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Abstract

In this paper, we attempt to discuss the topics mentioned in the title by scrutinizing and improving the 
0−+ pseudoscalar di-gluonia/glueballs sum rules within the standard SVZ-expansion at N2LO without 
instantons.

First, we reconsider the estimate of the slope of the topological charge 
√

χ ′(0)(Q2 = 2 GeV2) =
24.3(3.4) MeV from low degree moments which imply 

∫ 1
0 dx gP

1 (x) = 0.144(5) [data : 0.145(14)]
for the first moment of the polarized proton structure function (proton spin) and G(0)

A
(10 GeV2) ≡

�u + �d + �s = 0.340(50) [data = 0.330(39)] for the singlet form factor of the axial current.
Second, we work with high degree moments and parametrize the spectral function beyond the mini-

mal duality ansatz: “One resonance ⊕ QCD continuum” to get the 0−+ pseudoscalar di-gluonia spec-
tra. Then, we obtain three groups of gluonia: The familiar light η1 [singlet gluon component of the 
η′(958)] with [Mη1 , fη1 ] = [825(45), 905(72)] MeV which is important for understanding the U(1)A
anomaly; The two new medium gluonia with MP1a

= 1338(112) MeV and [MP1b
= 1462(117) MeV 

or their mean [MP1 , fP1 ] = [1397(81), 594(144)] MeV which support the gluonium nature of the ex-
cellent experimental candidate η(1405) and may bring a small gluon piece to the η(1295); their corre-
sponding 1st radial excitations: MP ′

1a
= 1508(226) MeV and MP ′

1b
= 1553(139) MeV with their mean: 

[MP ′
1
, fP ′

1
] = [1541(118), 205(282)] MeV which may be identified (up to some eventual mixings with q̄q

states) with the observed η(1475, 1700) states; The heavy gluonium with the mean mass: [MP2 , fP2 ] =[2751(140), 500(43)] MeV which can be compared with the lattice results. One can remark the (natural) 
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one to one correspondence between the pseudoscalar gluonia and their chiral scalar analogue from Ref. [1]: 
σ(1) → η1; G1(1.55) → P1; [σ ′(1.1), G′(1.56)] → P ′

1a,1b
; G2(3) → P2 which is mainly due to the im-

portance of the QCD PT contributions in the sum rule analysis that are almost equal in these two channels.
© 2022 Elsevier B.V. All rights reserved.

Keywords: QCD spectral sum rules; Perturbative and non-perturbative QCD; Exotic hadrons; Masses and decay 
constants

1. Introduction

Gluonia/Glueballs bound states are expected to be a consequence of QCD [2]. However, 
despite considerable theoretical and experimental efforts, there are not (at present) any clear 
indication of their signature. The difficulty is also due to the fact that the observed candidates 
can be a strong mixing of the gluonia with the q̄q light mesons or with some other exotic mesons 
(four-quark, hybrid states).

• Experimental facts of the pseudoscalar states below 2 GeV

There are experimental observation of 0−+ η-like mesons below 2 GeV [3,4]:

η(1295), η(1405), η(1475), η(1760) , (1)

where some of them can be glueball candidates, as they are produced in some gluonia rich chan-
nels like e.g. J/ψ radiative decays, p̄p annihilation at rest. The fact that the η(1295), η(1405)

are seen to decay into η(ππ)S−wave where the (ππ)S−wave may originate from the σ/f0(550)

meson can be understood with the U(1)A gluon vertex [1,5,6] 〈η(1295)|θμ
μ |η〉 where the σ is 

the dilaton associated to the trace of the energy momentum-tensor θμ
μ . This feature can indicate 

the presence of the gluon component into the wave function of these two states. The absence 
of the η(1405) from γ γ collisions may indicate that it has a larger gluon component than the 
η(1295, 1475) where the two latter are assumed [4] to be the radial excitations of the η and η′
while the η(1405) is expected to be an excellent gluonium candidate.

• A short reminder of different theoretical predictions

	 An earlier qualitative analysis of Novikov et al. [7,8] and a tachyonic gluon mass [9] based 
on some hadron scale hierarchy arguments expects a high mass (pseudo)scalar gluonium. These 
arguments seem to be supported by a quantitative analysis [6,10–13] using QCD spectral sum 
rules (QSSR) à la SVZ [14–24] within one resonance including or not the η′ contribution and (or 
not) direct instanton contribution leading to a gluonium mass from (2.05 ± 0.19) [6] to 2.7 GeV 
[11]. We shall comment these results later on.

	 Lattice simulations with one resonance find a mass in the range (2.15–2.72) GeV [25–28].
	 An holographic model provides a mass of about 2.1 GeV [29].
	 However, a recent analysis using inverse dispersive problem approach to the spectral func-

tion predicts a lower mass around 1.75 GeV [30], while the flux tube [31] and η-η′-G mixing 
[32] models predictions are around 1.4 GeV in agreement with the previous experimental expec-
tations for the η(1405).
2
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• Projects

	 Motivated by the failure of some of the previous approaches including QSSR to explain 
the data below 2 GeV, we scrutinize previous QSSR results and attempt to improve them by 
parametrizing the spectral function with more than one resonance and by working with high 
degree moments.

	 “En passant”, we revise our NLO estimate of the slope of the topological charge χ ′(0) in 
the chiral limit [33] and study the effect of this N2LO result on the spin of the proton.

2. The QCD anatomy of the pseudoscalar gluonium two-point correlator

We shall work with two-point correlator:

ψP (q2) = (8π)2 i

∫
d4x eiqx〈0|Q(x)Q†(0)|0〉 (2)

associated to the divergence of the U(1)A axial current which reads for nf quark flavours;

∂μJ
μ
5 (x) =

∑
i=u,d,s

2miψ̄iψi + 2nf Q(x) , (3)

where:

Q(x) ≡
( αs

16π

)
εμνρσ Gμν

a (x)Gρσ
a (x) (4)

is the topological charge density, a = 1, ..., 8 is the colour index, αs ≡ g2/4π is the QCD cou-
pling and Gμν

a (x) ≡ ∂μAν
a − ∂νA

μ
a + gfabcA

μ,bAν,c is the Yang-Mills field strength constructed 
from the gluon fields Aμ

a .

