

A case of QARS1 associated epileptic encephalopathy and review of epilepsy in aminoacyl-tRNA synthetase disorders

Denise L Chan, Joëlle Rudinger-Thirion, Magali Frugier, Lisa Riley, Gladys Ho, Kavitha Kothur, Shekeeb Mohammad

▶ To cite this version:

Denise L Chan, Joëlle Rudinger-Thirion, Magali Frugier, Lisa Riley, Gladys Ho, et al.. A case of QARS1 associated epileptic encephalopathy and review of epilepsy in aminoacyl-tRNA synthetase disorders. Brain and Development, 2022, 44 (2), pp.142-147. 10.1016/j.braindev.2021.10.009 . hal-03554560

HAL Id: hal-03554560 https://hal.science/hal-03554560

Submitted on 3 Feb 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	TITLE PAGE
2	A case of <i>QARS1</i> associated epileptic encephalopathy and review
3	of epilepsy in aminoacyl-tRNA synthetase disorders
4	
5	Denise L CHAN ^a , FRACP, Joëlle RUDINGER-THIRION ^b , PhD, Magali FRUGIER ^b , PhD,
6	Lisa G RILEY ^c , PhD, Gladys HO ^{d,e} , PhD, Kavitha KOTHUR, PhD ^e , Shekeeb S
7	MOHAMMAD, PhD ^{e,f}
8	
9	^a Neurology Department, Sydney Children's Hospital, Sydney, Australia; School of
10	Women's and Children's Health, UNSW Medicine, UNSW Sydney, Australia
11	^b Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, F-67000
12	Strasbourg, France.
13	^c Rare Diseases Functional Genomics, Kids Research, Sydney Children's Hospital Network &
14	Children's Medical Research Institute, Sydney Children's Hospital Network, Sydney, NSW
15	2145, Australia; Discipline of Child & Adolescent Health, Sydney Medical School,
16	University of Sydney, Sydney, NSW 2006, Australia.
17	^d Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital
18	at Westmead, Sydney, Australia; Discipline of Child & Adolescent Health; Discipline of
19	Genetic Medicine, The University of Sydney, Sydney, Australia.
20	^e Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The
21	University of Sydney, Sydney, NSW, Australia
22	^f TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at
23	Westmead, Sydney, NSW, Australia; Kids Neuroscience Centre, Kids Research, The
24	Children's Hospital at Westmead, The University of Sydney, Sydney, NSW, Australia.

25

26

- 27 Corresponding Author: Dr Shekeeb S Mohammad, PhD, Clinical School, the Children's
- 28 Hospital at Westmead, Locked Bag 4001, NSW 2145 Australia
- email: <u>shekeeb.mohammad@health.nsw.gov.au</u> T: +61298450000 F: +61298453389
- 30 Word Count manuscript 1548; abstract 250 words
- 31 References- 23
- 32 Tables 2.
- 33 Figures 1
- 34 Supplementary material : 1 file
- 35 Conflict of Interest: Nil

36

37

39 STRUCTURED ABSTRACT

Introduction: Mutations in *QARS1*, which encodes human glutaminyl-tRNA synthetase, have
been associated with epilepsy, developmental regression, progressive microcephaly and
cerebral atrophy. Epilepsy caused by variants in *QARS1* is usually drug-resistant and
intractable. Childhood onset epilepsy is also reported in various aminoacyl-tRNA synthetase
disorders. We describe a case with a milder neurological phenotype than previously reported
with *QARS1* variants and review the seizure associations with aminoacyl-tRNA synthetase
disorders.

