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Abstract

We present a one-period XVA model encompassing bilateral and centrally cleared
trading in a unified framework with explicit formulas for most quantities at hand.
We illustrate possible uses of this framework for running stress test exercises on a
financial network from a clearing member’s perspective or for optimizing the porting
of the portfolio of a defaulted clearing member.

1 Introduction

In the wake of the 2008–09 global financial crisis, clearing through central counterparties
(CCPs) has become mandatory for standardized derivatives, other ones remaining under
bilateral setup with higher capital requirements.

One role of the CCPs1 is to provide to their clearing members fully collateralized
hedges of their market risk with their clients. But this comes at a cost to the clearing
members, which pass it to their corporate clients in the form of XVA (cross-valuation
adjustments) add-ons. Bearing in mind that the risks of a hedge are, by definition, of the
same magnitudes as the ones of the originating position and that standardized derivatives
usable as hedging assets have to be traded through CCPs, the XVA footprint of not only
bilateral but also centrally cleared trading is significant and should be analyzed in detail,
which is the topic of this paper.
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More precisely, the trades of a clearing member bank with a CCP are partitioned
between proprietary trades, which are in effect hedges of the bilateral trading exposure
of the bank, and back-to-back hedges of so-called cleared client trades, through which
non-member clients gain access to the clearing services of a CCP. Albanese et al. (2020)
focus on the XVA analysis of a bank only acting as a clearing member of one CCP,
without proprietary trading. The present paper provides an integrated XVA analysis
in the realistic situation of a bank dealing with many clients and CCPs, through both
proprietary (also dubbed house) accounts and client accounts.

For the sake of tractability, this is achieved in a stylized one-period setup, fine-
tuned to applications including risk assessment in the context of stress test exercises2 or
optimizing the porting of the portfolio of defaulted clearing members.

The first type of application is motivated by the default in 2020 of Ronin Capital,
a broker/dealer firm that had clearing exposures on both CCP services Fixed Income
Clearing Corporation (FICC) GSD3 segment (123 members) and CME Futures (56 mem-
bers of which 24 common with FICC GSD). If all members are assumed to be only
exposed to these CCPs and their cleared clients, we can illustrate these relationship by
the network depicted in Figure 1.1. Any common member on those two CCPs needs to
ensure conservative risk assessment that can be achieved in the proposed framework by
accounting for common memberships on the two CCPs. If such common memberships
are ignored, they can lead to lower loss estimates giving wrong risk view on potential
losses.

The second type of application is an illustration of the results of defaulted portfolio
porting as it has been the case for the trader Einer Aas on NASDAQ OMX4 that has
defaulted on 2018 with loss spill-over effect on surviving members.

Section 2 sets the stage. Section 3 develops the corresponding XVA analysis. Section
4 develops two applications in the above veins. Section 7 concludes.

2 General Setup

We consider a finite set of market participants, also susceptible to serve as clearing
members of CCPs. Derivative transactions can then be concluded between two individual
participants, or between a set of participants5, pooled in the form of a CCP, and a
clearing member of this CCP.

CCPs are typically siloed into different services, each devoted to a specific class of
derivatives. We first consider a setup with a single CCP service6: see Figure 2.1, where
P and P represent the contractual cash flows from cleared and bilateral clients to a
reference clearing member, dubbed the bank hereafter, hence promised, in successive

2as required by Article 302 of the CRR document The European Parliament and the Council of the Eu-
ropean Union (2013).

3Government Securities Division.
4Optionsmäklarna/Helsinki Stock Exchange
5two or more, in practice from a few units to a few hundreds.
6the extension to several CCPs is done in Section 3.3.
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Figure 1.1: Network consisting of two CCPs (in red), 123 members for CCP1 seen on
the left hand side, and 56 members for CCP2 on the right hand side, with 24 common
members displayed as the group of members in the middle of the two CCPs (155 members
in total, in blue), and with 179 cleared clients (in green).

turns, from the bank to the CCP, from the CCP to other clearing members, and from
the latter to their own clients. As a consequence, the CCP is flat in terms of market
risk, as is also each of the clearing members.

2.1 Defaults Settlement Rule

As reasserted in the wake of the 2008–09 global financial crisis by the Volcker rule, a
dealer bank should be hedged as much as possible, at least in terms of market risk7.
Jump-to-default risk, on the other hand, is hardly hedgeable in practice. Instead it
is mitigated through netting and collateralization. Namely, designated netting sets of
transactions between two given counterparties (two individual participants or a partici-
pant and the CCP) are jointly collateralized, i.e. guaranteed against the default of one
or the other party. The collateral (or guarantee) comprises a variation margin, which
tracks the mark-to-market (counterparty-risk-free value) of the netting set between the
two parties, and nonnegative amounts of initial margin posted by each party to the other,
which provide a defense against the risk of slippage of the value of the netting set away
from its (frozen) variation margin during its liquidation period. In the case of transac-
tions with a CCP, there is an additional layer of collateral in the form of the (funded)
default fund contributions of the clearing members, which is meant as a defense against
extreme and systemic risk. For each participant, variation margin is rehypothecable and

7cf. paragraph number 1851 in section 619 from The United States Congress (2010).
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Figure 2.1: Promised cash flows between market participants. The reference clearing
member bank is on the left.

fungible across all its netting sets. Initial margin is segregated at the netting set level.
default fund contributions are segregated at the clearing member level.

The general rule regarding the settlement of contracts of a defaulted netting set is
that:

Assumption 2.1 If a counterparty in default is indebted toward the other beyond
its posted margin, then this debt is only reimbursed at the level of this posted margin
(assuming zero recovery rate of the defaulted party for simplicity in this paper); otherwise
the debt between the two parties is fully settled.

Here debt is understood on a counterparty-risk-free basis.

This rule also applies to a netting set of transactions between a clearing member and a
CCP. However, in our stylized setup, a CCP is nothing but the collection of its clearing
members. Our CCP has no resources of its own (in particular, it cannot post any default
fund contribution, or “skin-in-the-game”8). As long as it is non-default, i.e. as long as
at least one of its clearing members is non-default, our CCP can only handle the losses
triggered by the defaults of some of its clearing members by redirecting these losses on
the surviving ones. This participation of the surviving members to the losses triggered

8such additional protection layer, though quite common in practice, is of marginal magnitude com-
pared to the other protection layers. By omitting skin-in-the-game component, the obtained results are
conservative in terms of risk management and the various formulations are simplified.
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by the defaults of the other members corresponds in our framework to the usage by the
CCP of their default fund contributions, both funded (as already introduced above) and
unfunded. As will be detailed in equations below, the funded default fund contributions
are used in priority for covering losses triggered by the defaults of clearing members over
their margins. The unfunded default fund contributions correspond to additional refills
that can be required by the CCP, often up to some cap in principle, without bounds in
our model, in case the funded default fund contributions of the surviving members are
not enough.

2.2 XVA Framework

Assume that at time 0 all the banking participants, including the reference clearing
member bank, in Figure 2.1, with no prior endowments, enter transactions with their
clients and hedge their positions, both bilaterally between them and through the CCP.
As seen above, the CCP and each bank are flat in terms of market risk. However, as
market participants are assumed to be defaultable with zero recovery, in order to account
for counterparty credit risk and its funding and capital consequences, each banking par-
ticipant requires from its corporate clients a pricing rebate (considering conventionally
the bank as the “buyer”) with respect to the mark-to-market (counterparty-risk-free)
valuation of the deals. The corporate clients of the bank are assumed to absorb the
ensuing prices via their corporate business, which is their primary motivation for these
deals.

A reference probability measure Q?, with corresponding expectation operator de-
noted by E?, is used for the linear valuation of cash flows, using the risk-free asset as our
numéraire everywhere. This choice of a numéraire simplifies equations by removing all
terms related to the (assumed risk-free) remuneration of all cash and collateral accounts.
The funding issue is then refocused on the risky funding side of the problem, i.e. funding
costs in what follows really means excess funding costs with respect to a theoretical
situation where the bank could equally borrow and lend at the risk-free rate.

More precisely, as suitable for XVA calculations (Albanese et al., 2021, Remark 2.3):
given a physical probability measure defined on the full model σ algebra A and equivalent
to a reference risk-neutral measure on the financial sub σ algebra B of A, we take Q?

equal to the reference risk-neutral measure on B and equal to the physical probability
measure conditionally on B.

