. We think it is because the loss it comes from incorporates
more information about the overall dynamics of the system,
than the other two losses, which are derived as limit cases. In
particular, EPILOSS has a direct dependency on the diffusion
matrix M(θ∗), contrary to the other losses. No discernible
pattern is distinguishable between the topologies, suggesting
performance is not too sensitive to it. These simulations prove
the overall value of our approach for epidemic control.

E. Influence of the Network Heterogeneity

Next, we study the influence of network heterogeneity. We
call heterogeneity of the network the dispersion of the values
of the individual basic reproduction numbers, and of the
δ′ns. For several values of x ∈ [0, 1], Erdős-Rényi graphs of
size 25 were generated, and the individual basic reproduction
numbers, and the δn’s, were randomly sampled from normal
distributions with standard deviations equal to xσδ and xσR0

,
respectively. The scale factor x ∈ [0, 1] thus quantifies the
heterogeneity of the network. (The γn’s were left constant, so
as not to advantage the epidemiological loss, which could take
direct advantage of it, while the limit losses could only do so
indirectly, through the stationary distribution.)

We show on Figure 4 the relative final size as a function
of the heterogeneity factor x. We first see the final size
decreases for all policies, as the scale parameter tends to 1:
indeed, the more heterogeneous the network, the more leeway

Fig. 2: Relative final size for the three policies, for various
sizes of Erdős-Rényi graphs. The final sizes are those of
the policies EPIPOL (blue), QUICKDIFFPOL (indigo) and
NODIFFPOL (green), obtained from their respective losses.
The Reference (black) refers to the final size without any
control policy. The lines are the median values — obtained
from 15 runs — and the shaded areas gather values in the
[30%, 70%] interval.
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Fig. 3: Relative Final Size for Various Policies (obtained
from the corresponding losses) and Various Graphs — median
values obtained from 15 runs

.

there is for optimisation. Then, we see EPIPOL is consistently
performing better than the policies derived from the limit
losses: this suggests that EPILOSS is better able to exploit
the heterogeneity, which we think is linked to the fact it
incorporates knowledge about the dynamics, and not only the
population distribution. These results show that, in order to
control the epidemic by acting on the flows, there needs to be
disparities in the reaction terms of the network: if all nodes
share the same characteristics, the epidemic behaves the same
no matter the population flows, so that flow redirection is not
efficient.

F. Influence of the Rate of Diffusion

We now study the influence of the rate of diffusion. On
Figure 5, we show the relative final sizes for a range of typical
times τ of diffusion (equivalently, 1/τ is the rate of diffusion).
When τ → 0, the diffusion happens very quickly, while it
happens slowly when τ → ∞. First, we see that for high
typical times, EPIPOL and NODIFFPOL, give close results:

Fig. 4: Relative final size for different heterogeneity levels,
for Erdős-Rényi graphs. The lines are the median values —
obtained from 15 runs — and the shaded areas gather values
in the [30%, 70%] interval.

Fig. 5: Relative final size for different typical times, for Erdős-
Rényi graphs. The lines are the median values — obtained
from 15 runs — and the shaded areas gather values in the
[30%, 70%] interval.

indeed, NODIFFLOSS is derived from the limit of the basic
reproduction number when τ → ∞ — see Section III-B.
Second, when τ diminishes, the results for NODIFFPOL dete-
riorate: NODIFFLOSS is no longer fit for these values. Third,
the performance of QUICKDIFFPOL improves when τ → 0.
Again, this was expected, as QUICKDIFFLOSS is tailored for
the limit case of very quick diffusion. Fourth, and finally,
we see that the EPILOSS produces the best results across the
range of times of diffusion, emphasising its overall worth for
epidemic reaction-diffusion control. Therefore, these results
highlight the importance of the rate of diffusion regarding the
performance of epidemic control with flow redirection.