• The standard SVZ-expansion

Using the Operator Product Expansion (OPE) à la SVZ, its QCD expression can be written 
as:

ψP (q2) = 2
∑

0,1,2,...

C2n〈O2n〉 , (5)

where C2n is the Wilson coefficients calculable perturbatively while 〈O2n〉 is a short-hand nota-
tion for the non-perturbative vacuum condensates 〈0|O2n|0〉 of dimension 2n.

	 The unit perturbative operator (n = 0)
Its contribution reads:

C0 ≡ −Q4Lμ

[
C00 + C01Lμ + C02L

2
μ

]
with :

C00 = a2
s

(
1 + 20.75as + 305.95a2

s

)
, C01 = −a3

s

(
9

4
+ 72.531as

)
, C02 = 5.0625a4

s ,

(6)

where the NLO (resp. N2LO) contributions have been obtained in [34] (resp. [11,35]). Lμ ≡
Log(Q2/μ2) where μ is the subtraction point and as ≡ αs/π . We shall use for 3 flavours:

� = 340(28) MeV, (7)
3
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deduced from αs(MZ) = 0.1182(19) from Mχc0,b0 − Mηc,ηb
mass-splittings [36,37], τ -decays 

[38,39] and the world average [3,40]. We shall use the running QCD coupling to order α2
s :

as(μ) = a(0)
s

{
1 − a(0)

s

β2

β1
LLμ +

(
a(0)
s

)2
[(

β2

β1

)2 (
LL2

μ − LLμ − 1
)

+ β3

β1

]}
, (8)

where:

a(0)
s ≡ 1

−β1Log (μ/�)
and LLμ ≡ Log

[
2 Log (μ/�)

]
. (9)

	 The dimension-four gluon condensate (n = 2)
Its contribution reads [7,10]:

C4〈O4〉 ≡ (C40 + LμC41)〈αsG
2〉 : C40 = 2πas

(
1 + 175

36
as

)
, C41 = 9

2
πa2

s . (10)

We shall use the value:

〈αsG
2〉 = (6.35 ± 0.35) × 10−2 GeV4, (11)

determined from light and heavy quark systems [36,37,41,42].

	 The dimension-six (n = 3) gluon condensate

Its contribution reads to lowest order [7] (see [10,43] for the αs correction for nf = 01):

C6〈O6〉 = (
C60 + LμC61

) 〈g3fabcG
aGbGc〉/Q2 : C60 = −as , C61 = 29

4
a2
s , (12)

with [41]:

〈g3fabcG
aGbGc〉 = (8.2 ± 1.0) GeV2〈αsG

2〉 , (13)

which notably differs from the instanton liquid model estimate 〈g3fabcG
aGbGc〉 ≈ (1.5 ±

0.5) GeV2〈αsG
2〉 [7,8,14,44] used in [6,10–12]. However, the ratio of 〈g3fabcG

aGbGc〉 over 
〈αsG

2〉 is in fair agreement with earlier lattice determination [45].

	 The dimension-eight (n = 4) gluon condensate

Its contribution reads:

C8〈O8〉 = C80〈α2
s G

4〉/Q4 : C80 = 4παs (14)

with:

〈α2
s G

4〉 ≡
[
〈
(
αsfabcG

a
μρGb

νρ

)2〉 + 10〈
(
αsfabcG

a
μνG

b
ρλ

)2〉
]

� k

(
15

16

)
〈αsG

2〉2 : k = (1.5 ± 0.5) , (15)

from factorization [7,8] where its validity has been questioned by [46]. Indeed, in the quark 
channel, the factorization hypothesis has been found to be largely violated for the four-quark 
condensates [39,47,48]. To be conservative, we assume that the factorization is violated within 
the k-factor.

1 C61 would be zero for nf = 3 [11]. We shall see in the analysis that the effect of this correction is negligible.
4
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• Beyond the standard SVZ-expansion

	 The tachyonic gluon mass (n = 1)
To these standard contributions in the OPE, we can consider the one from a dimension-two 

tachyonic gluon mass contribution which is expected to phenomenologically parametrize the un-
calculated large order terms of the perturbative QCD series [9,49–51]. Its existence is supported 
by some AdS approaches [52–54]. This effect has been calculated explicitly in [9]:

C2〈O2〉 = −C21Lμλ2Q2 : C21 = 3as, (16)

where λ2 is the tachyonic gluon mass determined from e+e− → hadrons data and the pion 
channel [9,55,56]:

asλ
2 � −(6.0 ± 0.5) × 10−2 GeV2 . (17)

	 The direct instanton (n ≥ 5/2)

In an instanton liquid model [8,44], the direct instanton contribution is assumed to be dom-
inated by the single instanton-anti-instanton contribution via a non-perturbative contribution to 
the perturbative Wilson coefficient [10,12]:

ψP (Q2)|Ī−I = −32Q4
∫

ρ4
[
K2

(
ρ
√

Q2
)]2

dn(ρ), (18)

which is opposite in sign with the one for the gluonium scalar correlator. K2(x) is the modified 
Bessel function of the second kind. At this stage this classical field effect is beyond the SVZ 
expansion where the later assumes that one can separate without any ambiguity the perturbative 
Wilson coefficients from the non-perturbative condensate contributions.

Besides the fact that it contributes in the OPE as 1/Q5, i.e. it acts like other high-
dimension condensates not taken into account in the OPE, the above instanton effect depends 
crucially on the (model-dependent) overall density n̄ = ∫ ∞

0 dρ n(ρ) and on its average size 
ρ̄ = (1/n̄) 

∫ ∞
0 dρ ρ n(ρ) which (unfortunately) are not quantitatively under a good control (ρ̄

ranges from 5 [8] to 1.94, [41] and 1.65 GeV−1 [44], while n̄ ≈ (0.5 ∼ 1.2) fm−4). They con-
tribute with a high power in ρ to the spectral function Imψ(t), which can be found explicitly in 
[10,12], and behave as:

1

π
ImψP (t)|Ī−I

t→∞∼ −n
(
ρ
√

t
)−5

t→0∼ −n
(
ρ
√

t
)4

. (19)

However, it has been noticed in [12] that this negative sign leads to a violation of positivity 
and some inconsistencies for the sum rule analysis in this pseudoscalar channel. As such effects 
are quite inaccurate and model-dependent, we shall not consider them explicitly in our analysis. 
Instead, an eventual deviation of our results within the standard SVZ expansion from some exper-
imental data or/and or some other alternative estimates (Low-Energy Theorems (LET), Lattice 
calculations, ...) may signal the need of such (beyond the standard OPE) effects in the analysis.