Following the general XVA guidelines of Albanese et al. (2021), the above-mentioned
pricing rebate required by the reference clearing member bank, dubbed funds transfer
price (FTP), comes in two parts: first, the expected counterparty default losses and
funding expenditures of the bank, an amount that flows into the bank liabilities and
which we refer to as contra-asset valuation (CA); second, a cost of capital risk premium
(KVA), which instead is loss-absorbing9 and is also used by the management of the
bank as retained earnings for remunerating the shareholders of the bank for their capital
at risk within the bank. All in one, the bank buys the deals from its clients at the

9hence, not a liability.
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(aggregated) price (MtM− FTP), where MtM is their counterparty-risk-free value and

FTP = CA︸︷︷︸
Expected costs

+ KVA︸ ︷︷ ︸
Risk premium

.
(1)

Assumption 2.2 At time 0 the amounts CA and KVA sourced from the corporate
clients of the bank are deposited on reserve capital and capital at risk accounts of the
bank.

Let EC denote an economic capital of the bank corresponding to the minimum level of
capital at risk that the bank should hold from a regulatory (i.e. solvency) perspective. If
KVA < EC, then the bank shareholders need to provide the missing amount (EC−KVA)
of capital at risk, so that the actual level of capital at risk of the bank is

max(EC,KVA),

while shareholder capital at risk reduces to

max(EC,KVA)−KVA = (EC−KVA)+. (2)

3 Theoretical XVA Analysis

In this section we detail each term in the equations above, in the realistic setup of a
bank involved into an arbitrary combination of bilateral and centrally cleared portfolios,
in a tractable one-period setup with period length T . In the one-period XVA model of
Albanese et al. (2021, Section 3), there were no CCPs and the bank was assumed to
have access to a “fully collateralized back-to-back hedge of its market risk”, ensuring
by definition and for free to the bank a cash-flow (P −MtM) at time 1, irrespective of
the default status of the bank and its client. There, P denoted the contractual cash
flows from the (assumed unique) client to the bank and MtM was the corresponding
counterparty-risk-free value. In the present paper we reveal the mechanism of such a
“fully collateralized hedge of the market risk” of the bank, which can be achieved through
central clearing, but at a certain cost that we analyze.

3.1 Cash Flows

We use the terms client for cleared clients and counterparty for bilateral counterparties.
Given disjoint sets of indices I 3 0, C, and B for the clearing members (including

the reference bank labeled by 0) and for the respective cleared and bilateral netting sets
of the bank with its individual clients and counterparties, We denote by:

• J0, shortened as J , and Ji, i ∈ I \ {0}, the survival indicator random variables of
the bank and of the other clearing members at time 1; γ = Q?(J = 0), the default
probability of the bank;
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• J = maxi Ji, the survival indicator random variable of the CCP (i.e. of at least
one clearing member),

• Pi, MtMi = E?Pi, and IMi, i ∈ I, the contractual cash flows, variation margin,
and initial margin from the clearing member i to the CCP corresponding to the
cleared clients account of the member i;

• P i, MtMi = E?P i, and IMi, , i ∈ I, the contractual cash flows, variation margin,
and initial margin from the clearing member i to the CCP corresponding to the
house account of the clearing member i;

• DFi, i ∈ I, the default fund contribution posted by the clearing member i to the
CCP;

• Jb, b ∈ B, the survival indicator random variable of the counterparty of the bi-
lateral netting set b of the reference bank; Pb, VMb, and IMb, the associated
contractual cash flows, variation margin, and initial margin from the correspond-
ing counterparty to the bank; and IMb, the initial margin from the bank to the
counterparty;

• Jc, c ∈ C, the survival indicator random variable of the client of the cleared
trading netting set c of the bank, and Pc, MtMc = E?Pc10, and IMc, the associated
contractual cash flows, variation margin, and initial margin from the corresponding
client to the bank11;

• L, the loss of the CCP, i.e. the loss triggered by the defaults of its clearing members
beyond their posted collateral12, which is borne by the surviving members (if any);

• µ = Jµ, the proportion of these losses allocated to the reference clearing member
bank.

Assumption 3.1
∑

i(Pi+P i) = 0 (the CCP is flat in terms of market risk),
∑

c Pc = P0
(by definition of cleared trades and of their mirroring trades), and

∑
b Pb = P0 (the

reference bank is flat in terms of market risk).

Assumption 3.1 yields the clearing conditions regarding the contractually promised
cash flows, which applies to each banking participant (written there for the reference
bank) and to the CCP. Assumption 2.1 is monitoring the default cash flows. We need
one more condition, regarding the funding side of the problem:

Assumption 3.2 The bank can use the amounts CA and max(EC,KVA) on its reserve
capital and capital at risk accounts for its variation margin borrowing purposes. Funds
needed beyond CA+max(EC,KVA) for variation margin posting purposes are borrowed

10reflecting the fact that members of CCPs are fully collateralized.
11note that a bank does not post any initial margin on its cleared client netting sets.
12variation margin, initial margin, and (funded) default fund contributions.
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by the bank at its credit spread γ above OIS. The initial margin and default fund
contributions, instead, must be borrowed entirely by the bank, but this can be achieved
at some blended funding spread γ̃ ≤ γ.

The rationale for funding variation margin but not initial margin from CA+max(EC,KVA)
is set out before Equation (15) in Albanese et al. (2017). The motivation for the as-
sumption γ̃ ≤ γ is provided in Albanese et al. (2020, Section 5), along with numerical
experiments suggesting that γ̃ can be several times lower than γ.

Lemma 3.1 The borrowing needs of the bank for reusable and segregated collateral
amount to, respectively,(∑

b

(MtMb −VMb)− CA−max(EC,KVA)
)+

IM + IM + DF +
∑
b

IMb.
(3)

Proof. On the bilateral trades of the bank and their hedges, the Treasury of the
bank receives

∑
b VMb of variation margin from the counterparties and has to post an

aggregated amount
∑

b MtMb of variation margin. The assumption stated before the
lemma then leads to (3).

Lemma 3.2 On the bank survival event {J = 1}, the counterparty default losses C and
the funding expenses F of the bank are given by

C =
∑
c

(1− Jc)(Pc −MtMc − IMc)
+ + µL

+
∑
b

(1− Jb)(Pb −VMb − IMb)
+,

(4)

where

L =
∑
i

(1− Ji)
(
(Pi −MtMi − IMi)

+ + (P i −MtMi − IMi)
+ −DFi

)+
, (5)

and

F = γ̃
(
IM + IM + DF

)
+

+ γ̃
∑
b

IMb + γ
(∑

b

(MtMb −VMb)− CA−max(EC,KVA)
)+
. (6)

Proof. On the CCP survival event {J = 1}, the CCP receives, by Assumption 2.1,∑
i

(
Ji(Pi + P i) + (1− Ji)

(
Pi ∧ (MtMi + IMi) + P i ∧ (MtMi + IMi)+

(
(Pi − (MtMi + IMi))

+ + (P i − (MtMi + IMi))
+
)
∧DFi

))
.

(7)
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Using the CCP clearing condition Assumption 3.1:

0 =
∑
i

(Pi + P i) =
∑
i

(
Ji(Pi + P i) + (1− Ji)(Pi + P i)

)
in Assumption 3.1, (7) is equal to

−
∑
i

(1− Ji)
(
(Pi −MtMi − IMi)

+ + (P i −MtMi − IMi)
+ −DFi

)+
= −L,

which is (5).
On the bank survival event {J = 1} (⊆ {J = 1}), by the respective Assumptions

2.1 and 3.1, the bank receives from its clients and counterparties∑
c

(
JcPc + (1− Jc)

(
Pc ∧ (MtMc + IMc)

))
+
∑
b

(
JbPb + (1− Jb)

(
Pb ∧ (VMb + IMb)

))
, (8)

respectively pays to the CCP∑
c

Pc +
∑
b

Pb =
∑
c

(
JcPc + (1− Jc) Pc

)
+
∑
b

(
JbPb + (1− Jb) Pb

)
. (9)

Subtracting (8) from (9), we obtain∑
c

(1− Jc)(Pc −MtMc − IMc)
+ +

∑
b

(1− Jb)(Pb −VMb − IMb)
+.

On top of this comes the participation µL of the bank to the CCP default losses, which
yields (4). Moreover, in view of Lemma 3.1 and Assumption 3.2, the (risky) funding
expenses of the bank are given by (6).

3.2 Valuation

Let E denote the expectation with respect to the bank survival measure Q associated
with Q?, i.e., for any random variable Y,

EY = (1− γ)−1E?(JY). (10)

(expectation of Y conditional on the survival of the bank). As easily seen in Albanese
et al. (2021, Section 3):

Lemma 3.3 For any random variable Y and constant Y , we have

Y = E?(JY + (1− J)Y )⇐⇒ Y = EY.