47

48 *Case report:* The patient is a 4-year-old girl presenting at 6 weeks of age with orofacial 49 dyskinesia and hand stereotypies. She developed focal seizures at 7 months of age. Serial 50 electroencephalograms showed shifting focality. Her seizures were controlled after 51 introduction of carbamazepine. Progress MRI showed very mild cortical volume loss without 52 myelination abnormalities or cerebellar atrophy. She was found to have novel compound heterozygous variants in *QARS1* (NM 005051.2): c.[1132C>T];[1574G>A], 53 54 p.[(Arg378Cys)];[(Arg525Gln)] originally classified as "variants of uncertain significance" 55 and later upgraded to "likely pathogenic" based on functional testing and updated variant 56 database review. Functional testing showed reduced solubility of the corresponding QARS1 57 mutants in vitro, but only mild two-fold loss in catalytic efficiency with the c.1132C>T variant and no noted change in tRNA^{Gln} aminoacylation with the c.1574G>A variant. 58 59 60 Conclusion: We describe two QARS1 variants associated with overall conserved tRNA 61 aminoacylation activity but characterized by significantly reduced QARS protein solubility, resulting in a milder clinical phenotype. 86% of previous patients reported with QARS1 had 62

epilepsy and 79% were pharmaco-resistant. We also summarise literature regarding epilepsy

64

in aminoacyl-tRNA synthetase disorders, which is also often early onset, severe and drug-

65 refractory.

66

67 Key words: *QARS1*, QARS, ARS, aminoacyl-tRNA synthetase, acquired microcephaly,

68 DEE, seizures, epilepsy

69

70 INTRODUCTION

71 Mutations in aminoacyl-tRNA synthetases (aaRS) have emerged in association with diverse 72 neurological presentations. Variants in *QARS1*, inherited as an autosomal recessive disorder, 73 have been associated with a syndrome of "Microcephaly, progressive, with seizures and cerebral and cerebellar atrophy" (OMIM #615760). At the time of this publication, variants 74 in QARS1 (encoding glutaminyl-tRNA synthetase) were reported in 25 cases [1,2] with 75 76 epilepsy affecting 86% including severe early infantile developmental and epileptic 77 encephalopathy (DEE) and epilepsy of infancy with migrating focal seizures (EIMFS). 79% of reported OARSI-related epilepsy (15 of 19) are described as being pharmaco-resistant. We 78 79 report a case with a milder epileptic phenotype and biallelic *QARS1* variants supported by 80 functional findings in QARS1 activity and review the seizure associations with aaRS 81 disorders.

82

83 CLINICAL REPORT

The patient is a now 4-year-old girl – the firstborn of a French father and Asian mother. She was born at 38 weeks' gestation with intrauterine growth restriction (birthweight 2278 g, head circumference 32 cm, both 3rd centile). At 7 months, she presented with focal febrile status epilepticus lasting 1.5 hours in association with adenovirus, coronavirus and rhinovirus infections. She had a background of developmental delay, and orofacial dyskinesia – intermittent mouthing and chewing movements and stereotypical hand-wringing movements
starting from 6 weeks of age. There was no family history of epilepsy or developmental
delay.

92

Initial examination at 7 months was remarkable for low weight 6.3 kg (<3rd centile) and small 93 head circumference 42 cm (<10th centile). Peripheral tone was increased, becoming less 94 95 evident as she grew older. She could not roll, sit or grasp objects. She could fix on but not 96 track objects horizontally and had alternating esotropia. She was not cooing or babbling, EEG 97 at 7 months showed right temporal discharges and brief electrographic seizures with 98 generalised spike-and-waves. Orofacial movements and stereotypical hand movements did 99 not have any EEG correlate. Following this, she had monthly seizures of febrile and afebrile 100 type, with shifting focality on sequential EEGs, but migrating focality not noted in a single 101 recording. Clinically, her seizures consisted of head and eye deviation to either side, mostly 102 with altered awareness and sometimes with partial retention of awareness. Most seizures 103 occurred in clusters and some were 15-20 minutes in duration. Levetiracetam and topiramate 104 were ineffective. No seizures have been noted since initiation of carbamazepine at 17 months 105 of age.