G. Semi-real example

Finally, we conducted simulations on a semi-real example.
First, we selected 45 cities with airports in France, and created
the graph of the flights between them: each node is a city, and
there are edges between nodes n1 and n2 if there is at least one
flight leading from n1 to n2. The graph is strongly connected.
Then, we computed the relative sizes of the populations of
the cities. Finally, we used gradient descent to compute a
diffusion matrix whose stationary distribution was as close as
possible to the renormalised distribution of the population of
these cities. The resulting network can be seen in Figure 6a —
plotted with the graph-tool package [55]. The greater the value
of the coordinate of the stationary distribution corresponding
to a node, the bigger the node is. The greater the value of
the diffusion matrix corresponding to an edge, the bigger
the edge size is. Then, we conducted our simulations as
described in Section V-A. The epidemic part of the example
is synthetic. For each simulation, the relative final size for the
EPIPOL policy was less than 20%, which shows a significant
improvement. We displayed in Figure 6b the relative change
between the reference diffusion matrix, and that obtained with
the EPIPOL policy: for each non-diagonal entry, the relative
change is |Mi,j(θref)−Mi,j(θ

∗)| / (Mi,j(θref) + Mi,j(θ
∗)).
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(a) Original network

(b) Relative errors

Fig. 6: Original network, and relative changes for the recon-
structed network where edge colours show the size of the
relative changes: small (green), middle (pink), large (yellow).

The edge colours are linked to the size of the relative changes:
the smallest changes are in green, then the middle changes
are in pink, and the largest changes are in yellow. We see
on Figure 6b that they are a significant number of changes of
each size. Indeed, about 50% of edges have relative changes of
size less than 0.1, while 10% of edges have relative changes
of size more than 0.3. Moreover, we see on Figure 6b that
edges in the south-east are predominantly green. This may
be caused by cities in the margins of the network, which
are not very likely to have an effect on the rest of it, or
cities with already “good” epidemic parameters. However, the
computations of the correlations between the relative changes
of the edges, and the degree centrality (correlation: 0.34),
the stationary distribution (correlation: 0.43), or the individual
basic reproduction number (correlation: 0.07) of the nodes
they go to, proved inconclusive9. The relationship between
the amount of changes on the edges, and the topology of the
network, is thus not straightforward, and requires work out of
scope of our current study.

VI. CONCLUSION, FUTURE WORKS

We have shown we can control an epidemic SEIR reaction-
diffusion on a directed, and heterogeneous, network by redi-
recting the flows, thanks to the optimisation of well-designed

9This was inconclusive as well for the same correlations, computed with
the nodes the edges come from.

loss functions, in particular the basic reproduction number
of the model. We have provided a final size relation linking
the basic reproduction number to the epidemic final sizes, for
diffusions around a reference diffusion with basic reproduction
number less than 1. Numerically, we have shown control
is possible for different topologies, network heterogeneity
levels, and speeds of diffusion. Moreover, our experimental
results highlight the relevance of EPIPOL, the R0-based loss,
compared to more straightforward losses. However, these
improved performances should be balanced against the highest
computational costs it entails with respect to the other losses.

Overall, we believe our results make the case for flow
redirection as a relevant control tool of epidemic reaction-
diffusion processes. Furthermore, we have identified key net-
work parameters which may inform the optimisation design.
In turn, this stresses the need to precisely measure them in
real networks, which is a direction to further our work into.

One theoretical limitation of our work is the fact the final size
relation only holds for R0(Mref) < 1: it would be interesting
to extend it to the case R0(Mref) > 1. Then, optimisation
reduces the final size, but modifies the network flow structure.
Attempting to control the dynamics, while modifying as little
as possible the usual behaviour of the network, or some
expected output, in the spirit of Umar B. Niazi et al. [26],
would represent an interesting direction of future research.

VII. PROOFS OF THE FINAL SIZE RELATION, THEOREM 3

We first give the outline of the proof in Section VII-A. It relies
on some preliminary result, which we give in Section VII-B.
Finally, we provide the proof in VII-C.

A. Outline of the Proof

Our proof consists in three stages: (i) a uniform first order
Taylor expansion of the solution of the system Equation (2)
at the vicinity of the DFE; (ii) a comparison between the true
solution of Equation (2), and the solutions of the linearised
system; (iii) the study of the linear system thanks to the
next-generation matrix with large domain [29]. The first stage
is obtained in Corollary 6 (see Section VII-B). The second
stage is done in the first part of the final size relation
proof, in Section VII-C (item a). The third stage consists
first in integrating the comparison obtained (item b)). Second,
it consists in making the next-generation matrix with large
domain [29] appear for the linearised system, and using it to
bound the δ

∫∞
0
IM(s) ds term, which is the vector of the final

size in each node (item c)). Finally, we conclude by summing
along the coordinates of this vector (item d)).