Under a cost-of-capital XVA approach, the bank charges its future losses to its cor-
porate clients at a CA level making J(C +F −CA), the trading loss of the shareholders
of the bank, Q? centered. In addition, given a target hurdle rate h assumed in [0, 1] (and

9



typically of the order of 10%), the management of the bank ensures to the bank share-
holders dividends at the height of h times their capital at risk (EC − KVA)+ (cf. (2)),
where we model EC as ES

(
J(C + F − CA)

)
, the expected shortfall of the trading loss

` = J(C + F − CA) computed under the bank survival measure at a quantile level13 of
α = 99.75%, i.e. under the primal and dual representations of the expected shortfall14,
VaRa(`) denoting the Q value-at-risk (lower quantile) of level a of `:

EC = 1
1−α

∫ 1
a=αVaRa(`)da

= sup
{
E[`χ] ; χ is measurable, 0 ≤ χ ≤ (1− α)−1, and E[χ] = 1

}
,

(11)

which for atomless ` also coincides15 with E[`|` ≥ α]. Note that, in view of the dual
representation, an expected shortfall of a centered random variable is nonnegative.

Accordingly (as detailed after the definition):

Definition 3.1 We let

CA = CVA︸ ︷︷ ︸
BCVA+CCVA

+ MVA︸ ︷︷ ︸
BMVA+CMVA

+FVA, where

CCVA = E?
(
J
(∑

c

(1− Jc)(Pc −MtMc − IMc)
+ + µL

)
+ (1− J)CCVA

)
,

CMVA = E?
(
Jγ̃
(
IM + IM + DF

)
+ (1− J)CMVA

)
,

BCVA = E?
(
J
∑
b

(1− Jb)(Pb −VMb − IMb)
+ + (1− J)BCVA

)
,

BMVA = E?
(
Jγ̃
∑
b

IMb + (1− J)BMVA
)
,

FVA = E?
(
Jγ
(∑

b

(MtMb −VMb)− CA−max(EC,KVA)
)+

+ (1− J)FVA
)
,

KVA = E?
(
Jh(EC−KVA)+ + (1− J)KVA

)
, where EC = ES

(
J(C + F − CA)

)
.

(12)

Hence in view of (4) and (6):

CA = E?
(
J
(
C + F

)
+ (1− J)CA

)
, (13)

i.e. E?
(
J
(
C+F−CA)

)
= 0, as desired16. The terminal cash flows of the form (1−J)×. . .

in (12) or (13) are thus consistent with the desired shareholder centric perspective. They

13under normal distribution assumptions, such ES at percentile level 99.75% allows reaching similar
loss level as with a VaR (quantile) risk metric at the level 99.9%. In practice, regulatory and economic
capital indeed aims at capturing extreme losses that can occur once every 1000 years, cf. paragraph 5.1
from Basel Committee on Banking Supervision (2005) for the detailed instructions.

14see e.g. Föllmer and Schied (2010, Equations (2.1) and (5.5)).
15see Corollary 5.3 and representation thanks to expression (3.7) from Acerbi and Tasche (2002).
16see after Lemma 3.3.
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can also be interpreted as the amounts of reserve capital and risk margin lost by the
bank shareholders, as their property is transferred to the liquidator of the bank, if the
bank defaults.

Due to these terminal cash flows, the above definition is in fact a fix-point system of
equations. The split of the underlying CA equation (13) into the collection of equations
(12) is motivated by both interpretation and numerical considerations. From an inter-
pretation viewpoint, it is useful to provide the more granular view on the costs of the
bank provided by the split of the global CA amount between, on the one hand, bilateral
and centrally cleared trading default risk components BCVA and CCVA and, on the
other hand, bilateral and centrally cleared trading funding risk components BMVA and
CMVA for segregated initial margin, whereas the FVA cost of funding variation margin
is holistic in nature (can only be apprehended at the level of the bank balance-sheet
as a whole), via the feedback impact of CA + max(EC,KVA) into the FVA. From a
numerical viewpoint, the collection (12) of smaller problems may be easier to address
than the global equation (13). Each of the smaller problems can also be handled by a
dedicated desk of the bank, namely the CVA desk, for the BCVA and CCVA, and the
Treasury of the bank, for the BMVA, CMVA and the FVA.

Passing in the above equations to the bank survival measure Q∗ based on Lemma
3.3 shows that the corresponding fixed point problem is in fact well-posed and yields
explicit formulas for all the quantities at hand.

Proposition 3.1 We have

CCVA = E
[∑

c

(1− Jc)(Pc −MtMc − IMc)
+ + µL

]
,where

L =
∑
i

(1− Ji)
(
(Pi −MtMi − IMi)

+ + (P i −MtMi − IMi)
+ −DFi

)+
,

CMVA = γ̃
(
IM + IM + DF

)
,

BCVA = E
(∑

b

(1− Jb)(Pb −VMb − IMb)
+
)
,

BMVA = γ̃
∑
b

IMb

EC = ES(J(C − CVA)) ≥ 0, where

J(C − CVA) = J
(∑

c

(1− Jc)(Pc −MtMc − IMc)
+ + µL − CCVA

+
∑
b

(1− Jb)(Pb −VMb − IMb)
+ − BCVA

)
,

FVA =
γ

1 + γ

(∑
b

(MtMb −VMb)− (CCVA + CMVA + BCVA + BMVA)− EC
)+
,

KVA =
h

1 + h
EC.

(14)

All the above XVA numbers are nonnegative.
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Proof. By the result recalled after (11), EC is nonnegative as an expected shortfall
under Q of the random variable J(C+F−CA), which is centered under Q∗ and therefore
under Q, by (10). The first four formulas in (14) directly follow from Definition 3.1 and
Lemma 3.3, which also implies that KVA = E

(
h(EC − KVA)+

)
= h(EC − KVA)+. As

h is nonnegative, this KVA semilinear equation is equivalent to

(KVA > EC and KVA = 0) or (KVA ≤ EC and KVA =
h

1 + h
EC),

where (KVA > EC and KVA = 0) contradicts the nonnegativity of EC, whereas, for h ∈
[0, 1] as assumed and EC ≥ 0, KVA = h

1+hEC implies KVA ≤ EC, i.e. max(EC,KVA) =
EC. This and Lemma 3.3 yield

FVA = E
(
γ
(∑

b

(MtMb −VMb)−CA− EC
)+)

= γ
(∑

b

(MtMb −VMb)−CA− EC
)+
.

As CA = CCVA + CMVA + BCVA + BMVA + FVA, this is an FVA semilinear equation,
which, as γ is nonnegative, is equivalent to the FVA formula

FVA =
γ

1 + γ

(∑
b

(MtMb −VMb)− (CCVA + CMVA + BCVA + BMVA)− EC
)+
.

Last, we have EC = ES(J(C + F − CA)), where the identity C + F − CA = C − CVA
and the formula for J(C−CVA) in (14) are obtained by substituting the already derived
XVA formulas in (4) and (6).

Remark 3.1 The reason why funding disappears from the bank trading loss, i.e. J(C +
F − CA) = J(C − CVA), is because, in a one-period setup, the collateral borrowing
requirements (3) of the bank are simply constants. Hence funding triggers no risk to the
bank, but only a deterministic cost. In a dynamic setup, funding generates both costs
and risk.

3.3 Extension to Several CCPs or CCP Services

In the realistic case where the reference bank is a clearing member of several services
of one or several CCPs, we index all the CCP related quantities in the above by an
additional index ccp in a finite set disjoint from I ∪ C ∪ B. Then, with CA = CCVA +
CMVA + BCVA + BMVA + FVA as before:

Proposition 3.2 We have

C =
∑
ccp,c

(1− Jc)(Pccpc −MtMccp
c − IMccp

c )+ +
∑
ccp

µccpLccp

+
∑
b

(1− Jb)(Pb −VMb − IMb)
+,where

Lccp =
∑
i

(1− Ji)
(
(Pccpi −MtMccp

i − IMccp
i )+

+ (Pccpi −MtM
ccp
i − IM

ccp
i )+ −DFccpi

)+
,
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F = γ̃
∑
ccp

γ̃
(
IMccp + IM

ccp
+ DFccp

)
+

+ γ̃
∑
b

IMb + γ
(∑

b

(MtMb −VMb)− CA−max(EC,KVA)
)+
,

CA = CCVA + CMVA + BCVA + BMVA + FVA,where

CCVA = E
[∑
ccp,c

(1− Jc)(Pccpc −MtMccp
c − IMccp

c )+ +
∑
ccp

µccpLccp
]
,

CMVA =
∑
ccp

γ̃
(
IMccp + IM

ccp
+ DFccp

)
,

BCVA = E
(∑

b

(1− Jb)(Pb −VMb − IMb)
+
)
,

BMVA = γ̃
∑
b

IMb,

FVA =
γ

1 + γ

((∑
b

(MtMb −VMb)−

(CCVA + CMVA + BCVA + BMVA)− EC
)+)

,

EC = ES(J(C − CVA)) and KVA =
h

1 + h
EC,where

CVA = CCVA + BCVA,

J(C − CVA) = J
(∑
ccp,c

(1− Jc)(Pccpc −MtMccp
c − IMccp

c )+ +
∑
ccp

µccpLccp − CCVA

+
∑
b

(1− Jb)(Pb −VMb − IMb)
+ − BCVA

)
.