106

Her MRI at presentation showed a thin corpus callosum and enlarged ventricles
(Supplementary figure 1, A and B). Progress MRI at 18 months showed progressive diffuse
cerebral atrophy with prominent sulci, loss of white matter and possible delayed myelination
(Supplementary figure 1, C and D).

111

112 At last follow up aged 3 years 2 months, she has stagnation of head growth representing 113 acquired microcephaly (46 cm, $<3^{rd}$ centile) and persisting low weight for stature (13 kg, 105

cm, <3rd centile). She continues to make slow developmental progress. She can take a few steps independently and continues to babble. She can reach using both hands and transfer between hands but cannot perform fine motor movements such as a pincer grip. She is visually attentive to her surroundings and has intermittent, non-disabling motor stereotypies in the form of hand wringing and flapping movements.

119

120 GENETIC AND FUNCTIONAL TESTING

121 Biallelic *QARS1* variants were identified through whole exome sequencing (*QARS1*

122 (NM_005051.2): c.[1132C>T]:[1574G>A]). Parental segregation confirmed the variants to

be on separate alleles (trans). The c.1132C>T variant, not reported at the time of testing (July

124 2018) was subsequently reported in ClinVar (Variation ID: 598952). It has a population

125 minor allele frequency (MAF) of 0.007% in gnomAD with highest MAF of 0.07% in the East

Asian population (v2.1.1, gnomad.broadinstitute.org, last accessed 01/07/2021) and a CADD

score of 31.0. The c.1574G>A variant has a MAF of 0.0004% in gnomAD and a CADD

score of 25.8. Both variants are located in the catalytic domain of *QARS1*. At the time of

129 reporting, both variants were considered to be variants of uncertain significance (VOUS)

130 according to the American College of Medical Genetics and Genomics guidelines (ACMG;

evidence used: PM2, PP3).[3] In view of the patient's milder phenotype compared to cases

132 reported at the time of genetic results, functional testing was undertaken at CNRS in

133 Strasbourg, France. The effect of the *QARS1* variants on tRNA aminoacylation activity was

134 investigated as described in the supplementary material. This showed partial reduction in

aminoacylation efficiency related to the QARS1 p.Arg378Cys variant only but drastic

136 reduction in solubility of both variants compared to wild-type QARS1 (supplementary figure

137 2). Two previously reported *QARS1* variants located in the catalytic domain, p.Arg403Trp

and p.Arg515Trp, also showed reduced solubility. [4] The variant classification for this

patient was subsequently revised to "likely pathogenic" (ACMG PS3_supporting; PM2, PM3and PP3).

141

142 **DISCUSSION**

143 Thirty-seven genes encode the family of aaRS, of which 17 are responsible for catalysing 144 attachment of amino acids to their cognate tRNA in the cytoplasm, 17 in the mitochondria 145 and 3 act across both cellular locations (QARS1, KARS1 and GARS1). Of these, 34 genes are 146 associated with human disease, which include all 3 aaRS servicing both cellular locations and 147 all 17 servicing the mitochondria. In addition to QARS1, early infantile DEE is described in 148 association with variants in AARS1, FARS2, RARS2 and VARS2 and seizure onset in infancy 149 is noted in most other aaRS disorders. Neuroimaging and clinical features of aaRS associated with epilepsy are summarized in Table 1. Non-specific cortical atrophy associated with 150 151 acquired microcephaly is noted in many disorders including *OARS1*, while distinct MRI 152 changes are noted in some disorders such as those with KARS1 and EARS2 variants (Table 1). 153 The phenotypes of different aaRS deficiencies show significant overlap and the central 154 nervous system is most often affected, along with impaired hearing or vision, failure to thrive 155 and feeding difficulties being other common themes [5].

156

The first description of *QARS1*-associated disease in two unrelated families described a very severe phenotype of neonatal onset epileptic encephalopathy, progressive neurological decline with delayed myelination, cortical and cerebellar atrophy [4]. Detailed phenotypic information for 22 cases including those previously published was recently summarised by Johannsen et al [1].