B. Uniform stability at the DFE

To prove Theorem 3, we first need a strengthening of the stan-
dard stability result recalled in Section III-A. This strenght-
ening is obtained in Corollary 6, which establishes a uniform
stability property for the Disease Free equilibrium.

Corollary 6. Let R0(Mref) < 1. Then, for any ε > 0,
there is a ball B around Mref , and η > 0 such that,
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for every initial condition
(
S(0), E(0), I(0), R(0)

)
satisfying∥∥(S(0), E(0), I(0), R(0)

)
−
(
µ̃Mref

, 0, 0, 0
)∥∥ < η, for any

diffusion matrix M in B, for all t ≥ 0, we have∥∥SM(t)− µ̃M

∥∥
∞ ≤ ε ‖µ̃M‖∞ .

To prove Corollary 6, we need several intermediary results.

Lemma 7 (Uniform exponential boundedness). Let Q0 be a,
finite dimensional, matrix the eigenvalues of which have all
negative real parts. Let ‖·‖ be any norm on the space of
matrices. Then, we may find λ > 0, κ ≥ 0, and a ball B
around Q0 such that, for every Q ∈ B, for all t ≥ 0, we have
‖exp (tQ)‖ ≤ κ exp (−λt).

Proof. Let P be positive definite such that PQ0 + QT
0 P =

− Id. Such a matrix exists because the eigenvalues of Q0

have negative real parts. For any vector X , we write ‖X‖2P =
XTPX . Since all norms are equivalent, we can choose α > 0
such that α ‖X‖P ≤ ‖X‖ for all X . Let then B be a ball
around Q0, such that, for every Q ∈ B, all the eigenval-
ues of PQ + QTP are negative. This is possible because
Q 7→ PQ + QTP is continuous, and because the matrices
PQ + QTP are symmetric, so that all their eigenvalues are
real. Let −λ < 0 be any upper bound for the eigenvalues of
the PQ+QTP’s for Q ∈ B. Let now Q ∈ B, X0 be a vector,
and X be the solution of dX

dt = QX , with initial condition
X(0) = X0. For all t ≥ 0, we have

d

dt
‖X‖2P = XT

(
QTP + PQ

)
X

≤ −λ ‖X‖2 ≤ −αλ ‖X‖2P ,

by construction of λ. As a consequence, for all t ≥ 0, by
comparison, we known that ‖X(t)‖P ≤ exp

(
−αλ2 t

)
‖X0‖P,

and therefore ‖exp (Qt)X0‖P ≤ exp
(
−αλ2 t

)
‖X0‖P. Since

X0 was any vector, the operator norm ‖·‖op associated
with ‖·‖P at the start and finish satisfies, for all t ≥ 0,
‖exp (Qt)‖op ≤ exp

(
−αλ2 t

)
. Being in finite dimension, all

norms are equivalent so that, for some β ≥ 0 independent of
Q, we have, for all t ≥ 0, ‖exp (Qt)‖ ≤ β ‖exp (Qt)‖op. As
result, for all Q ∈ B, for all t ≥ 0, we have ‖exp (Qt)‖ ≤
β exp

(
−αλ2 t

)
.

Lemma 8 (Uniform closeness to the stationary distribution).
Let Mref be a diffusion matrix. For all ε > 0, we can find
a ball B around Mref , and η > 0, such that, for all initial
distribution N0 verifying |N0 − µ̃Mref

| < η, for all diffusion
matrix M ∈ B, for all t ≥ 0, we have ‖NM(t)− µ̃M‖ < ε,
where NM(t) = exp (tM)N0 is the solution starting at N0

of dN/dt = MN .