Proof. In the case of several CCP services, the second line in (3) must be turned into∑
ccp

(
IMccp + IM

ccp
+ DFccp

)
+
∑

b IMb; the terms in the first lines of (4) and (6) must
now be summed over the various CCP services in which the bank is involved as a clearing
member. The rest of the analysis proceeds as before.

Before passing to the case studies, we detail the calculation of economic capital under
the member survival measure.

Lemma 3.4 Denoting by qα the Q value-at-risk, if Q(C − CVA = qα) = 0, then

EC = E?
(
C − CVA

∣∣C − CVA ≥ qα, J = 1
)
. (15)

Proof. If Q(C −CVA = qα) = 0, then, using equations (3.4) and (3.7) from Acerbi and
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Tasche (2002) to represent the tail mean expression17 for the ES, we have by (14):

EC = ES
(
J(C − CVA)

)
= E

(
J(C − CVA)

∣∣J(C − CVA) ≥ qα
)
)

=

E
(
J(C − CVA)1{

J(C−CVA)≥qα
})

Q
(
J(C − CVA) ≥ qα

)
=

E?
(

(C − CVA)1{
(C−CVA)≥qα

}1{J=1}

)
Q?
(
(C − CVA) ≥ qα, J = 1

) ,

using (10) on both numerator and denominator expressed in expectation form, which
yields (15).

4 Case Studies Setup

We describe two possible applications of our XVA framework which will be illustrated
by numerical case studies. To these ends, we introduce a market and credit model with
parameters that can capture dependence between portfolio changes, joint defaults and
possible averse exacerbated changes of the portfolio due to their owner default known as
wrong-way risk. Then two networks will be defined to serve the numerical illustrations,
one rather educational on the use of the XVA metrics and the other one reflecting the
more realistic situation depicted by Figure 1.1.

The CVA and KVA computations require a Monte-Carlo routine run under Q? in
combination with a rejection technique in order to yield simulations under the survival
measures associated with different clearing members, thereafter labeled CM* with *
taking an identifier number.In the numerical applications that follow, all members play
in turn the role of the reference bank in the theoretical XVA framework of Sections 2-3.
For obtaining confidence intervals regarding the expected shortfalls that are embedded
in the KVA computations, the simulations are split into several batches, from which the
mean of the estimated ES’s yields the final ES estimate, while their standard deviation
is used to define a confidence interval.

The default time for member i is generated based on Student-t copulas with corre-
lated credit and market components, where credit components are reflected through the
member’s default times and the market components through their portfolio variation
over the liquidation period following the default, proxied in our setup by the difference
∆Pi := Pi − MtMi. We denote by ρcr > 0 the correlation coefficient of the copula
Gaussian factor driving common defaults, by ρmkt > 0 the correlation coefficient of the
Gaussian factor driving common portfolio variations, and by ρwwri > 0 the correlation
coefficient of the Gaussian factor driving both portfolio variation and default for member
i. The Student-t degree of freedom parameter is assumed to be the same for generat-
ing both members’ default and portfolio variations. In equations, denoting by Fi the

17as per Definition 2.6 and further representation (3.7) from Acerbi and Tasche (2002).

14



marginal c.d.f. of member i’s default time and by Sν the Student-t c.d.f. with degree of
freedom ν:

τi = F−1i

(
Sν

(√
ν

Wc
i

(
√
ρcrT −

√
ρwwri

4

√
1− ρcr

1− ρmkt
Xi+

√
1− ρcr

√
1− ρwwri√

1− ρcr
√

1− ρmkt
Ti

)))
,

∆Pi
nomiσi

√
∆`

=

√
ν

Wm
i

√ρmktE +
√
ρwwri

4

√
1− ρmkt

1− ρcr
Xi+

√
1− ρmkt

√
1− ρwwri√

1− ρcr
√

1− ρmkt
Ei

)
(16)

where nomi ∈ R is a signed nominal of the portfolio of member i, σi is its annualized
relative volatility, ∆` reflects a positive liquidation period accounting for the time taken
by the CCP to novate or liquidate18 defaulted portfolios, and

• T , Ti, E , Ei and Xi are i.i.d. standard normal random variables, where:

– T represents the common systemic factor for default times across members,

– E represents the common systemic factor for portfolio variations across mem-
bers,

– Xi is the common factor co-driving portfolio variations and default time of
member i,

– Ti is the idiosyncratic factor for member i’s default time,

– Ei is the idiosyncratic factor for member i’s portfolio variations;

• Wc
i and Wm

i are i.i.d. random variables following χ2 distribution with degree of
freedom ν, independent from the above Gaussian random variables.

Remark 4.1 In practice, margin computations rely on historical estimates based on
several market stressed periods. Our approach, instead, aims at reflecting extreme market
shocks with fat tailed Student-t distributions of degree of freedom ν = 3, and volatility
level within a reasonable range of [20%, 40%]. Our static formulation depicts stationary
increments of the defaulted portfolios’ value over the liquidation period.

The above setup requires the following constraints on the correlation coefficients to be
properly defined19: √

1− ρcr
√

1− ρmkt ≥ ρwwri (17)

18cf. Section 6.
19otherwise, the model for both default time and portfolio variation factors is undefined due to their

idiosyncratic coefficient term

√
1− ρwwr

i√
1−ρcr

√
1−ρmkt

.
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The ”minus” sign in front of the common credit-market factor −
√
ρwwri for the

default time component in (16) ensures that the corresponding common factor accelerates
defaults, whilst increasing the market exposure due to the +

√
ρwwri factor in the second

part of (16).
In the examples that follow, market participants are identified by a number and can

then be included in one of several of the considered CCPs.

4.1 Single CCP Setup and initial XVA costs

We consider a single CCP service with 20 members labeled by i ∈ 0 . . . n = 19, only
trading for cleared clients (i.e. without bilateral or centrally cleared proprietary trading).
Each member faces one client. The ensuing financial network is depicted by Figure 4.1.

CCPB0

B1

B2
B3

B4 B5 B6
B7

B8

B9

B10

B11

B12

B13
B14B15B16

B17

B18

B19

C15

C5C4
C3

C2

C1

C0

C6

C7

C8

C9

C10

C14

C13

C12

C11

C16

C17

C18

C19

Figure 4.1: Financial network composed of 1 CCP, its 20 members (labeled by B) and
one client per member

All clients are assumed to be risk-free. For any member i, its posted IM to the CCP
is calculated based on the idea of a VM call not fulfilled over a time period ∆s < ∆` at
a confidence level α ∈ (1/2, 1), using a VaR metric20 applied to the non-coverage of VM
call taken also to follow a scaled Student-t distribution Sν with ν degrees of freedom:

IMi = VaR1−α
(
nomiσi

√
∆sSν

)
= |nomi|σi

√
∆sSν

−1(α) (18)

where Sν
−1 is the inverse c.d.f. of a Student-t distribution with degree of freedom ν.

The default fund is calculated at the CCP level as

Cover2 = SLOIM(0) + SLOIM(1), (19)

20under the member survival measure.
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for the two largest stressed losses over IM (SLOIMi) among members, identified with
subscripts (0) and (1), where SLOIM is calculated as the value-at-risk at confidence level
α′ > α of the loss over IM, i.e.

SLOIMi = VaRα′
(
nomiσi

√
∆sSν − IMi

)
= |nomi|σi

√
∆s

(
Sν
−1(α′)− Sν−1(α)

)
. (20)

The total amount (19) is then allocated between the clearing members to define their

(funded) default fund contributions as DFi =
SLOIMi∑
j SLOIMj

Cover2.

The nomj ’s of other clearing members are not observable by a given one. However,
following Murphy and Nahai-Williamson (2014) and Lipton (2018), nom(i) denoting the
i-th largest absolute nominal amount for i ∈ 0 . . . n = 19, a parameterization of the form

nom(i) = αe−β(i+1), α, β > 0 (21)

can be fit to the total default fund held by the CCP21 and the sum of its five largest
default fund contributions22, published each quarter for most of the CCPs and that
are public data. The inferred parameter α and β from the default fund data are used
to depict a similar pattern on the nominal sizes23. The participants and portfolios
parameter inputs are detailed in Table 4.1, where id is the identifier of the CM, DP
stands for the one year probability of default of the member expressed in percentage
points, size represent the overall portfolio size of the member detained within the CCP,
and vol is the annual volatility used for the portfolio variations.