163 Overall, epilepsy associated with *QARS1* variants is thought to be more severe than other 164 aaRS disorders, often with seizure onset on the first day of life (Table 2) and latest seizure 165 onset at 5.5 months in reported cases. Our patient only started having seizures at 7 months of 166 age which is later than previously described. In Johannesen's series, 28% of QARS patients 167 reported increased seizure frequency with fever or infections similar to some episodes in our 168 patient [1]. A migrating EEG pattern as noted in EIMFS was not noted in a single epoch in 169 our patient but has been described in previous cases [4]. Her seizures have been remarkably 170 responsive to carbamazepine, whereas most previous cases (15/19) had drug-refractory 171 epilepsy, in some cases despite carbamazepine use [6], thus implying that response to 172 carbamazepine may reflect the overall milder disease course in our patient rather than a drug-173 specific effect. No specific antiepileptic strategy has been highlighted as particular 174 efficacious in previously reported QARS1 encephalopathy cases apart from one report of benefit from the ketogenic diet in a severe, early onset case with multi-drug resistant epilepsy 175 176 [6]. New research suggests supplementation of the deficient amino acid in aaRS deficiencies 177 may be beneficial [7], although oral glutamine supplementation has been reported to worsen 178 seizure control in one *OARS1* patient, for whom memantine was subsequently effective [2].

179

Neuroimaging features associated with *QARS1* encephalopathy include thin corpus callosum, delayed myelination and cortical atrophy. Our patient was only noted to have mild cortical atrophy and no cerebellar atrophy or immaturity of myelination on progress MRI at 18 months of age. Few previous cases have noted the lack of posterior fossa abnormalities but cortical atrophy and hypomyelination (88%) have been noted in the majority of cases (Table 2).

187 Our case is novel and adds to literature as a milder neurological phenotype associated with 188 QARS1 (Table 2) in terms of lack of developmental regression, controlled epilepsy, and 189 subtle neuroimaging changes. The variants in our case are both missense mutations located 190 in the catalytic domain (Figure 1), but disease-causing variants have also been reported in the 191 N-terminal domain and the anti-codon binding domain of *OARS1* [8]. One previously 192 reported patient with the p.(Arg378Cys) variant in combination with a null variant had a 193 more severe epilepsy phenotype than our patient [1]. Another patient was homozygous for 194 p.(Arg378His) but had no seizures. Five reported cases of OARS1 without epilepsy had 195 homozygous missense mutations in the catalytic domain [2]. Functional testing of the QARS1 196 variants in most prior reports have noted either complete disruption or marked reduction of 197 glutamine aminoacylation activity as well as reduced solubility of QARS protein with 198 preserved protein expression, thus implying an adverse impact on protein folding and 199 aggregation [4,6]. QARS protein associated with the p.Arg378Cys and p.Arg525Gln variants 200 was also largely insoluble, while the soluble protein showed only mild effects on 201 aminoacylation. Interestingly, similar to our case, one prior case series [9] reported patients 202 without epilepsy and with a less progressive course along with functional analysis showing a 203 milder reduction in glutamine aminoacylation (67% reduction). However, aminoacylation 204 activity in aaRS does not always correlate with disease severity [10]. We hypothesise that the 205 low solubility of the QARS protein in our patient is likely to result in partial reduction of the level of tRNA^{Gln} aminoacylation and may therefore contribute to the observation of some 206 207 milder phenotypic features.

208

209 ACKNOWLEDGEMENTS

210 Part of this work, conducted at Kids Research, was supported by the Luminesce Alliance -

211 Innovation for Children's Health, a not-for-profit cooperative joint venture between the

- 212 Sydney Children's Hospitals Network, the Children's Medical Research Institute, and the
- 213 Children's Cancer Institute. It has been established with the support of the NSW Government
- to coordinate and integrate paediatric research. Luminesce Alliance is also affiliated with the
- 215 University of Sydney and the University of New South Wales Sydney. Functional studies
- 216 were supported by the CNRS and the Université de Strasbourg. S.S.M. acknowledges support
- 217 from Cerebral palsy alliance, Allambie Heights, Sydney

CONFLICT OF INTERST DISCLOSURES

The authors have no conflicts of interest to declare.