One should mention that the approach within the standard SVZ OPE and without a direct 
instanton effect used in the:

– U(1)A channel has predicted successfully the value of the topological charge, its slope and 
the η′-mass and decay constant [33,57–60].
5
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Table 1
QCD input parameters from recent QSSR analysis based on stability criteria. k measures 
the violation of factorization.

Parameter Value Ref.

αs(MZ) 0.1181(16)(3) =⇒ � = (340 ± 28) MeV [36,37]
λ2 × 102 [GeV2] −6.0(5) [55,56]
〈αsG

2〉 × 102 [GeV4] 6.35(35) [41,42]
〈g3G3〉/〈αsG

2〉 [GeV2] 8.2(1.0) [41,42,45]
〈α2

s G4〉 k 15
16 〈αsG

2〉2 : k = (1.5 ± 0.5) [8]

– Pseudoscalar pion and kaon channels have reproduced successfully the value of the light 
quark masses where we have also explicitly shown [61] that the direct instanton effect induces a 
relatively small correction contrary to some vigorous claims in the literature (see e.g. [62]).

3. The inverse Laplace transform sum rules

From its QCD asymptotic behaviour ∼ (−q2)2Log(−q2/μ2) one can write a twice subtracted 
dispersion relation:

ψP (q2) = ψP (0) + q2ψ ′
P (0) + q4

π

∞∫
0

dt

t2

ImψP (t)

(t − q2 − iε)
. (20)

• Following standard QSSR techniques [14,21,22], one can derive from it different form of 
the sum rules. In this paper, we shall work with the Exponential or Borel [14,17,18] or Inverse 
Laplace transform [16] Finite Energy sum rule (LSR)2:

Lc
n(τ ) =

tc∫
0

dt tn e−tτ 1

π
ImψP (t) : n = −2,−1,0,1, ...,4, (21)

and the corresponding ratios of sum rules:

Rc
n+l n(τ ) ≡ Lc

n+l(τ )

Lc
n(τ )

, (22)

where τ is the Laplace sum rule variable. In the duality ansatz:

1

π
ImψP (t) = 2

∑
P

f 2
P M4

P δ(t − M2
G) + θ(t − tc)“QCD continuum” :

〈0|(8π)Q(x)|P 〉 = √
2fP M2

P , (23)

where the fP is the resonance coupling normalized as fπ = 93 MeV; MP is the mass while the 
“QCD continuum” comes from the discontinuity ImψP (t)|QCD of the QCD diagrams from the 
continuum threshold tc. In the “One narrow resonance ⊕ QCD continuum” parametrization of 
the spectral function3:

2 The name Inverse Laplace transform has been attributed due to the fact that perturbative radiative corrections have 
this property.

3 Finite width effect has been shown in the example of the large width σ meson to give a negligible correction [5,6]
and will not be considered in this paper.
6
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Rc
n+l n(τ ) � M2

P . (24)

• L(−2,−1) have been used to estimate the topological charge, its slope and the η′ parameter 
within the minimal duality ansatz which will be reviewed and discussed in Section 4.

• To get L0, we take the Inverse Laplace transform of the 1st superconvergent 3rd derivative 
of the two-point correlator. In this way, we obtain:

Lc
0(τ ) = τ−2 2

∑
n=0,2,···

D0
n , (25)

with [Lτ ≡ Log (τμ2)]:

D0
0 =

[
2C00 − 2C01(3 − 2γE − 2Lτ )

− 6C02
[
1 − 3γE + γ 2 − π2/6 + (−3 + 2γE)Lτ + L2

τ

]]
(1 − ρ2),

D0
2 = −C21

2
λ2τ(1 − ρ1),

D0
4 = −C41〈αsG

2〉τ 2,

D0
6 = [

C60 − C61(γE − Lτ )
]〈g3fabcG

aGbGc〉τ 3,

D0
8 = C80

(
15

16

)
k 〈αsG

2〉2τ 4 . (26)

• The other higher degrees sum rules Lc
n(τ ) for n ≥ 1 can be deduced from the nth τ -

derivative of Lc
0(τ ):

Lc
n(τ ) = (−1)n

dn

dτn
Lc

0(τ ) . (27)

• These superconvergent sum rules obey the homogeneous renormalization group equation 
(RGE):{

− ∂

∂t
+ β(αs)αs

∂

∂αs

}
Lc

n(e
t τ, αs) = 0 , (28)

where t ≡ (1/2)Lτ . The renormalization group improved (RGI) solution is:

Lc
n(e

t τ, αs) = Lc
n(t = 0, ᾱs(τ )) , (29)

where ᾱs(τ ) is the QCD running coupling.
• In the following analysis, we shall work with the family of sum rules having degrees less 

or equal to 4. In so doing, we shall select the sum rules which present stability (minimum or 
inflexion point) in the sum rule variable τ and in the continuum threshold tc such that we can 
extract optimal information from the analysis.