Proof. Let M be a diffusion matrix. We know that R|N | =
R µ̃M ⊕ H, where H =

{
ν ∈ R|N | |

∑
n νn = 0

}
. Let N0

be an initial distribution. We decompose N0 = αM µ̃M + ν,
with αM a real, and ν ∈ H. Indeed, αM =

∑
n∈N N0,n =

1 since N0 is a distribution. For all t ≥ 0, we have
NM (t)− µ̃M = exp (tM)N0− µ̃M = exp (tM) (µ̃M + ν)−
µ̃M = exp (tM) µ̃M − µ̃M + exp (tM) ν = exp (tM) ν,

since Mµ̃M = 0. Therefore, for all t ≥ 0, we
have ‖NM (t)− µ̃M‖ ≤ ‖exp (tM)‖op ‖ν‖. Now, we also
have ‖ν‖ = ‖N0 − µ̃M‖ = ‖N0 − µ̃M + µ̃M − µ̃M‖ ≤
‖N0 − µ̃M‖+ ‖µ̃M − µ̃M‖. All diffusion matrices have only
eigenvalues with negative real parts in H, so that it is true
in particular for Mref and, thanks to the proof of Lemma 7,
we may find a ball B of diffusion matrices around Mref , and
κ ≥ 0 such that, for every M ∈ B, we have, for all t ≥ 0,
‖exp (tM)‖op,H < κ, where ‖·‖op,H is the operator norm for
the restriction of matrices M to the space H. We used the fact
that restriction to H is a continuous function of the matrix.

Let then ε > 0. Now, the stationary distribution of a diffusion
matrix depends continuously on the matrix [51]. Therefore,
upon diminishing B, for all diffusion matrix M ∈ B, we
may assume ‖µ̃Mref

− µ̃M‖ ≤ ε/κ. Choose N0 such that
‖N0 − µ̃Mref

‖ < ε/κ. As a result, thanks to Lemma 7,
for M ∈ B, for all t ≥ 0, we obtain ‖NM (t)− µM‖ ≤
‖exp (tM)‖op,H

ε+ε
κ ≤ 2 ε.

We now introduce the following notations. For every diffusion
matrix M, and every initial condition, let us define (letting the
dependency of E+ and I+ on M be implicit so as to simplify
notations), 

dE+

dt
= βNM � I+ + (M− γ) E+

dI+
dt

= γ E+ + (M− δ) I+.

For every M, and every t ≥ 0, define further

A(M, t) =

(
M− γ βDiag (NM(t))
γ M− δ

)
.

Then, in matrix notations, we have
(
dE+

dt ,
dI+
dt

)
=

A(M, t) (E+(t), I+(t)) .

Lemma 9 (Upper-bounding linear system). Let Mref be a
diffusion matrix. Define A = A(Mref ,∞), that is A =(

Mref − γ βdiag (µ̃Mref
)

γ Mref − δ

)
. Assume R0(Mref) < 1. Then,

we can find a ball B around Mref , λ > 0, η > 0, and
κ ≥ 0 such that, for all ‖N0 − µ̃Mref

‖ < η, for all diffusion
matrices M ∈ B, for all t ≥ 0, we have ‖(E+(t), I+(t))‖ ≤
κ exp (−λt) ‖(E+(0), I+(0))‖.

Proof. Let us start by proving that the A(M, t)’s are uni-
formly close to A, subject to some conditions we now
describe. Let ε > 0. Thanks to Lemma 8, we can find a
ball B around Mref , and η > 0, such that, for all diffusion
matrix M ∈ B, for all ‖N0 − µ̃Mref

‖ < η, for all t ≥ 0,
we have ‖NM(t)− µ̃M‖ ≤ ε. Now, upon diminishing B,
we may also assume that, for all diffusion matrix M ∈ B,
‖µ̃Mref

− µ̃M‖ < ε. As a result, for all such matrix M ∈
B, for all ‖N0 − µ̃Mref

‖ < η, for all t ≥ 0, we have
‖NM(t)− µ̃Mref

‖ ≤ ‖NM(t)− µ̃M‖+ ‖µ̃M − µ̃Mref
‖

≤ ε + ε ≤ 2 ε. Now, all the other coefficients of A(M, t)
depend continuously on M so that, upon diminishing B
further, we may assume that, for all diffusion matrix M ∈
B, for all ‖N0 − µ̃Mref

‖ < η, for all t ≥ 0, we have
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‖A(M, t)−A‖∞ < 2 ε, where ‖·‖∞ is the infinity norm on
the coefficients of the matrix, and we conclude by using the
equivalence of norms.