REFERENCES

- Johannesen KM, Mitter D, Janowski R, Roth C, Toulouse J, Poulat AL, et al. Defining and expanding the phenotype of QARS-associated developmental epileptic encephalopathy. Neurol Genet. 2019;5:e373.
- 2. Shen YW, Zou LP. Correspondence on "Aminoacyl-tRNA synthetase deficiencies in search of common themes" by Fuchs et al. Genet Med. 2021;23:587–8.
- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.
- 4. Zhang X, Ling J, Barcia G, Jing L, Wu J, Barry BJ, et al. Mutations in QARS, encoding glutaminyl-tRNA synthetase, cause progressive microcephaly, cerebralcerebellar atrophy, and intractable seizures. Am J Hum Genet. 2014;94:547–58.
- Fuchs SA, Schene IF, Kok G, Jansen JM, Nikkels PGJ, van Gassen KLI, et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet Med. 2019;21:319–30.
- Datta A, Ferguson A, Simonson C, Zannotto F, Michoulas A, Roland E, et al. Case Report: QARS deficiency and favorable outcome following treatment of seizures with ketogenic diet. J Child Neurol. 2017;32:403–7.
- Kok G, Tseng L, Schene IF, Dijsselhof ME, Salomons G, Mendes MI, et al. Treatment of ARS deficiencies with specific amino acids. Genet Med. 2021, in press. doi: 10.1038/s41436-021-01249-z.

- Ognjenović J, Wu J, Matthies D, Baxa U, Subramaniam S, Ling J, et al. The crystal structure of human GlnRS provides basis for the development of neurological disorders. Nucleic Acids Res. 2016;44:3420–31.
- Leshinsky-Silver E, Ling J, Wu J, Vinkler C, Yosovich K, Bahar S, et al. Severe growth deficiency, microcephaly, intellectual disability, and characteristic facial features are due to a homozygous QARS mutation. Neurogenetics. 2017;18:141– 6.
- González-Serrano LE, Chihade JW, Sissler M. When a common biological role does not imply common disease outcomes: Disparate pathology linked to human mitochondrial aminoacyl-tRNA synthetases. J Biol Chem. 2019;294:5309–20.
- Meyer-Schuman R, Antonellis A. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human disease. Hum Mol Genet. 2017;26: R114–27.
- Simons C, Griffin LB, Helman G, Golas G, Pizzino A, Bloom M, et al. Loss-offunction alanyl-tRNA synthetase mutations cause an autosomal-recessive earlyonset epileptic encephalopathy with persistent myelination defect. Am J Hum Genet. 2015;96:675–81.
- Ardissone A, Tonduti D, Legati A, Lamantea E, Barone R, Dorboz I, et al. KARSrelated diseases: Progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. Orphanet J Rare Dis. 2018;13:45.
- Friedman J, Smith DE, Issa MY, Stanley V, Wang R, Mendes MI, et al. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nat Commun. 2019;10:1–10.