The portfolios listed in the Table 4.1 relates to the members towards the CCP (which
are mirroring the ones between the members and their clients). The sizes sum up to 0,
in line with the CCP clearing condition (first identity in Assumption 3.1, here without
proprietary trades).

The parameters of the XVA costs calculations are summarized in Table 4.2. Note
that the chosen period length of T = 5 years covers the bulk (if not the final maturity)
of most realistic CCP portfolios.

For each member, the CCVA, CMVA and KVA costs are calculated and reported in
Table 4.3. For KVA, two calculations have been performed, one based on ES at 99th

percentile level and another one based on 99.75th percentile level. The amount in square

21item referenced as 4.3.15 in Bank of International Settlements and OICV-IOSCO (2021), Value
of pre-funded default resources (excluding initial and retained variation margin) held for each clearing
service in total, post-haircut. in the quantitative disclosure documents.

22item referenced as 18.4.2 in Bank of International Settlements and OICV-IOSCO (2021):For each
segregated default fund with 25 or more members; Percentage of participant contributions to the default
fund contributed by largest five clearing members in aggregate.; or item referenced 18.4.1 for CCP services
with less than 25 members

23as if the default fund amounts are proportional to the portfolio sizes.
24such confidence level at 97% for SLOIM in DF calibration allows for a ratio of default fund over

initial margin of about 10% in our calculations, a ratio (of this level or less) often observed in practice.
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cm id 0 1 2 3 4 5 6 7 8 9

DP (%) 0.5 0.6 0.7 0.8 0.9 2 1.9 1.8 1.7 1.6

size -242 184 139 105 -80 -61 -46 35 26 -20

vol (%) 20 21 22 23 24 25 26 27 28 29

cm id 10 11 12 13 14 15 16 17 18 19

DP (%) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6

size -15 -11 -9 -6 5 -4 -3 2 2 -1

vol (%) 30 31 32 33 34 35 36 37 38 39

Table 4.1: Member characteristics and portfolio parameters, ordered by decreasing
member size.

One-period length T 5 years

Liquidation period at default ∆l 5 days

Portfolio variations correlation ρcr’s 30%

Credit factors correlation ρmkt’s 20%

Correlation between credit factors and portfolio variations ρwwri ’s 20%

IM covering period (MPoR) 2 days

IM quantile level 95%

Funding blending ratio γ̃/γ 25%

SLOIM calculation24 for DF Cover-2 VaR 97%

DF allocation rule based on IM

Quantile level used for clearing members EC calculation 99.75%

Hurdle rate h used for KVA computations 10.0%

Number of Monte-Carlo simulation (for CCVA & KVA computations) 5,000,000

Number of batches (for KVA computations) 50

Table 4.2: XVAs calculation configuration

bracket is the corresponding quantile level from which average is calculated and numbers
in parenthesis represent the 95% confidence interval in relative difference from calculated
metric for both CCVA and KVA. All the XVA numbers decrease with the member size.

To assess the average behavior w.r.t. ρcr, ρmkt and ρwwr of the CCVA and KVA,
we vary these correlations between 10% and 90% and display in Figures 4.2 and 4.3
the corresponding metrics, aggregated over all clearing members successively considered
as the reference bank. As expected, the KVA depicts both an increase with respect to
ρcr, ρmkt and ρwwr, though ρwwr has more impact than ρcr and ρmkt (right panels in
Figures 4.2 and 4.3). As seen on the left panels of Figures 4.2 and 4.3, there are very
marginal changes for CCVA w.r.t. ρcr and ρmkt, but a significant impact of ρwwr. This
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cm id CMVA CCVA KVA (99%) KVA (99.75%)

0 0.0687 0.0442 (0.6%) 0.2093 [0.0948] (1%) 0.4142 [0.2306] (1.6%)

1 0.0656 0.0412 (0.7%) 0.2087 [0.0855] (1.2%) 0.437 [0.2267] (1.8%)

2 0.0604 0.0327 (0.7%) 0.1683 [0.0679] (1.2%) 0.355 [0.1823] (1.6%)

3 0.0544 0.026 (0.7%) 0.1355 [0.0543] (1.2%) 0.2863 [0.1466] (1.6%)

4 0.0485 0.0191 (0.8%) 0.103 [0.0395] (1.2%) 0.2224 [0.1112] (1.7%)

5 0.0834 0.0133 (0.8%) 0.0809 [0.0295] (1.2%) 0.1772 [0.0886] (1.6%)

6 0.0623 0.0111 (0.8%) 0.0667 [0.0251] (1.1%) 0.1439 [0.0728] (1.6%)

7 0.0467 0.0099 (0.7%) 0.0557 [0.0223] (1.1%) 0.1171 [0.0606] (1.5%)

8 0.0341 0.0078 (0.7%) 0.0432 [0.0174] (1.1%) 0.091 [0.0471] (1.6%)

9 0.0256 0.006 (0.8%) 0.0342 [0.0137] (1.2%) 0.0721 [0.0371] (1.7%)

10 0.0187 0.0048 (0.8%) 0.0266 [0.0107] (1.1%) 0.0561 [0.0289] (1.6%)

11 0.0132 0.0037 (0.7%) 0.0202 [0.0081] (1.1%) 0.0423 [0.0219] (1.5%)

12 0.0104 0.0031 (0.7%) 0.017 [0.0069] (1.2%) 0.0358 [0.0185] (1.6%)

13 0.0066 0.0022 (0.7%) 0.0116 [0.0047] (1.1%) 0.0244 [0.0127] (1.6%)

14 0.0052 0.0019 (0.7%) 0.01 [0.0041] (1.1%) 0.021 [0.0108] (1.6%)

15 0.0039 0.0016 (0.7%) 0.0082 [0.0033] (1.1%) 0.0172 [0.0089] (1.5%)

16 0.0027 0.0012 (0.7%) 0.0063 [0.0026] (1.1%) 0.0132 [0.0068] (1.6%)

17 0.0017 0.0008 (0.7%) 0.0043 [0.0017] (1.1%) 0.009 [0.0047] (1.5%)

18 0.0015 0.0009 (0.7%) 0.0044 [0.0018] (1.1%) 0.0092 [0.0048] (1.6%)

19 0.0007 0.0004 (0.7%) 0.0023 [0.0009] (1.1%) 0.0047 [0.0025] (1.5%)

Table 4.3: Initial XVA costs: estimates, [value-at-risk underlying the KVA estimate]
and (95% confidence level errors)

is understandable as, apart for modulations of the measure with respect to which each
individual CCVA is assessed, the CCVA aggregated over clearing members is essentially
an expectation of the CCP loss L (cf. the second line of (14)). The individual CCVAs
(as per the first line of (14)) of each clearing member, however, may depend on ρcr and
ρmkt (on top of of ρwwr) in a strong and nontrivial manner, via the allocation coefficient
µ.

4.2 Two CCPs Network Setup

We consider the case of Figure 1.1 where there are two CCPs with some common mem-
bers and stress test is considered from the perspective of one of these common members.
The motivation for this case is to provide a realistic example mimicking in a simpli-
fied way the trading firm Ronin Capital, which had memberships on both FICC GSD25

segments, hereafter denominated by CCP1 and CME Futures, hereafter denominated
by CCP2 in March 2020. It is well known that a VaR type risk measure is not sub-
additive, in particular for credit portfolios as illustrated in Example 5.4 in Acerbi and
Tasche (2002) and Example 2.25 in McNeil et al. (2015) for a portfolio of defaultable
bonds, so that for a common member adding VaR estimates of trading losses on two
CCPs separately can lead to underestimated levels with respect to the actual VaR of the
global exposition of the member. As such, stress test exercises accounting for common

25Government Securities Division
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Figure 4.2: CCVA and KVA w.r.t. credit factors correlation and credit and portfolio
variation factors correlation

memberships could reveal a larger risk compared to the exercise where stress tests are
conducted separately on each CCP.

To perform the analysis, the following setup is considered:

• all members have only clearing client positions26, with 123 members on CCP1 and
56 members on CCP2, out of which 24 are common to both CCPs,

• all clients are assumed default free,

• both CCPs use configuration as per Table 4.2,

• the sizes of the positions are assumed exponentially distributed in the sense that
from the most exposed member to the least one, absolute value of positions decrease
exponentially with the form in (21) as depicted by Figures 4.4 and 4.5 respectively,

• the proportion of the default fund detained by the 5 biggest members is 25% for
CCP1 and 61% for CCP227,

• the size of the default fund of CCP1 is assumed to be twice the one of the default
fund of CCP2.