Now, R0(Mref) is strictly less than one so that, thanks to [29],
all the eigenvalues of A have negative real parts. Proceeding
as in the proof of Lemma 7, we may find −1 < −λ < 0, and
a neighbourhood of A such that, for every matrix B inside
it, all the eigenvalues of PB + BTP are real and strictly less
than −λ. By what precedes, upon choosing B and η small
enough, we have that, for every diffusion matrix M ∈ B, for
every ‖N0 − µ̃Mref

‖ < η, for every t ≥ 0, all the eigenvalues
of PA(M, t)−A(M, t)TP are less than −λ.

Fix now a diffusion matrix M ∈ B, and ‖N0 − µ̃M‖ < η.
Let then X0 be a vector, and X = (E+, I+) be the solution
of dX

dt = A(M, t)X with X(0) = X0. Again, as in the
proof of Lemma 7, we obtain some α ≥ 0 independent of
M such that, for all t ≥ 0, we have ‖X(t)‖P ≤ Y (t)1/2 ≤
exp

(−λα
2 t
)
‖X0‖P , where Y is the solution, for t ≥ 0, of

dY
dt = −λαY , with initial condition Y (0) = ‖X0‖2.

Thanks to the equivalence of norms, we may find κ ≥ 0 such
that, for all t ≥ 0, we have ‖X(t)‖ ≤ κ exp

(−λα
2 t
)
‖X0‖.

This stands for any diffusion matrix M ∈ B, and any
‖N0 − µ̃Mref

‖ < η, so that we have proven our claim.

Lemma 10 (Comparison). Assume R0(Mref) < 1. There
exists a ball B around Mref , λ > 0, η > 0 and
κ ≥ 0 such that, for any diffusion matrix M ∈ B,
for all initial distribution ‖N0 − µ̃Mref

‖ < η, for all
t ≥ 0, we have

(
EM(t), IM(t)

)
≤
(
EM

+ (t), IM+ (t)
)
, and∥∥(EM(t), IM(t)

)∥∥ ≤ κ exp (−λt) ‖(E(0), I(0))‖, where(
EM(t), IM(t)

)
are the E and I coordinates of the system of

Equation (2) when the diffusion matrix is M, and the initial
population is distributed according to S(0) + E(0) + I(0) +
R(0) = N0, and

(
EM

+ , IM+
)

are introduced before Lemma 9,
and have initial condition (E(0), I(0)).

Proof. Choose B, λ, η and κ as in Lemma 9. Fix an initial con-
dition (S(0), E(0), I(0), R(0)) such that ‖N0 − µ̃Mref

‖ < η.
Fix a diffusion matrix M ∈ B. We drop the “M exponents”
to simplify the notations. By definition, we know that, for
all t ≥ 0, we have dE

dt = βS � I − γ E + ME, and
dI
dt = γ E − δI + MI . Now, for all t ≥ 0, we know that
S(t) ≤ NM(t) = S(t) + E(t) + I(t) + R(t). As a result,
for all t ≥ 0, we have dE

dt ≤ βNM(t) � I − γ E + ME, so
that

(
dE
dt ,

dI
dt

)
≤ A(M, t) (E(t), I(t)). Now, for all t ≥ 0,

A(M, t) is a Metzler matrix, so that, thanks to Section 5.5 of
[56], f(t,X) = A(M, t)X is of type K. As a consequence,
we may use the comparison Theorem B.1 of [57] to obtain
that, for all t ≥ 0, (E(t), I(t)) ≤ (E+(t), I+(t)).

Lemma 11 (Uniform stability of the Disease Free Equi-
librium). Let Mref be a diffusion matrix, and assume
R0(Mref) < 1. Then, for any ε > 0, there is
a ball B around Mref , and η > 0 such that, for
every initial condition

(
S(0), E(0), I(0), R(0)

)
satisfying

∥∥(S(0), E(0), I(0), R(0)
)
−
(
µ̃Mref

, 0, 0, 0
)∥∥ < η, for any

diffusion matrix M in B, for all t ≥ 0, we have∥∥(SM(t), EM(t), IM(t), RM(t)
)
− (µ̃M, 0, 0, 0)

∥∥ ≤ ε,
where

(
SM(t), EM(t), IM(t), RM(t)

)
is the solution

for t ≥ 0 of Equation (2), with initial condition(
S(0), E(0), I(0), R(0)

)
.