- Coughlin CR, Scharer GH, Friederich MW, Yu HC, Geiger EA, Creadon-Swindell G, et al. Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder. J Med Genet. 2015;52:532–40.
- Steenweg ME, Ghezzi D, Haack T, Abbink TEM, Martinelli D, Van Berkel CGM, et al. Leukoencephalopathy with thalamus and brainstem involvement and high lactate "LTBL" caused by EARS2 mutations. Brain. 2012;135:1387–94.
- 17. Almannai M, Wang J, Dai H, El-Hattab AW, Faqeih EA, Saleh MA, et al. FARS2 deficiency; new cases, review of clinical, biochemical, and molecular spectra, and variants interpretation based on structural, functional, and evolutionary significance. Mol Genet Metab. 2018;125:281–91.
- Seaver LH, DeRoos S, Andersen NJ, Betz B, Prokop J, Lannen N, et al. Lethal NARS2-related disorder associated with rapidly progressive intractable epilepsy and global brain atrophy. Pediatr Neurol. 2018;89:26–30.
- Mizuguchi T, Nakashima M, Kato M, Yamada K, Okanishi T, Ekhilevitch N, et al. PARS2 and NARS2 mutations in infantile-onset neurodegenerative disorder. J Hum Genet. 2017;62:525–9.
- Nishri D, Goldberg-Stern H, Noyman I, Blumkin L, Kivity S, Saitsu H, et al. RARS2 mutations cause early onset epileptic encephalopathy without pontocerebellar hypoplasia. Eur J Paediatr Neurol. 2016;20:412–7.
- Begliuomini C, Magli G, Di Rocco M, Santorelli FM, Cassandrini D, Nesti C, et al. VARS2-linked mitochondrial encephalopathy: Two case reports enlarging the clinical phenotype. BMC Med Genet. 2019;20:1–6.
- Theisen BE, Rumyantseva A, Cohen JS, Alcaraz WA, Shinde DN, Tang S, et al.
 Deficiency of WARS2, encoding mitochondrial tryptophanyl tRNA synthetase,

causes severe infantile onset leukoencephalopathy. Am J Med Genet Part A. 2017;173:2505–10.

Wortmann SB, Timal S, Venselaar H, Wintjes LT, Kopajtich R, Feichtinger RG, et al. Biallelic variants in WARS2 encoding mitochondrial tryptophanyl-tRNA synthase in six individuals with mitochondrial encephalopathy. Hum Mutat. 2017;38:1786–95.

FIGURE LEGENDS

Figure 1 : Schematic diagram of QARS1 (NP_005042.1) showing location of reported coding variants (this case in red), conserved HIGH and VVSKR motifs, and functional domains. NTD, N-terminal domain; CATD, catalytic domain; CP1, connecting peptide 1 within the catalytic domain; ABD, anticodon-binding domain[8].

17					
white matter volume loss,	multifocal discharges,	focal, infantile spasms,		progressive microcephaly, axial	[14]
Progressive cortical atrophy,	EEG hypsarrhythmia,	Generalised, myoclonic,	Infancy	Developmental delay, seizures,	VARSI
		Infantile DEE.			
subarachnoid spaces		fever or infections.			
myelination, enlarged		Can be associated with			
hypoplasia), delayed	pattern	generalised, myoclonic.			
(simplified gyri, CC	migrating seizure-like"	focal, multifocal,			
structural abnormalities	hypsarrhythmia, "focal	Multiple seizure types –		cerebral atrophy, PCH	
cerebellar atrophy, cortical	bilateral, multifocal,	frequent and prolonged.		progressive microcephaly,	[1]
Progressive cerebral and	Various: focal,	Intractable seizures,	Neonatal to infancy	Developmental delay,	<i>QARS1</i>
					[13]
the brain and spinal cord	multifocal discharges			CMTN	and cytosolic)
calcification maybe noted in	centro-temporal spikes,	syndrome, infantile DEE		loss, progressive microcephaly,	mitochondrial
tract signal change,	background, fronto-	epilepticus, NCSE, West		loss, non-syndromic hearing	(both
Leukodystrophy with long	Poorly organised	Febrile seizures, status	Infancy to adolescence	Developmental delay, visual	KARS
	hypsarrythmia				
hypomyelination	electrodecrement but no			features	
cerebellar and brainstem,	Spasm with	(EIEE29/DEE29)		absent reflexes, extrapyramidal	
cortical, white matter,	excess sharp waves.	seizures. infantile DEE		spasticity, hypomyelination,	[12]
Progressive atrophy –	Slow background,	Refractory myoclonic	Infancy	Progressive microcephaly,	AARSI*
		syndrome			
		description/epilepsy			
Neuroimaging	EEG features	Seizure	Age of seizure onset	Typical Phenotype [11]	Gene