All data used are either public or have been anonymized. Similar configuration as given
in Table 4.2 is used, apart from the number of Monte-Carlo simulations reduced to 2
millions for memory capacity reasons.

26Ronin Capital had in fact only a house account and was thus not clearing any client position.
27taken from the quantitative disclosure of both CCPs as of third quarter of 2020.
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Figure 4.3: CCVA and KVA w.r.t. market factors correlation and credit and portfolio
variation factors correlation

The clearing conditions are ensured by setting the sum of the portfolio sizes nomi to
zero on each CCP. The situation of member 3, exposed to both CCPs, as the defaulting
member, corresponds roughly to the situation of Ronin Capital in 2018. In particular,
an annual probability of default of 0.1% corresponds roughly to a BBB rating, that was
assigned to Ronin Capital in 2018 for its issuances28.

5 Stress Test Exercises

As outlined in the capital requirements regulation detailed in The European Parlia-
ment and the Council of the European Union (2013) article 290, financial institutions
must conduct regular stress test exercises of their credit and counterparty exposures.
Paragraph 8 of this article also stipulates the reverse stress test29 requirement to

[...] identify extreme, but plausible, scenarios that could result in significant
adverse outcomes.

This is complemented by article 302 on the exposure financial institutions may have
towards CCPs:

Institutions shall assess, through appropriate scenario analysis and stress
testing, whether the level of own funds held against exposures to a CCP,

28https://www.spglobal.com/marketintelligence/en/news-insights/blog/

banking-essentials-newsletter-july-edition-2
29see dedicated definition p.12 in Board of Governors of the Federal Reserve System (2012) and articles

97, 98 p. 37 in European Central Bank (2018) for official regulatory definitions.
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Figure 4.4: Decreasing absolute nomi

per member for CCP1
Figure 4.5: Decreasing absolute nomi

per member for CCP2

including potential future credit exposures, exposures from default fund con-
tributions and, where the institution is acting as a clearing member, expo-
sures resulting from contractual arrangements as laid down in Article 304,
adequately relates to the inherent risks of those exposures.

In practice, stress test exercises aim at assessing the capacity of financial institutions
to absorb financial and economic shocks. In regular exercises, such as the ones conducted
by the European Banking Authority, the shocks are usually considered under so called
central and baseline macro-economic scenarios corresponding to a median quantile and
adverse scenario usually taken as a 90th percentile reflecting severe yet plausible scenario
that can occur once every 10 years30. Additionally, extreme scenarios can be considered
for measuring the capital adequacy31 for absorbing extremely severe losses around con-
fidence level at 99.9%. From a clearing member perspective, this requires to have the
capacity of scanning certain points of its trading loss distribution. In our framework,
this boils down to identifying particular levels of the distribution of the trading loss
C = CVA = C − CCVA − BCVA of the reference clearing member bank, where the
different terms are detailed in Proposition 3.2.

The other type of stress test exercises, referenced as reverse stress test32 (Bellini
et al., 2021), consists in identifying the probability of reaching a given loss level as well
as describing the scenario configuration such as projected defaults and loss magnitude
leading to such loss levels. The distribution must span a sufficient large spectrum of

30such confidence levels are suggested by the Federal Reserve outlining p.10 in Board of Gover-
nors of the Federal Reserve System (2013) the various recession periods of the United States listed in
their Table 1 p. 14. The 2021 instructions in European Bank Authority (2021) also indicate p.72 that
stressed market risk factors are based on shocks specified in European Systemic Risk Board (2013), citing
Dordu et al. (2017, p. 29), with the US recessions periods as stressful economic episodes.

31cf. paragraph 5.1 p.11 from Basel Committee on Banking Supervision (2005).
32see also dedicated definition on p.12 in Board of Governors of the Federal Reserve System (2012)

and articles 97, 98 p. 37 in European Central Bank (2018) for official regulatory definitions.
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losses, including the ones targeted by the exercise, but it also has to be sufficiently rich
numerically to allow identifying combinations of events leading to such losses.

Confidence intervals of corresponding extreme scenario probabilities should comple-
ment the analysis to ensure the reliability of the used model and numerical methods.

Regulators have the ability to challenge financial institutions on these elements and
demand for improvements33.

We now briefly explain how to identify and exploit the scenarios leading to contribute
the most to economic capital, in the spirit of Albanese et al. (2021). We denote by M
the number of Monte-Carlo scenario for which J = 1, i.e. survival of the reference bank.
Its trading loss C − CVA for a simulation m is given by Cm − CVA, where m ∈ 1 . . .M
enumerates the simulated scenarios for which the reference member bank ends up in
survival state.

To get an estimate of the economic capital based on expected shortfall, relying on
Acerbi and Tasche (2002, Definition 2.6 and Proposition 4.1), we calculate, for a high
confidence level α ∈ (12 , 1) and [x] denoting the integer part of any x ∈ R,

ÊS (C − CVA) :=
1

M − [αM ]

M∑
m=[αM ]+1

{
C(m) − CVA

}
, (22)

where the C(m)−CVA’s are the simulated trading losses of the reference bank ranked in
increasing order.

To obtain the contribution of any simulated scenario m′ (with (m′) ≥ [αM ]) to the
economic capital estimated by (22), i.e.

ÊS
−m′

(C − CVA) :=

1

M − 1− [α(M − 1)]

{(
M − [αM ]

)
ÊS (C − CVA)−

(
Cm′ − CVA

)}
.

(23)

Yhe contribution δm′ÊS (C − CVA) of scenario m′ to ÊS (C − CVA) is then given by:

δm′ÊS (C − CVA) = ÊS (C − CVA)− ÊS
−m′

(C − CVA) (24)

To illustrate the various flavors of stress test exercises that can be conducted by a
CCP member, we report numerical results for the two network examples introduced in
Section 4. We start with a reverse stress test exercise on example covered by Table
4.1. For this first illustration, a specific extreme loss is targeted and the corresponding
probability of loss reaching at least such target level is estimated. We then consider the
example illustrated by Figure 1.1 where projected loss levels for specific confidence levels
are indicated for the members with common memberships on the two CCPs.

33this may entail re-assessment of the Pillar 2 guidance additional capital requirement set in the annual
Supervisory Review and Evaluation Process reported by Banks, cf. European Central Bank (2021) for a
brief definition and use and Basel Committee on Banking Supervision (2019b) for more extensive details
as well as Board of Governors of the Federal Reserve System (2020) for similar requirements.
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cm id 99.9% 1.5× 99.9% RST scenario probability

0 3.9949 (-1.1%, 1.4%) 5.9924 0.0387% (5%)

1 4.1141 (-1.3%, 1.7%) 6.1712 0.0428% (4.4%)

2 3.3409 (-1.6%, 1.4%) 5.0114 0.0435% (4.4%)

3 2.6914 (-1.4%, 1.6%) 4.0371 0.0437% (4.3%)

4 2.0695 (-1.2%, 1.8%) 3.1043 0.0452% (4.5%)

5 1.6715 (-1.7%, 1.5%) 2.5073 0.044% (4.6%)

6 1.3517 (-1.3%, 1.6%) 2.0276 0.0437% (3.9%)

7 1.1032 (-1.4%, 1.7%) 1.6548 0.0434% (4.2%)

8 0.8554 (-1.5%, 1.5%) 1.2831 0.0435% (4.1%)

9 0.6817 (-1.7%, 1.5%) 1.0226 0.0433% (4.2%)

10 0.5287 (-1.7%, 1.4%) 0.7931 0.0429% (4.4%)

11 0.4001 (-1.7%, 1.4%) 0.6002 0.0427% (4.4%)

12 0.3385 (-1.3%, 1.5%) 0.5078 0.0431% (4.2%)

13 0.2314 (-1.5%, 1.5%) 0.3471 0.0428% (4.6%)

14 0.1972 (-1.3%, 1.6%) 0.2958 0.0429% (4.4%)

15 0.1623 (-1.4%, 1.5%) 0.2435 0.0427% (4.3%)

16 0.1249 (-1.4%, 1.5%) 0.1874 0.0427% (4.4%)

17 0.0852 (-1.5%, 1.4%) 0.1278 0.0434% (4%)

18 0.0873 (-1.4%, 1.6%) 0.131 0.0427% (4.1%)

19 0.0447 (-1.6%, 1.3%) 0.0671 0.0431% (4%)

Table 5.1: Stress test (ST) extreme quantile, 1.5× ST extreme quantile and RST
probability to breach 1.5 times the 99.9th quantile loss level, for each member, based on
5, 000, 000 simulations (in parentheses: corresponding 95% confidence intervals).