Proof. Thanks to Lemma 8 and Lemma 10, there exists a
ball B around Mref , λ > 0, η > 0 and κ ≥ 0 such that,
for any diffusion matrix M ∈ B, for all initial distribution
‖N0 − µ̃Mref

‖ < η, for all t ≥ 0, we have ‖NM(t)− µ̃M‖ <
ε, and

∥∥(EM(t), IM(t)
)∥∥ ≤ κ exp (−λt) ‖(E(0), I(0))‖.

Fix a diffusion matrix M ∈ B and some initial condition
satisfying the requirements above. Note that by assumption
‖(E(0), I(0))‖ ≤ η. Hence, for all t ≥ 0, we have∥∥(EM(t), IM(t)

)∥∥ ≤ κ η exp (−λt). As a result, for all
t ≥ 0, we have∥∥(SM(t), EM(t), IM(t), RM(t)

)
− (µ̃M, 0, 0, 0)

∥∥
≤
∥∥SM(t)− µ̃M

∥∥+
∥∥EM(t)

∥∥+
∥∥IM(t)

∥∥+
∥∥RM(t)

∥∥
≤‖NM(t)− µ̃M‖+ 2

∥∥EM(t)
∥∥+ 2

∥∥IM(t)
∥∥+ 2

∥∥RM(t)
∥∥

≤ ε+ 4κ η + 2
∥∥RM(t)

∥∥
since, for all t ≥ 0, SM(t) + EM(t) + IM(t) + RM(t) =
NM(t). Now, for all t ≥ 0,

∥∥RM(t)
∥∥ ≤ ∑

nR
M
n (t) ≤∑

nR
M
n (∞), as the individuals who arrive in some compart-

ment R stay there indefinitely. Now, for all t ≥ 0, we have∑
n∈N

dRn(t)
dt =

∑
n∈N δnIn(t), so that, for all t ≥ 0, we

have∑
n∈N

Rn(∞)−
∑
n∈N

Rn(0) =
∑
n∈N

δn

∫ ∞
0

In(t)dt

≤ κ η
∑
n∈N

δn

∫ ∞
0

exp (−λt) dt =
κ η

λ

∑
n∈N

δn.

As a result, for all t ≥ 0, remembering
∑
n∈N Rn(0) ≤ ηN ,

we have∥∥(SM(t), EM(t), IM(t), RM(t)
)
− (µ̃M, 0, 0, 0)

∥∥
≤ ε+ 4κ η + 2ηN + 2

κ η

λ

∑
n∈N

δn.

Upon diminishing η, we have therefore proven our claim.

We can now prove Corollary 6.

Proof. Let B1 be any bounded ball with radius r > 0 around
Mref . Then, for any diffusion matrix M ∈ B1, we have
c = min

M∈B1

‖µ̃M‖ > 0, as the closure of B1 is compact,

and M 7→ ‖µ̃M‖ is continuous. Let ε > 0, ε1 > 0 to
be fixed later, and ε2 = cε1. Thanks to Lemma 11 applied
to ε2, we can find a ball B2 around Mref , and η > 0
such that, for every initial condition

(
S(0), E(0), I(0), R(0)

)
satisfying

∥∥(S(0), E(0), I(0), R(0)
)
−
(
µ̃Mref

, 0, 0, 0
)∥∥ < η,

for any diffusion matrix M in B2, for all t ≥ 0, we have∥∥SM(t)− µ̃M

∥∥ < ε2. Define B a ball around µ̃Mref
, of radius
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min (r, η) > 0. As a result, for every M ∈ B, for all t > 0 and
initial condition satisfying the requirements above, we have∥∥SM(t)− µ̃M

∥∥ < ε1 min
M∈B1

‖µ̃M‖ ≤ ε1 min
M∈B

‖µ̃M‖ .