4. The η′ mass and decay constant

Keeping only the η′ and/or the lowest mass gluonium contributions in the parametrization 
of the spectral function (Eq. (23)), Lc

−1 and Lc
0 have been used earlier to look for the gluon 

component of the η′ mass and coupling and to estimate the topological charge χ(0) and its slope 
χ ′(0) [33,57–60,63]. The LSR results in pure Yang-Mills fairly agree with the ones from large 
7
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Nc [64–66] and lattice calculations [67]. Here, we use the sum rule Lc
−1 in the chiral limit where 

χ(0) ≡ ψP (0)/(8π) = 0:

Lc
−1 ≡

tc∫
0

dt

t
e−tτ 1

π
ImψP (t) = Lc

−1|QCD + ψP (0) , (30)

where:

Lc
−1|QCD = τ−2 2

∑
n=0,2,···

D−2
n , (31)

with:

D−1
0 =

[
C00 + 2C01(1 − γE − Lτ ) + 3C02

[
(γE + Lτ )

2 − 2(γE + Lτ ) − π2

6

]]
(1 − ρ1),

D−1
2 = τ C21λ

2(1 − ρ0),

D−1
4 = −τ 2

[
C40 − C41(γE + Lτ )

]
〈αsG

2〉,
D−1

6 = −τ 3
[
C60 + C61 (1 − γE − Lτ )

]
〈g3fabcG

aGbGc〉,

D−1
8 = −τ 4

2
C80〈αsG

2〉2 , (32)

for extracting the decay constant fη1 . We have attempted to extract the mass Mη1 using the low 
degree ratio of moments R0−1 but fail due to the absence of τ stability. Then, we use the GMO 
mass formula quoted in [33] derived in the massless pion limit and assuming a SU3 symmetry 
for the decay constants from [65]:

M2
η1

� M2
η′ − 2

3
M2

K = (870 MeV)2. (33)

An alternative derivation of Mη1 in pure Yang-Mills from 1/Nc expansion by [64–66] and 
corrected in [5] by including 3 massless quarks loops contribution through the β function 
[O(nf /Nc) correction] leads to:

M
nf =3
η1 �

(
β

nf =3
1

β
nf =0
1

)1/2

× MYM
η1

� 779 MeV : β
nf

1 = −1

2

(
11 − 2

3
nf

)
, (34)

with:

MYM
η1

� 1

fπ

(
6

∂

∂θ
〈Q(x)〉θ=0 ≡ −6χ(0)|YM

)1/2

:
χ(0)|YM � − (180 MeV)4 and fπ = 92.2 MeV. (35)

In the following analysis, we shall use the mean of the two determinations:

Mη1 � 825(45) MeV, (36)

with the (conservative) error from its distance to the two former. The analysis for N2LO is shown 
in Fig. 1 where, at the τ -minimum: τ = (0.68; 0.74) ± 0.04 GeV−2 corresponding to tc = 8
(beginning of τ -stability) to 14 GeV2 (tc-stability), one deduces the estimate:
8
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Fig. 1. The decay constant fη1 from Lc−1 as a function of τ at N2LO using Mη1 = 825 MeV and the QCD inputs in 
Table 1. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

fη1 = 905(5)tc (1)τ (43)�(53)λ2(3)G2(2)G3(0)G4(24)Mη1
= 905(72) MeV, (37)

where one should note that fη1 here is not exactly the one from e.g. J/ψ → γ η′, η′ → γ γ [68]. 
One can notice that:

	 The N2LO correction is large and has increased the value of fη1 from NLO by about a 
factor 2. The large N2LO effects to fη1 require a further control of the size of the higher order 
PT corrections. We have considered in [9] that the tachyonic gluon mass gives an estimate of 
such uncalculated higher order terms of PT or it is equivalent to say that the PT series grows 
geometrically [49]. One can check that the tachyonic gluon mass decreases fη1 by 53 MeV 
which we consider (here and in the following) as an estimate of the errors due to the truncation 
of the PT series but we do not include it in the central value of fη1. Considering this error estimate 
at its face value, one may consider that the PT series reach its asymptotic value at N2LO.

	 The value of Mη1 and of fη1 in Eqs. (36) and (37) will be used as inputs in the rest of the 
paper.

5. The slope χ ′(0) of the topological charge and the proton spin in the chiral limit

• Sum rule estimate of χ ′(0) at N2LO in the chiral limit

χ ′(0) has been estimated in pure Yang-Mills to be [60]:

χ ′(0)|YM = −[(7 ± 3) MeV]2 (38)

in agreement with the lattice result −[(9.8 ± 0.9) MeV]2 [67]. In the following, we shall update 
its NLO estimate in the chiral limit [33] by including N2LO PT corrections and NLO ones to 
the condensate contributions. We shall use the previous value of Mη1 and the value or the QCD 
expression of fη1 into the twice subtracted sum rule:

ψ ′
P (0)|LSR =

tc∫
dt

t2 e−tτ 1

π
ImψP (t) −Lc

−2|QCD + τ ψP (0) , (39)
0

9
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Fig. 2. The slope of the topological charge χ ′(o) from Lc−2 as a function of τ at N2LO using fη1 = 881 MeV.

where:

Lc
−2|QCD = τ−1 2

∑
n=0,2,···

D−2
n , (40)

with:

D−2
0 =

[
C00 − 2C01(γE + Lτ ) + 3C02

[
(γE + Lτ )

2 − π2

6

]]
(1 − ρ0),

D−2
2 = −τ C21γEλ2,

D−2
4 = τ 2

[
C40 + C41(1 − γE)

]
〈αsG

2〉,

D−2
6 = τ 3

2

[
C60 + C61

(
3

2
− γE − Lτ

)]
〈g3fabcG

aGbGc〉,

D−2
8 = τ 4

6
C80〈αsG

2〉2 . (41)

We show the N2LO analysis from Lc
−2 where, in Fig. 2, we use the value of fη1 in Eq. (37) and 

in Fig. 3 its QCD expression from Eq. (30) where one should note that the sum of higher states 
contributions to the spectral function is (automatically) included in this second option. One can 
notice a better τ -stability (clearer inflexion point) for the 2nd case at τ � (0.50 ± 0.04) GeV−2

and for tc � (14 ∼ 18) GeV2, at which, we deduce:√
χ ′(0)|N2LO ≡ 1

8π

√
ψ ′

P(0)

= 24.3(2.8)τ (0.2)tc(1.6)�(0.8)λ2(0.2)G2(0.4)G3(0.1)G4(0.4)Mη1

= 24.3(3.4) MeV. (42)

The NLO analysis gives curves very similar to the N2LO ones. At the corresponding inflexion 
point τ � (0.44 ± 0.04) GeV−2, one obtains:√

χ ′(0)|NLO = 18.2(2.5)τ (0.2)tc(1.1)�(0.9)λ2(0.4)G2(0.6)G3(0.1)G4(0.4)Mη1

= 18.2(3.0) MeV. (43)
10
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Fig. 3. The slope of the topological charge χ ′(o) from Lc−2 as a function of τ at N2LO using the QCD expression of fη1
given in Eqs. (30) to (32).