5.1 Numerical Results

In Table 5.1, we report, for the example summarized in Table 4.1, the 99.9th percentile
trading loss levels, referenced as extreme quantile, with corresponding (asymmetric)
confidence intervals based on the approach proposed in Meeker et al. (2017, Section
G.2). This is done for every clearing member successively playing the role of the reference
bank in the setup of Sections 2-3. We also compute the probabilities of reaching a loss
equal to 1.5 times the obtained extreme quantile level, referenced as RST scenario, with
corresponding confidence levels34.

Our description of the scenarios leading to such losses includes the identified defaulted
members, the generated losses and the allocated loss coefficient of the reference clearing
member (CM1 in this example). Table 5.2 provides the description of the 20 worst
scenarios, contributing the most to the EC estimation for the second biggest member,
that is CM135. Most of these scenarios are driven by significant losses stemming from

34the calculation of the latter confidence intervals of the probability of being above a quantile relies
on the same numerical approach based on batches used for KVA calculations. Also, the batch approach
leads to reasonably tight confidence intervals for the RST scenario probabilities.

35its theoretical number of scenarios above the RST loss level should be 2076, i.e. the number of MC
simulations of 5,000,000 multiplied by CM1’s survival probability over 5 years and by CM1’s RST loss

24



Rank Total Loss n µ Defaulters Losses triggered by defaulters

1 10.97 3 0.22 cm0, 9, 16 544.37, 0, 0

2 8.18 3 0.23 cm0, 7, 11 391.38, 0, 0.55

3 7.84 3 0.24 cm0, 6, 7 356.66, 0, 0

4 6.74 1 0.21 cm0 347.74

5 6.06 4 0.25 cm0, 5, 7, 15 0, 267.65, 0, 0.01

6 6.05 5 0.25 cm0, 7, 8, 10, 11 269.86, 0, 0, 0, 0

7 6.03 4 0.24 cm0, 5, 12, 18 278.62, 0, 0, 0

8 4.85 5 0.21 cm5, 6, 7, 11, 12 257.88, 0, 0, 0, 0

9 4.19 4 0.2 cm2, 12, 13, 18 230.49, 0.48, 0, 0

10 4.11 1 0.18 cm5 250.77

11 4.07 3 0.24 cm0, 6, 8 187.74, 0, 0

12 3.94 4 0.22 cm3, 5, 6, 13 0, 0, 197.59, 0

13 3.93 2 0.2 cm2, 8 214.58, 0

14 3.82 1 0.21 cm0 197.11

15 3.7 1 0.21 cm0 191.08

16 3.66 8 0.32 cm0, 2, 5, 10, 11, 12, 14, 16 127.07, 0, 0, 0, 0, 0, 0, 0

17 3.65 4 0.23 cm0, 9, 10, 18 176.98, 0, 0, 0

18 3.5 2 0.21 cm0, 16 179.86, 0

19 3.48 2 0.23 cm0, 7 170.21, 0

20 3.48 3 0.23 cm0, 6, 15 166.23, 0, 0

Table 5.2: Economic Capital 20 worst scenarios details for member 1 in decreasing
order of total loss where column with header µ indicates allocated coefficient loss to
member 1 and n is the number of defaults within the scenario.

CM0’s default, reflecting the highly concentrated position of CM0. Note that the 16th

worst loss scenario for member 1 entails 8 defaults, including the one of CM0, which is
the only one to generate losses beyond its posted margin (i.e. to trigger a loss to the
surviving members).

From CM1 viewpoint (i.e. with CM1 in the role of the reference clearing member), 15
scenarios entail significant losses over the collateral posted by the defaulted CM0 (posi-
tive first entries in the last column of Table 5.2). CM0 bears a very large concentrated
position compared to other members. Even if CM0 has more IM and DF requirements
than others, this is still not enough: this example highlights that employed DF allocation
rules in this example dilute the DF collateral requirements for concentrated positions. It
also illustrates that scenarios with multiple defaults do not necessarily lead to extreme
losses, due to the fact that members with medium or small positions have large default
fund contributions stemming from others’ concentrated positions.

In Table 5.3, we report, for the example illustrated by Figure 1.1 with 2 CCPs, the
trading loss levels (value-at-risks) at confidence levels 90% and 99.9%, for the 24 common

level probability estimated in Table 5.1 as 0.0428%, which is of course far too many to report. Nonetheless
a focus on the 20 worst ones already illustrates the type of information that can be exploited for such
exercises.
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members on the two CCPs. The corresponding numbers in the case where the two CCPs
would be considered separately is reported in the columns labeled “stand-alone”.

For quantiles at 90% confidence levels, the loss levels are significantly higher when the
common membership are considered compared to the stand-alone quantile loss calcula-
tion conducted on each CCP and summed, especially for the first ten members.

For members with very low size on one of the two CCPs compared to the other,
considering the common memberships or not does not affect the loss estimates, as ex-
pected36. This outlines the importance of taking into account such commonality feature
for sizeable members on the CCPs. On the contrary, with quantile loss levels at con-
fidence level 99.9%, the sum of stand-alone loss estimations are well above the loss
estimate when common memberships are taken into consideration. For members facing
the two CCPs, this leads in particular to over-conservative KVA estimates. This in turn
is detrimental for client end-users that support unnecessary additional capital costs.

6 Optimizing the Porting of Defaulted Client Portfolios

In case a clearing member defaults, the CCP tentatively novates part of the CCP port-
folio of the defaulted member through auctions among the surviving clearing members
(Default Risk Management Working Group, 2016; Basel Committee on Banking Super-
vision, 2019a), and it liquidates the residual on the market. A natural baseline is that
the CCP novates (auctions among surviving members) client trades and their mirror-
ing client account positions, collectively dubbed client positions for brevity hereafter,
whereas house account positions are liquidated.

The liquidation side of the procedure cannot be handled in our modeling setup, which
does not embed the fundamentals of price formation (our MtM processes are assumed
to be exogenously given). On the other hand, an XVA-based procedure can be used for
rendering what would be the output of an idealized, efficient auction, assuming a large
number of clearing members (Oleschak et al., 2019, Section 3.3). Namely, supposing
that the reference clearing member, labeled by 0 in Sections 2-3, defaults at time 0,
i.e. just after that all portfolios have been settled, for each surviving member CM∗
successively envisioned as a potential taker of the defaulted (client) positions of CM0,
one computes the incremental (∆) XVAs of porting the defaulted positions to CM∗, for
each surviving member (CM∗ included37). The corresponding incremental XVA numbers
are then summed over metrics and survivors, resulting in the funds transfer price (FTP∗)
of porting defaulted client positions to CM∗. The effective taker is then the surviving
member for which the ensuing FTP∗ is the smallest38. See Albanese et al. (2020, Section
5.2) for more details on such “XVA Pareto optimally” driven novation procedures.

36as the CCP with the very low size compared to the other should have marginal impact.
37note that all members are impacted by additional margin to fund due to the re-calibration of their

DF by the CCP, whereas only the member taker of the portfolio sees in addition its IM adjusted.
38or, indifferently in case of multiple minima, one of the minimizing FTP∗ members.
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Surv. member ∗ − Costs Total ∆CMVA∗ Total ∆CCVA∗ Total ∆KVA∗ Total FTP∗
1 0.0768 (0.0295) -0.0025 (0.0018) 0.0743 (-0.0006) 0.1486 (0.0307)

2 0.0921 (0.0428) 0.0007 (0.0047) 0.1418 (0.0387) 0.2346 (0.0862)

19 0.1298 (0.0818) 0.0129 (0.0223) 0.1725 (0.2313) 0.3151 (0.3354)

3 0.1054 (0.0576) 0.007 (0.0075) 0.2333 (0.0735) 0.3457 (0.1387)

18 0.1417 (0.0939) 0.0186 (0.0219) 0.2757 (0.2275) 0.4359 (0.3432)

17 0.1549 (0.107) 0.0228 (0.0218) 0.3215 (0.229) 0.4992 (0.3578)

16 0.1688 (0.1208) 0.0271 (0.0217) 0.4075 (0.2303) 0.6034 (0.3728)

4 0.1525 (0.1022) 0.0116 (0.0122) 0.445 (0.1288) 0.6091 (0.2431)

15 0.1814 (0.1334) 0.0305 (0.0214) 0.4656 (0.2294) 0.6775 (0.3842)

14 0.1903 (0.1426) 0.035 (0.0209) 0.5079 (0.2237) 0.7332 (0.3872)

13 0.2061 (0.1582) 0.0384 (0.0208) 0.5903 (0.2272) 0.8349 (0.4063)

12 0.2171 (0.1692) 0.0406 (0.0202) 0.6277 (0.2252) 0.8854 (0.4147)

11 0.2285 (0.1807) 0.0439 (0.0198) 0.6811 (0.2223) 0.9536 (0.4228)

10 0.2385 (0.1908) 0.0469 (0.019) 0.757 (0.2181) 1.0424 (0.428)

8 0.234 (0.1881) 0.0512 (0.0164) 0.7812 (0.1858) 1.0663 (0.3903)

7 0.2327 (0.1876) 0.0519 (0.0149) 0.809 (0.1696) 1.0936 (0.3721)

9 0.2478 (0.2003) 0.0483 (0.0181) 0.7994 (0.2117) 1.0955 (0.4301)

6 0.2687 (0.2225) 0.0506 (0.0135) 0.9811 (0.1689) 1.3004 (0.405)

5 0.2728 (0.2274) 0.0486 (0.0113) 1.0242 (0.1414) 1.3456 (0.3801)

Table 6.1: ∆XVA∗ corresponding to the different surviving CM∗, i.e. for ∗ other than
0, assuming an instant default of CM0 at time 0. In parenthesis, the contributions to
∆XVA∗ of CM∗ itself.