Invoking the equivalence of norms, we obtain∥∥SM(t)− µ̃M

∥∥
∞ < κε ‖µ̃M‖∞, for some κ > 0

which depends only on the norms, and is thus
independent of η. Setting ε1 = ε/κ, we obtain∥∥SM(t)− µ̃M

∥∥
∞ < ε ‖µ̃M‖∞.

C. Proof of the Final Size Relation, Theorem 3

a) Comparison with “constant-matrices”: As a consequence
of Corollary 6, for all t ≥ 0, we have, coordinate-wise,(

M− γ βdiag (µ̃M (1− ε))
γ M− δ

)
≤
(

M− γ βdiag
(
SM(t)

)
γ M− δ

)
≤
(

M− γ βdiag (µ̃M (1 + ε))
γ M− δ

)
.

Let us define

FM =

(
0 β diag (µ̃M)
0 0

)
, and VM =

(
M− γ 0
γ M− δ

)
.

To proceed by comparison, let us define the following two
ODEs, which solutions will lower-bound, and upper-bound,
the map t 7→

(
EM(t), IM(t)

)
:

(
dEM
−
dt

,
dIM−
dt

)
= ((1− ε) FM + VM)

(
EM
− (t), IM− (t)

)
(
dEM

+

dt
,
dIM+
dt

)
= ((1 + ε) FM + VM)

(
EM

+ (t), IM+ (t)
)
,

both starting at
(
EM(0), IM(0)

)
. In the following, we con-

sider fixed a vector vM such that
(
EM(0), IM(0)

)
is directed

by vM. Now, (1− ε) FM + VM and (1 + ε) FM + VM are
both Metzler matrices, since VM is non-negative off diagonal
and FM has non-negative coefficients. As a result, we may
use the comparison Theorem B.1 of Smith and Waltman
[57], and we obtain that, for all t ≥ 0,

(
EM
− (t), IM− (t)

)
≤(

EM(t), IM(t)
)
≤
(
EM

+ (t), IM+ (t)
)
. Now, the matrices in

the bounding systems are constant, so we can express their
solutions with the matrix exponential and, as a result, for all
t ≥ 0, we have

exp
(
((1− ε)FM + VM)t

) (
EM(0), IM(0)

)
≤
(
EM(t), IM(t)

)
≤ exp

(
((1 + ε)FM + VM)t

) (
EM(0), IM(0)

)
.

b) Integrating the comparison: Now, for every matrix A
which eigenvalues all have a negative real part, we know
that

∫∞
0

exp (As) ds = −A−1. Since R0(Mref) < 1, all the
eigenvalues of FMref

+VMref
have real parts (strictly) less than

1. Now, the maps which associate to a matrix its eigenvalues
are continuous. Upon diminishing the ball B around Mref , we
may therefore assume that, for all diffusion matrix M in B, all
the eigenvalues of FM + VM have real parts - strictly - less
than 1. Upon diminishing ε, we may finally assume that, for all

diffusion matrix M ∈ B, the eigenvalues of (1− ε) FM+VM

and (1 + ε) FM + VM have - strictly - negative real parts.
Thus, writing I =

∫∞
0

(
EM(s), IM(s)

)
ds, we have

− ((1− ε) FM + VM)
−1 (

EM(0), IM(0)
)
≤ I

≤ − ((1 + ε) FM + VM)
−1 (

EM(0), IM(0)
)
. (4)

c) Using the next-generation matrix: Let us now multiply the
inequality in Equation (4) by a square non-negative matrix Z,
to be fixed below. We therefore have

− Z ((1− ε) FM + VM)
−1 (

EM(0), IM(0)
)
≤ ZI

≤ −Z ((1 + ε) FM + VM)
−1 (

EM(0), IM(0)
)
. (5)

Using the invertibility of VM, we know that
− ((1− ε) FM + VM) =

(
− (1− ε) FMV−1

M − Id|N |
)
VM.

Since the next-generation matrix with large domain [29],
KM = −FMV−1

M is non-negative, we can find a right
eigenvector vM 6= 0 associated to the spectral radius
R0 = R0(M) = ρ (KM) = ρ (GM). In what follows, we fix
one such v = vM, and drop the explicit dependencies on M
for vM and R0(M) so as to simplify the notations. Hence,
we obtain − ((1− ε) FM + VM) V−1

M v = (1− ε)R0v − v.