These new values agree within the errors with the NLO one 22.3(4.8) MeV obtained from 
Laplace sum rule (LSR) in [33] using different values of the QCD input parameters and a slightly 
different QCD expression due to some errors in the αs PT corrections giving by [34] explaining 
that the χ ′(0) curves present minimum there.

• Effect on the proton spin

It has been shown by [63,68] (see also [69]) that the singlet form factor G(0)
A (Q2) appearing 

in the first moment of the polarised proton structure function gP
1 (Ellis-Jaffe sum rule [70]) can 

be related in the chiral limit (mq = 0) to the slope of the topological charge χ ′(0) as:

G
(0)
A (Q2)ūγ5u = 1

2Mp

(2nf )
√

χ ′(0)��5RP̄P , (44)

where �5R is the renormalized bilinear quark current and ��5RP̄P the renormalization group 
(RG) invariant scale independent proper vertex. In the chiral limit and using the OZI approxima-
tion, one would obtain [33]:

��5RP̄P |OZI = √
2gη8PP (ūγ5u),

√
χ ′(0)|OZI = fπ/

√
6 = 38 MeV,

G
(0)
A |OZI = 0.579 ± 0.021, (45)

while from our analysis:

G
(0)
A |LSR(Q2 = 10 GeV2) = G(0)

A |OZI

√
χ ′(0)|LSR√
χ ′(0)|OZI

= (0.340 ± 0.050), (46)

after running χ ′(0)|LSR from 2 to 10 GeV2 implying:√
χ ′(0)|LSR(Q2 = 10 GeV2) = (22.5 ± 3.1) MeV. (47)

Using the previous value of G(0)
A |LSR and: G(3)

A = 0.625 ± 0.004, G(8)
A = (0.167 ± 0.006), from 

hyperon and β-decays [73], the first moment of the polarised proton structure function gives:
11
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�
p

1 (Q2 = 10 GeV2) ≡
1∫

0

dx gP
1(x,Q2) = (0.144 ± 0.005), (48)

in excellent agreement with the earlier data [71] and experimental world average [72]:

�
p
1 (Q2 = 10 GeV2)|exp = 0.145 ± 0.014 =⇒ G(0)

A |exp = 0.35 ± 0.12, (49)

and more recent data from COMPASS [74] and HERMES [75]:

G
(0)
A |exp = 0.330 ± 0.039, (50)

which are lower than the OZI value by a factor 1.76.

6. On some previous gluonium mass from the ratio of moments R10

• The extraction of the lowest gluonium mass from the sum rule within the minimal duality 
ansatz “One resonance ⊕ QCD continuum” parametrization of the spectral function often comes 
from the ratio of moments R10 [6,10,59] with the most recent result to N2LO within the standard 
SVZ-expansion from Laplace sum rule [10] and without including the η′ contribution:

MP2 |N2LO = (2.3±0.2) GeV fP2 = (0.21±0.04) GeV for � = (0.15±0.05) GeV .

(51)

Similar results using Laplace sum rules have been obtained in [12] by adding the contribution of 
instanton-anti-instanton in the OPE and by including the contribution of the η′:

MP2 |N2LO = (2.2 ± 0.2) GeV, fP2 = (0.42 ± 0.18) GeV for � = 0.20 GeV. (52)

The Gaussian sum rule including instanton-anti-instanton but without the η′ leads to [11]:

MP2 |N2LO = (2.65 ± 0.33) GeV, �P2 ≤ 0.54 GeV for � = 0.3 GeV . (53)

The previous N2LO results can be compared with the LO one (independent of the � value) [59]:

MP2 |LO = (1.70 ± 0.06) GeV , (54)

and to the NLO one for � = (0.375 ± 0.125) GeV [6]:

MP2 |NLO = (2.05 ± 0.19) GeV. (55)

• We update the N2LO results in the literature using the present values of the QCD parameters 
given in Table 1 without including the η′-contribution. We show the results of the analysis versus 
τ in Fig. 4 for different values of tc. We obtain for � = (340 ± 28) MeV:

MP2 |N2LO = 1470(39)tc (46)τ (83)�(44)λ2(19)G2(11)G3(31)G4 = 1470(118) MeV, (56)

where we have taken the values at the inflexion points: τ = (0.80 ± 0.04) GeV−2 and tc from 7 
to 14 GeV2. We have considered the contribution of the tachyonic gluon mass squared λ2 as an 
estimate of the non-calculated higher order terms as expected from [9,49–51].

	 For � = (0.15 ± 0.05) GeV, we have a minimum in τ (Fig. 5). At the minimum, we obtain 
using the values of the condensates given in Table 1 and for tc from 7 to 14 GeV2:

MP |0.15 = 2057(53)tc (127)�(44)λ2(14)G2(43)G3(70)G4 = 2057(166) MeV, (57)
2 N2LO

12
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Fig. 4. MP2 from Rc
10 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV.

Fig. 5. MP2 from Rc
10 as a function of τ at N2LO for different values of tc and for � = 0.15 GeV [10].

which reproduces within the error the result of [10] quoted in Eq. (51) and indicates that the result 
is quite sensitive to the value of �. The estimate of the HO non-calculated term is quantified by 
the contribution of λ2 in the quoted error. We have not repeated the analysis for the Gaussian 
sum rules which is expected to reproduce the result from LSR at the stability point [11].

	 We repeat the analysis for � = 0.2 GeV, where we have an inflexion point in τ (Fig. 6). We 
obtain within the standard SVZ expansion and for τ = (0.84 ± 0.04) GeV−2:

MP2 |0.20
N2LO � 1867(38)tc (100)τ (−)�(60)λ2(6)G2(51)G3(94)G4 = 1867(163) MeV, (58)

indicating that the eventual instanton contribution, with the parameters used in [12], increases 
the prediction by about 330 MeV when compared with the one in Eq. (52).