In what follows, based on the example of Table 4.1 (which only involves client posi-
tions), we analyze from this perspective a first scenario of a single default on the CCP
and a second scenario with two defaults.

6.1 Single Default Resolution Example

Taking the first case with a single default, we first assume the scenario whereby CM0
defaults at time 0. Table 6.1 summarizes the ∆XVA∗, across members ∗ from 1 to 19,
in increasing order of the total FTP∗ indicated in the last column. Based on the results
of Table 6.1, CM1 appears to be the potential taker leading to the least overall FTP
costs across all surviving members. This is understandable as this member’s portfolio
size (184 in Table 4.1) nets the most the defaulted member’s portfolio size (-242), with
volatility and credit default probability similar to39 the ones of the defaulted member.

As CM1 concentrates more risks due in particular to non-perfect offset40 between its

39in particular, not significantly higher than.
40By offset we refer to risk reduction when taking over some additional position. The effect of cor-

relation is such that an opposite sign in portfolio size does not imply an equal offset of the risk of the
aggregated positions. For instance, even with opposite sizes and same volatilities but for ρmkt ∈ (0, 1/2),
the member ends up with more risk.
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∆CMVA ∆CCVA ∆KVA

0.0593 0.0182 0.2846

Table 6.2: Standard deviation across surviving members ∗ of the ∆XVA∗’s for the
example with 1 CCP and 20 members, assuming an instant default of CM0 at time 0.

∆CMVA ∆CCVA ∆KVA

0.0586 0.0178 0.2875

Table 6.3: Standard deviation of incremental XVAs across members for the example
with 1 CCP and 20 members with CM0 and CM8 considered in default state

prior positions and the defaulting one, there is an increase of its IM reflected through
an increase of CMVA. But the new risk of CM1 is less than the sum of the former risks
of CM0 and CM1, hence the CCVA aggregated across surviving members is reduced.
This only happens when CM1 takes over the defaulting portfolio, other potential takers
leading to an overall increase of the CCVA. As for the KVA, there is a reduction effect
for CM1 when CM1 is the taker (see the term in parentheses in Table 6.1), but an
overall increase in the total KVA (aggregated over all surviving members), whichever
the member taker is. Having CM1 as the taker allows to minimize ∆KVA.

As expected, among the three XVA components, KVA is the main determinant of
the optimal taker: see Table 6.2.

Once the CCP has re-allocated all defaulted client positions, the resulting financial
network formerly depicted in Figure 4.1 becomes the network with 19 members shown
in Figure 6.1. The thick lines represent the new portfolio exposures for CM1 and the
pale dashed lines show the defaulted CM0 positions.

6.2 Joint Default Resolution Example

In case two members default instantly at time 0, it is likewise possible to resolve numer-
ically the re-allocation of their client portfolios. The number of possible combinations of
takers in that case is 182 = 324 (assuming each of the two portfolios taken over by one
survivor). By putting into default CM0, the largest member with portfolio size −242, as
well as CM8, a middle-sized member with portfolio size 26, we get that CM1 and CM4
taking over the respective portfolios of the defaulted CM0 and CM8 leads to the least
FTP (additional ∆XVAs aggregated across the remaining 18 members of the CCP). The
resulting network post defaults of members 0 and 8 is shown in Figure 6.2. As depicted
by Table 6.3, the KVA again plays the major role in determining the optimal takers.
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Figure 6.1: The 1-CCP, former 20-member financial network with 19 members post
CM0 default. Defaulted CM0, labeled “B0” in the presented network, is represented
as pale dashed node with pale dashed links to reflect former exposures to its client and
toward the CCP. The optimal porting of CM0 portfolio with CM1, labeled “B1”, is
outlined with bold links to reflect the new exposures for CM1.

When looking at the signed portfolio sizes and one-year default probability of the two
takers, it is aligned with the intuition that the second largest member, which is CM1
with portfolio size 184, should take over the defaulted portfolio of CM0 with size −242,
as it has an opposite portfolio direction, resulting into a strong netting benefit. Moreover
that its default probability is similar to that of CM1. At first sight, CM4 with prior
default portfolio size −80 taking over defaulting portfolio of CM8 with size 26 seems
surprising. Other potential takers with closest opposite portfolios sizes are CM6 (with
size −46) and CM9 (with size −20). But their default probability is roughly twice the
one of CM4. As a result, CM4 taking over CM8 defaulted portfolio yields a significant
reduction in terms of KVA compared to the situation where CM6 or CM9 would take
over CM8’s portfolio, as depicted in Table 6.4.

In practice, much larger financial networks are involved. An illustration of such
network (restricted to Eurozone) is given by Figure 6.3, omitting all client trades for
ease of readability. The center of the network indicates the various members having
common memberships towards several CCPs. Combinatorial novation optimization, as
also stress test analysis41, over such complex networks, is of course order(s) of magnitude

41see Section 5.1
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Figure 6.2: The 1-CCP, former 20 member financial network, with 18 members post
CM0 and CM8 defaults. Defaulted CM0, labeled “B0” and CM8, labeled “B8”, are
represented as pale dashed node with pale dashed links to reflect former exposures to
their clients and toward the CCP. The optimal portings of CM0 and CM8 portfolios are
outlined with bold links to reflect the new exposures for both CM1 and CM4.

heavier than what we presented in the above and would require specialized numerical
techniques.

7 Conclusion

We have proposed a fully integrated risk management framework that can serve stress
test analysis, including reverse stress test in line with regulatory requirements, as well as
porting defaulted portfolios analysis, in a setup encompassing all the trades (bilateral as
centrally cleared and their hedges) of a reference bank. The framework includes depen-
dence features between financial participants portfolios, joint defaults, and a configurable

{taker of 0, taker of 8} Sizes Vol ( % ) DP ( % ) FTP MVA FTP CCVA FTP KVA FTP

{ 1, 4 } { 184, -80 } { 21, 24 } { 0.6, 0.9 } 0.07358 0.00007 0.17576 0.24941

{ 1, 6 } { 184, -46 } { 21, 26 } { 0.6, 1.9 } 0.0756 0.00255 0.18252 0.26067

{ 1, 9 } { 184, -20 } { 21, 29 } { 0.6, 1.6 } 0.08394 0.00405 0.18827 0.27626

Table 6.4: FTPs for different pairs of member takers on defaulted portfolio 0 and 8
for the case of 1 CCP and 20 members where information in { , } relates to the first
taking member on defaulted portfolio 0 and to the second taking member on defaulted
portfolio 8.
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Figure 6.3: Large clearing network example with 16 CCPs in red and their members in
blue with many having common memberships concentrated in the center of the network.

wrong-way risk feature. This is done in a numerically tractable static setup (although
already quite demanding on large financial networks). A dynamic extension could be
considered (but at an even much higher computational burden). Another improvement
would be to add regulatory constraints such as minimum regulatory capital requirements
and liquidity leverage ratios. More fundamentally, in this paper, we tackle the deriva-
tives risk problem from a pure counterparty credit risk viewpoint: thus note that, if
members, clients and counterparties are all default free, then in view of Proposition 3.2
all considered XVAs are zero and our setup trivializes. In fact, another dimension to the
problem is liquidity (see e.g. Amini et al. (2020); Faruqui et al. (2018)). Depending on
the considered applications42, credit or liquidity is the main force at hand. A challenging
research project would be to integrate both in a common setup.

References

Acerbi, C. and D. Tasche (2002). On the coherence of expected shortfall. Journal of
Banking & Finance 26, 1487–1503.

Albanese, C., Y. Armenti, and S. Crépey (2020). XVA metrics for CCP optimization.
Statistics & Risk Modeling 37 (1-2), 25–53.

42see e.g. the beginning of Section 6.

32
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