Since R0(Mref) < 1, and since the spectral radius of a matrix
depends continuously on the matrix, upon reducing B further,
we may assume that, for all diffusion matrix M̃ ∈ B, we have
(1 + ε)R0(M̃) < 1, so that both 1 − (1 + ε)R0(M̃) and, a
fortiori, 1− (1− ε)R0(M̃) do not vanish.

By assumption,
(
EM(0), IM(0)

)
is directed by v, so that it is

also a right eigenvector of KM associated to R0(M). Hence,
we successively have

− ((1− ε) FM + VM) V−1
M

(
EM(0), IM(0)

)
= ((1− ε)R0 − 1)

(
EM(0), IM(0)

)
then, multiplying by ((1− ε) FM + VM)

−1, we obtain

−V−1
M

(
EM(0), IM(0)

)
= ((1− ε)R0 − 1) ((1− ε) FM + VM)

−1 (
EM(0), IM(0)

)
.

Finally, dividing by 1− (1− ε)R0 - which is not zero thanks
to the above - and multiplying by the matrix Z, we get

((1− ε)R0 − 1)
−1

ZV−1
M

(
EM(0), IM(0)

)
= −Z ((1− ε) FM + VM)

−1 (
EM(0), IM(0)

)
.

The same reasoning applies with the matrix (1 + ε) FM +
VM in the upper-bounding system. Plugging it all back into
Equation (5), we obtain

− (1− (1− ε)R0)
−1

ZV−1
M

(
EM(0), IM(0)

)
≤ ZI

≤ − (1− (1 + ε)R0)
−1

ZV−1
M

(
EM(0), IM(0)

)
.

Now, set Z =

(
0 0
0 δ

)
and, denoting Λ(i:j) the subma-

trix of Λ obtained by extracting the ith to j th rows of Λ,
set (B1, B2) =

(
V−1

M

)
(|N |+1:2|N |), a |N | × 2|N | matrix.
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Restraining to the rows (|N |+ 1 : 2 |N |) corresponds to the
infected coordinates - that of the vector IM. Thus, we obtain

− (δB1, δB2)

1− (1− ε)R0

(
EM(0), IM(0)

)
≤ δ

∫ ∞
0

IM(s)ds

≤ − (δB1, δB2)

1− (1 + ε)R0

(
EM(0), IM(0)

)
. (6)

d) Conclusion: Remember we want to bound
∆M =

∑
n∈N Rn(∞) =

∑
n∈N δn

∫∞
0
IMn (s)ds =∫∞

0
eT δIM(s)ds, where e = (1, . . . , 1) is the vector with

all entries equal to unity. Multiplying by e every term
of Equation (6), using an explicit expression of V−1

M -
inversion of a 2 × 2 block matrix - and expanding the terms
eT (δB1, δB2)

(
EM(0), IM(0)

)
, we obtain

(1− (1 + ε)R0) ∆M ≤

eT
(
δ (M− δ)

−1
γ (M− γ)

−1
EM(0)− δ (M− δ)

−1
IM(0)

)
≤ (1− (1− ε)R0) ∆M.

Using the fact δ (M− δ)
−1

= − Id|N |+M (M− δ)
−1, and

the analogous relation for γ (M− γ)
−1, we may rewrite the

term between parentheses as(
M (M− δ)

−1 − Id|N |

)(
M (M− γ)

−1 − Id|N |

)
EM(0)

+
(

Id|N |−M (M− δ)
−1
)
IM(0).

Since M is a diffusion matrix, we know that the
coordinates of the vectors M (M− δ)

−1
EM(0),

M (M− γ)
−1
EM(0), M (M− δ)

−1
M (M− γ)

−1
EM(0)

and M (M− δ)
−1
IM(0) sum to zero. Hence, we finally

obtain

(1− (1− ε)R0)
−1
eT
(
EM(0) + IM(0)

)
≤ ∆M

≤ (1− (1 + ε)R0)
−1
eT
(
EM(0) + IM(0)

)
.

Expressing the scalar products with the vector e as a sum, and
remembering R0 = R0(M), we obtain the expression given
in the statement of Theorem 3.
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