	 We notice that, for a given truncation of the PT series (N2LO here), the shape of the curves 
of the LSR changes with the value of � (minimum for �= 0.15 GeV and inflexion points for �= 
0,20, 0.34 GeV). In the same time the value of the mass is very affected by the one of �.
13
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Fig. 6. MP2 from Rc
10 as a function of τ at N2LO for different values of tc and for � = 0.20 GeV [12].

Fig. 7. MP2 from Rc
10 as a function of τ at N2LO for different values of � and for tc = 12 GeV2.

	 In Fig. 7, we show the results versus τ for three different values of �= 0.15, 0.20 and 0.34 
GeV and for a fixed value of tc= 12 GeV2. The analysis shows the sensitivity of the results versus 
�.

	 Comparing the optimal result for each truncation of the PT series, one has (in units of MeV):

MP2 = (2653±327) (LO)
−30%−→ (1862±18) (NLO)

−21%−→ (1470±39) (N2LO),

(59)

where the quoted error comes only from the range of tc-values from 7 to 14 GeV2. One can 
notice a slow convergence of the result. In the rest of the paper, we re-emphasize that we shall 
estimate the contribution of the remaining uncalculated higher order (HO) terms of the series 
from the contribution of the tachyonic gluon mass which we shall add to the errors in the result 
for MP and fP .
14
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Fig. 8. MP1 from Rc
20 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1

contribution is included.

7. Gluonia masses from Rc
mn

• The analysis

In the following, we shall systematically extract the gluonia masses using different ratios of 
moments Rc

mn (n, m = −1, 0, ..., 4) within τ - and tc-stability criteria. In order to show explic-
itly these stability regions specific for a given moment where the optimal results are obtained, 
we think that is important to show the different figures shown in Fig. 8 to 16. The results are 
summarized in Table 2 and the different sources of errors are given in Table 3 where we denote:

	 P1,2: One resonance: P1 or P2.
	 S1η,2η ≡ P1,2 ⊕ η1: One resonance ⊕ η1 where Mη1 and fη1 (gluon component of the η′) 

are used as inputs from Eqs. (36) and (37) which have been deduced from previous sum rules 
analysis of L−1,−2.

	 S2 ≡ P2 ⊕ S1η: Two resonances (P1 ⊕ P2) ⊕ η1.
	 S′

2 ≡ P ′
1 ⊕ S2: Three resonances (P ′

1 ⊕ P1 ⊕ P2) ⊕ η1.

8. The digluonium decay constants fP

The di-gluonium decay constant is defined in Eq. (23) as fπ = 93 MeV. We shall use the 
moments L2, L3 (see Figs. 17 to 19) for extracting the decay constants of P1, P2 and P ′

1. The 
results are summarized in Table 2 while the different sources of the errors are given in Table 3.

9. Summary of the results

The results can be grouped into three types of gluonia:

• Light: η1 [33,57,64–66] (see Eqs. (36) and (37)):

Mη = 825(45) MeV, fη = 905(72) MeV. (60)
1 1
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Fig. 9. MP1 from Rc
42 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1

contribution is included.

Fig. 10. MP ′
1a

from Rc
20 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 and 

P1a contributions are included.

• Medium: P1 and the 1st radial excitations P ′
1 (see Table 2):

[MP1a
,MP1b

] = [1338(112),1462(117)] MeV,

[MP ′
1a

,MP ′
1b

] = [1508(226),1553(139)] MeV, (61)

with their mean:

[MP1 , fP1 ] = [1397(81),594(144)] MeV ,

[MP ′
1
, fP ′

1
] = [1541(118),205(282)] MeV , (62)

where the radial excitation is very closed to the ground state like in the scalar channel [1]. The 
different sources of the errors are given in Table 3.
16
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Fig. 11. MP ′
1b

from Rc
42 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 and 

P1b contributions are included.

Fig. 12. MP2 from Rc
10 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕P1 ⊕

P ′
1 contributions are included.

	 Using the positivity of the spectral function, one can also derive a (rigorous) upper bound at 
the minimum of the ratio of moments R20 and R42 (equivalent to take tc → ∞). Including the 
η1 contribution, it gives:

MP1a
≤ 1365(106) MeV, MP1b

≤ 1506(104) MeV =⇒ MP1 ≤ 1437(74) MeV,

(63)

where one can notice that in each case, the bound is almost saturated.
17
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Fig. 13. MP2 from Rc
21 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕P1 ⊕

P ′
1 contributions are included.

Fig. 14. MP2 from Rc
31 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕P1 ⊕

P ′
1 contributions are included.

	 One can notice that the two ratios of moments Rc
20 and Rc

42 stabilize at relatively large 
value of τ � 2 GeV−24 which make them sensitive to the medium mass MP1 (see Figs. 8 and 9) 
which are not the cases of the other ratios of moments sensitive to the heavy mass MP2 (see the 
corresponding values of τ in Table 3).

	 We check the convergence of the PT series and the OPE at this scale. For a given PT series 
at N2LO and for different truncation of the OPE and including the η1 contribution, we have for 
MP1 (in units of MeV):

4 One should mention that Rc
20 present a second minimum at smaller value of τ � 0.3 GeV−2 which we shall not con-

sider in this case. For an attempt to get MP within a two resonances parametrization, this second minimum disappears.
2
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Fig. 15. MP2 from Rc
32 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕P1 ⊕

P ′
1 contributions are included.

Fig. 16. MP2 from Rc
43 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕P1 ⊕

P ′
1 contributions are included.

1154 (N2LO) −→ 1200 (N2LO ⊕ G2) −→ 1683 (N2LO ⊕ G2 ⊕ G3)

−→ 1338(N2LO ⊕ · · · ⊕ G4) : L20,

1511 (N2LO) −→ 1530 (N2LO ⊕ G2) −→ 1613 (N2LO ⊕ G2 ⊕ G3)

−→ 1462(N2LO ⊕ · · · ⊕ G4) : L42, (64)

and for each truncation of the PT series including the condensates up to G4:

1275 (LO) −→ 1243 (NLO) −→ 1338 (N2LO) : L20,

1298 (LO) −→ 1412 (NLO) −→ 1462 (N2LO) : L42, (65)

which show a quite good convergence of the OPE and of the PT series.
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Fig. 17. fP1 from Lc
2 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 contribu-

tion is included.