2
6
6
—
••
5
Ξ.
Ξ.
Ξ
ž
~
5
\geq
Т.,
\mathbf{z}
7
_
3
Ξ.
E.
Ξ
¥
فف
Ś
e
~
Ξ.
5
Ò
Ē
Ó.
ē
Ξ.
6
6
õ
õ
÷.
2
E.
×.
4
≤.
F
Ъ
~
Ľ.
2.
Ē
e
9
5
\checkmark
-
ন্থ
Ĩ
-
_ •
ic
ica
ical
ical p
ical ph
ical phe
ical pher
ical pheno
ical phenot
ical phenoty
ical phenotyp
ical phenotype
ical phenotype
ical phenotype a
ical phenotype an
ical phenotype and
ical phenotype and
ical phenotype and e
ical phenotype and ep
ical phenotype and epil
ical phenotype and epile
ical phenotype and epilep
ical phenotype and epileps
ical phenotype and epilepsy
ical phenotype and epilepsy s
ical phenotype and epilepsy su
ical phenotype and epilepsy sul
ical phenotype and epilepsy subt
ical phenotype and epilepsy subty
ical phenotype and epilepsy subtyl
ical phenotype and epilepsy subtype

Rapid cortical atrophy,	Focal, electrographic	Absence, myoclonic,	Infancy to early	Developmental delay,	NARS2
	hemispheres in another	continua			
the dentate nuclei	asymmetry between	epilepsia partialis			
and T2 hyperintensities in	one subject, alternating	status epilepticus,		spastic paraplegia	
with cystic change, thin CC	discharges. PLEDs in	spasms, infantile DEE,		Alpers syndrome, hereditary	[17]
Cortical atrophy, sometimes	Hypsarrhythmia. Focal	Focal seizures, infantile	Infancy	Global developmental delay,	FARS2
group. CC agenesis					
improve with time in milder					
(LTBL). MRI changes can				in some.	
lactate on spectroscopy"				spasticity. A milder phenotype	
involvement and high				defects. Psychomotor delay	
thalamus and brainstem		of life		respiratory chain complex	
"Leukoencephalopathy with	disorganised	can improve after 2 nd year		involvement, elevated lactate,	
typical distribution -	background slow and	infantile DEE. Seizures		thalamus and brainstem	[16]
T2 hyperintensities in a	EEG can be normal,	Drug refractory seizures,	Infancy	Leukoencephalopathy with	EARS2
hypoplasia.					
white matter, CC					
hyperintensity in cortex and				disorder	
matter loss), T2	high amplitude	DEE		impairment, movement	
cerebellar atrophy (white	posterior predominant,	epilepsy, GTCS, infantile		decline, visual and hearing	[15]
Progressive cortical and	Multifocal discharges –	Progressive myoclonic	Infancy or childhood	Developmental delay, cognitive	CARS2
callosum					
gyral pattern, thin corpus					
CC hypoplasia, simplified	or focal	multifocal, infantile DEE.		hypotonia	

