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Context
• Temperature – major parameter to understand volcanic activity – is regularly retrieved by remote

sensing (RS). 
• The accuracy of  RS techniques depends on crucial parameters such as spectral emissivity (ε).
• ε is mostly retrieved at room temperature, indirectly, using Reflectance data (ε = 1-R).
• ε is considered constant for a given rock family (Harris 2013): 

− ε = 1 or 0.95 for basalts. 
• Only few studies have measured ε in situ in laboratory at relevant magmatic T: 

(Lee et al. 2013; Li 2018; Rogic et al. 2019a, b; Ramsey et al. 2019; Thompson and Ramsey 2020; Lombardo et al. 2020; and Li 2018) 

− Limited temperature range;  T≤ glass transition. 

− Limited spectral range; Mostly in TIR (5-16 µm) although RS are based on SWIR, MIR, TIR.

− Limited natural or synthetic compositions.

− Main conclusion of  studies: Emissivity of  melt < Emissivity of  crystallized lava in TIR.

• Poorly-known ε does not allow to obtain reliable rheological properties of  the magma
– Impact on the estimation of  radiant flux measured by RS, calculated temperature, and ultimately on the 

accuracy of  the lava flow modeling.
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To solve this issue:  high temperature and broad spectral range 
ε data are necessary!

Holuhraun, Bardarbunga volcano (2014-
2015, Iceland, credit: IMO)

Erta Ale lava lake thermal monitoring                     
(credit: S. Mannini, 2020)



Method – Spectral Emissivity apparatus
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• HT in situ Apparatus developped at CEMHTI (Orléans): 
− Two FTIR spectrometers + CO2 laser + sample chamber
− Sample chamber: turntable with sample holder + Black Body furnace
− Wide spectral range; 350-12 000 cm-1,  SWIR-MIR-TIR
− High temperature range; from room T to 1800 K 𝜀𝜀𝜆𝜆 𝜎𝜎,𝑇𝑇, 𝜃𝜃 =

𝐿𝐿𝜆𝜆 𝜎𝜎,𝑇𝑇, 𝜃𝜃
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0 𝜎𝜎,𝑇𝑇, 𝜃𝜃

=
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De Sousa Meneses et al. 2015

Glass Sample

• Basaltic glass samples from Bardarbunga volcano (Iceland).

1.5 mm

10 mm



Results | T-ε relationship of Bardarbunga 
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Temperature Spectra Observation Physical Process/Interpretation
<1020 K Wide Reststrahlen bands in TIR, ε≥0.95 in MIR Typical radiative response of  glass 

1020-1100 K ε constant in TIR and increases in MIR, SWIR Opacification due to the formation of  iron-rich clusters
1150-1350 K New absorption bands in TIR, MIR, SWIR Crystallization of  iron-rich phases in the melting glass
1350-1550 K Overall ε decrease Surface segregation: iron-rich phases + melt. Radiative response of  iron-rich phases
>1550 K Wide Reststrahlen bands in TIR, ε=0.85 in MIR Radiative response of  homogeneous melt

Spectral emissivity behavior of  
Bardarbunga basalt depends on λ and T.

MIR SWIR TIR



Conclusion 
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Spectral emissivity behavior of  Bardarbunga basalt is complex.
− ε depends on wavelength and temperature.

− Crystallization of  Fe-rich phases strongly impacts ε.
− εmelt (~0.85) similar to εglass (~0.80) in TIR, in contrast with litterature.
− εmelt (~0.84) lower than εglass (~0.95) in MIR, SWIR.

Modelisation of  lava flow; 
Aufaristama et al. 2018

ε can not be considered constant and must be measured at magmatic temperatures
and wide spectral range, for each composition.

− Room temperature reflectance data are inappropriate for active lava flow.
−An extended ε database is needed. 

Field data must be refined with in situ laboratory ε data.
− Better constrain on surface radiance from RS and retrieved temperature.
− Strong impact on the dual band technique 

Accurate lava flow modeling with appropriate rheological evolution; 
− information that are crucial to improve hazard assessment in volcanic systems.

Implications
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Thank you for reading me…

Want to contact me ? jonas.biren@cnrs-orleans.fr https://www.researchgate.net/profile/Jonas_Biren
GMPV 15 min talk – 19th May 2021, 15:00 (CEST)
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(credit: Wikipedia, https://fr.wikipedia.org/wiki/B%C3%A1r%C3%B0arbunga)
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