Fig. 18. fP ′
1

from Lc
2 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕ P1

contributions are included.

• Heavy: P2 (see Table 2):
One can notice from the last column of Table 2 that there is a splitting of about 400 MeV for 

the central value of MP2 =3059 MeV from Rc
10 and the ones other P2 states which may indicate 

that there can be more than one state in the region above 2 GeV. However, as the error is large we 
cannot strictly confirm this observation and consider the conservative mean value of MP2 from 
all determinations:

MP2 = 2751(140) MeV, fP2 = 500(43) MeV, (66)

where the errors are mainly due to �, fP and MP (see Table 3).
1 1
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Fig. 19. fP2 from Lc
3 as a function of τ at N2LO for different values of tc and for � = 0.34 GeV where the η1 ⊕P1 ⊕P ′

1
contributions are included.

10. Comparison with some existing estimates and confrontation with the data

• Previous QCD spectral sum rules

– We have already commented some results obtained at N2LO in Section 6 where we have 
emphasized the large effect of � QCD on the results. Using the most recent value of �, the 
N2LO results from [10–12] working with the R10 ratio of moments contribution become MP2 =
1470(101) MeV for “one resonance” and MP2 = 2097(264) MeV for “one resonance ⊕ η1” (see 
Table 2).

– Comparing the LO result of [13] from R10 within a “One resonance ⊕ QCD continuum” 
parametrization of the spectral function with the one in Eq. (59), one can see that the two LO 
results agree within the errors though the one of [13] is obtained outside the τ -stability region. 
The apparent agreement of this LO result for “one resonance” from R10 with the N2LO one 
with multiple resonances from the same R10 is quite lucky due to the large effect of radiative 
corrections which decreases the LO result by a large amount for this moment as discussed previ-
ously.

• Lattice calculations

	 Lattice results are in the range (2.15 ∼ 2.72) GeV [25–28] which can be compared with the 
value of MP2 = 2639(127) MeV obtained in Eq. (66) and Table 2. However, a direct comparison 
of the results from the two approaches cannot be done properly as the lattice does not detect the 
medium gluonia in Eqs. (61) and (62) though the decay constant fP1 is almost equal to fP2 (see 
Table 2).

	 From the present approach, this feature is due to the fact that the resonance contributes to 
Ln as:

Ln �
∑

2f 2
Pi

M
2(n+2)
Pi

e
−M2

Pi
τ
, (67)
i=1,···
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for: “
∑

Pi
resonances ⊕ QCD continuum” 

P ′
1
] for [MP2 , fP2 ] in the last column. The 

l function and including the η1 contribution. 
uts.

1η S′
1 ≡ P ′

1 ⊕ S1η S′
2 ≡ P2 ⊕ S′

1

1508(226)
1553(139)
1541(118)

3059(385)
2778(340)
2764(317)
2644(391)
2661(227)
2751(140)

205(282)

500(43)

22
Table 2
Pseudoscalar di-gluonium masses from LSR for PT at N2LO and gluon condensates at NLO up to D = 8
parametrization of the spectral function. The mean value of MP ′

1
is used to get fP ′

1
and the one [MP ′

1
, f

bounds on MP1 in column # 4 are obtained at the minimum of R20,42 using the positivity of the spectra
The different sources of errors are given in Table 3. The QCD parameters in Table 1 have been used as inp

Observables LSR Fig. # η1 P1,2 S1η,2η ≡ P1,2 ⊕ η1 S2 ≡ P2 ⊕ S

MP [MeV]

P1 Rc
20 8 1205(126) 1338(112)

– – ≤ 1365(106)

– Rc
42 9 1432(115) 1462(117)

– – ≤ 1506(104)

– Mean 1345(83) 1397(81)
– – ≤ 1437(74)

P ′
1a

Rc
20 10

P ′
1b

Rc
42 11

P ′
1 Mean

P2 Rc
10 12 1470(101) 2097(264) 2990 (318)

– Rc
21 13 1846(73) 2005(119) 2715(285)

– Rc
31 14 1726(71) 2050(119) 2699(265)

– Rc
32 15 2096(44) 2261(39) 2534(327)

– Rc
43 16 2054(42) 2080(158) 2620(205)

– Mean 1965(25) 2214(34) 2694(119)

fP [MeV]

η1 Lc−1 1 905(72)

P1 Lc
2 17 594(144)

P ′
1 Lc

2 18
P2 Lc

3 19 504(39)
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 input parameters come from Table 1. The quoted values 

1 �Mη1 �MP1 �fP1 �MP ′
1

�fP ′
1

�MP2

0
15
62 172 126
9 4 29
174
59
34
13
109
56 90 250 5 216
27 83 216 15 185
28 86 224 15 173
42 146 255 19 213
6 113 161 15 96

21 35
67 94 200 8
0 8 7 2 16 8
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Table 3
Different sources of errors for the pseudoscalar di-gluonia masses and couplings given in Table 2. The errors from QCD
of τ for P2 in the cases S2 and S′

2 correspond to S′
2.

# Resonances LSR tc [GeV2] �tc τ [GeV−2] �τ �� �λ2 �G2 �G3 �G4 �fη

�MP

P1 S1η ≡ P1 ⊕ η1 Rc
20 3, 6 28 2.19, 2.27 1 33 15 5 54 79 27

Rc
42 3, 8 43 1.90, 1.95 1 99 3 4 6 32 8

P ′
1a

P ′
1a

⊕ S1η Rc
20 3 29 0.48 4 17 6 3 2 0 25

P ′
1b

P ′
1b

⊕ S1η Rc
42 3, 6 29 2.22 3 128 4 6 6 32 6

P2 S2η ≡ P2 ⊕ η1 Rc
10 7, 14 3 0.62, 0.80 16 83 44 19 11 21 173

Rc
21 8, 14 50 0.78, 0.88 3 44 17 4 14 47 37

Rc
31 6, 14 93 0.84, 1.04 1 20 18 5 16 43 59

Rc
32 13, 19 25 0.8 4 26 4 0 0 3 5

Rc
43 8, 12 72 1.16, 1.26 4 88 13 2 3 12 4

P2 S2 ≡ P2 ⊕ S1η , Rc
10 12 0 0.20 12 144 23 6 2 3 45

S′
2 ≡ P ′

1 ⊕ S2 Rc
21 10, 16 97 0.34, 0.50 5 80 23 6 2 3 101

Rc
31 10, 18 103 0.42, 0.60 6 74 25 3 0 3 14

Rc
32 15, 19 5 0.82 3 114 31 2 2 11 21

Rc
43 10, 14 28 0.84, 0.90 4 46 17 0 0 2 1

�fP

η1 – Lc−1 10, 14 21 0.66, 0.72 2 41 51 3 2 0
P1 Lc

2 4.5, 9 58 1.18, 1.40 0 114 15 1 3 50 9
P ′

1 P ′
1 ⊕ S1η Lc

2 7, 9 39 1.38, 1.40 2 139 45 12 14 50 20
P2 S2, S′

2 Lc
3 13, 18 16 0.58, 0.74 3 32 8 0 0 0 7
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where the exponential factor is expected to kill the high-mass resonance contributions to the 
sum rule moments (analogous exponential factor plays a similar role in the lattice calculations). 
Taking MP1,P2 and fP1 ≈ fP1,P2 in Table 2 and τ ≈ 0.5 GeV−2 for the moments used to get MP2 , 
it is easy to check that the suppression due to the exponential weight is not enough to enhance 
the lowest ground state contribution, where the ratio behaves as:

Ln(P2)

Ln(P1)
≈ 0.96

(
MP2

MP1

)2n

: n = 1,2, ..., (68)

indicating that working with the high moments which stabilize at low values of τ , one can miss 
the lowest mass P1. The opposite situation is obtained for the moments used to get MP1 which 
stabilizes at larger τ � 2 GeV−2 enabling to extract MP1 where the P2 contribution is negligible.

• Some other approaches

	 Holographic approach gives a mass of about 2.1 GeV [29].
	 In contrast to the previous approaches, a recent inverse problem dispersive method found a 

mass of 1750 MeV [30], while the flux tube and mixing matrix models predict 1.4 GeV [31,32]
which is in the range of our mean medium mass predictions MP1 = 1397(81) MeV and MP ′

1
=

1541(118) MeV in Eq. (62).

• Confrontation with the data below 2 GeV

	 We expect that the new medium gluonia P1(1397) [or P1a(1338) and P1b(1462)] and their 
first radial excitations [P ′

1(1541) (or P ′
1a(1508) and P ′

1b(1553)] obtained in this paper will bring 
some light for a much better understanding of the 0−+ η-like states found below 2 GeV.

	 P1(1397) supports the experimental facts that the η(1405) is an excellent gluonium candi-
date. If we assume that the P1a and P1b are different states, we may expect that P1a brings a small 
gluon component to the η(1295) explaining its seen decay to η(ππ)S−wave via (most probably) 
the σ which is expected to be the lightest scalar gluonium [1,5,6], while P1b can explain the 
gluonium nature of the η(1405) which is also seen to decay into η(ππ)S−wave.

	 P ′
1(1541) may suggest that the η(1495) can possess a gluon component though smaller 

than the one of the ground state P1(1397) due to its weaker coupling to the gluonic current: 
fP ′

1
≤ fP1 . If P ′

1 is splitted into P ′
1a and P ′

1b , then, P ′
1a and P ′

1b may share some gluons to 
η(1495) and η(1760).

11. Summary and conclusions

For an attempt to study the topics addressed in the title of this paper, we have scrutinized 
and improved the 0−+ pseudoscalar gluonium sum rules using updated values of the QCD input 
parameters and using a multiple resonance parametrization of the spectral function beyond the 
minimal duality ansatz: “one resonance ⊕ QCD continuum” and high degree LSR moments

• Slope of the topological charge and proton spin

	 The properties of the η1 singlet piece of the η′ as well as the value of the topological charge 
χ(0) from U(1)A large Nc and current algebra approaches are reproduced from the approach 
[33,57–60].
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	 We have estimated the slope of the topological charge at N2LO and find it to be √
χ ′(0)(Q2 = 2 GeV2) = 24.3(3.1) MeV (Eq. (42)). It confirms the previous NLO value 

of 24.3(3.4) MeV [33] from LSR updated here, which is still smaller than the OZI value 
fπ/

√
6 = 38 MeV.

	 We have used this value of 
√

χ ′(0) to estimate the singlet form factor G(0)
A of the axial 

current (see Eq. (46)) and the first moment 
∫ 1

0 dx gP
1 (x) of the polarized proton structure function 

(see Eq. (48)) which remarkably agree with the data [71,74,75].

• 0−+ pseudoscalar gluonia

We have used more than one resonance and worked with different high degree moments to 
analyze the complex spectra of the observed η-like gluonia. We find that:

	 The lattice results for the pseudoscalar gluonium mass are comparable with the so-called 
heavy gluonium mass P2(2751) obtained here from moments ratios which stabilize at smaller 
values of τ .

	 New gluonia P1-like states with medium masses are found from some ratios of moments 
which stabilize at larger values of τ and can eventually explain the gluonium nature of some 
of the four η-like states found below 2 GeV. Our result supports the gluonium nature of the 
experimental candidate η(1405) and suggests some gluon component to the other η-like wave 
functions.

	 It is also remarkable to notice that the structure of the pseudoscalar gluonia spectrum is 
very similar to the one of the scalar gluonia (its chiral partner) studied recently in [1]. There is 
a (natural) one to one correspondence between the pseudoscalar gluonia and their chiral scalar 
analogue from Ref. [1]: σ(1) → η1; G1(1.55) → P1; σ ′(1.1), G′(1.56) → P ′

1a,1b; G2(3) → P2
which is mainly due to the importance of the QCD PT contributions that are almost equal in the 
analysis of these two channels.
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