F																				
			[22,23]	WARS2			[21]	VARS2			[20]	RARS2				[19]	PARS2			[18,19]
		acidosis	ataxia, microcephaly, lactic	Early developmental delay,	lactic acidosis	encephalopathy, hypertonia,	cardiomyopathy, mitochondrial	Hypertrophic non-obstructive		lactic acidosis	developmental regression,	Developmental delay,			Alpers syndrome	progressive microcephaly,	Developmental delay,	myopathy	Syndrome, Alpers Syndrome,	cerebellar atrophy, Leigh
				Neonatal to infancy				Infancy				Infancy					Infancy			childhood
		childhood death	DEE, seizures causing	West syndrome, infantile		apnoea), infantile DEE	muscle clonus and	Focal seizures (facial	and multifocal seizures	movements, myoclonic	blinking and clonic	Infantile DEE. Eye				seizures, infantile DEE	Infantile spasm, focal	hemiplegia– epilepsy	hemiconvulsion-	GTCS, status epilepticus,
	delta	intermittent rhythmic	multifocal spikes,	Background slowing,				EEG burst suppression		polyspike and slow	focus, then diffuse	EEG showing temporal		discharges, multifocal	independent occipital	hypsarrhythmia,	EEG showing	suppressed	hypsarrhythmia, burst-	seizures,
		matter hyperintensities	myelination, patchy white	Cortical atrophy, delayed	dentate nuclei	the brainstem, insula and	hypoplasia, signal change in	Thin CC, cerebellar	universal	cerebellar hypoplasia is not	hypomyelination. Ponto-	Diffuse cortical atrophy,	atrophy in some cases.	spectroscopy; cerebellar	elevated lactate on	hypomyelination and	Cortical atrophy,		syndrome like changes	leukodystrophy, Leigh

<u>Abbreviations used in Table 1</u> CC: Corpus Callosum, CMTN: Charcot-Marie-Tooth neuropathy, Early infantile DEE: Early infantile developmental and epileptic encephalopathy, GTCS: Generalised tonic-clonic seizures, NCSE: Nonconvulsive status epilepticus, PCH: Charcot-Marie-Tooth neuropathy whereas biallelic autosomal recessive changes are described with EIEE29 Pontocerebellar hypoplasia, PLEDs: Paroxysmal lateralised epileptiform discharges. * Dominant mutations in AARS1 are associated with

Clinical features	In our case	In literature [1]						
NEUROLOGICAL FEATURES								
Motor delay	Walk independently at 3 years	86% (18/21) Not walking						
Speech	Babbling at 3 years	90% (18/20) No speech						
Visual interaction	Fixes, follows horizontally	67% (8/12) No visual interaction						
Stereotypies	Hand stereotypies at 6/52	75% (6/8) Hand stereotypies						
GROWTH PARAMETE	CRS	·						
Birth weight	2278 g (0.1 centile, -2.2 SD)	15% (3/20) Weight < -2 SD						
Birth head circumference	32 cm (0.1 centile, -3.0 SD)	65% (11/17) HC < -2 SD						
EPILEPSY								
Antiepileptic	Levetiracetam ineffective. Well	79% (15/19) Pharmacoresistant						
medications	controlled on carbamazepine and	epilepsy						
	clobazam							
Seizure onset	7 months	60% (9/15) Onset D1 life; Onset not						
		recorded in 3/15.						
Seizure type	Febrile and afebrile focal seizures	Multiple seizure types reported in						
	Status epilepticus	literature: myoclonic, GTCS, tonic,						
		spasms, focal with secondary						
		generalisation, focal seizures,						
		epileptic encephalopathy						
MRI NEUROIMAGING	ł							
Thin corpus callosum	Yes	79% (15/19) Corpus callosal						
		hypoplasia						
Cortical atrophy	Yes	89% (16/18) Cortical atrophy						
Cerebellar atrophy	No	61% (11/18) Cerebellar atrophy						
Hypomyelination	No	88% (15/17) Hypomyelination						

Table 2 : Features of QARS1-associated epileptic encephalopathy

Supplementary Figure 1. Magnetic Resonance Imaging of QARS1 case performed at 7 months (A, B) and 18 months of age (C, D). Thin corpus callosum seen on midline sagittal T1-weighted imaging (A). T2 axial imaging showing progressive cerebral atrophy, prominent sulci and ventricular dilation (B, D). Corresponding T1 axial image is also shown (C).

DETAILED DESCRIPTION OF FUNCTIONAL TESTING

QARS1 wild-type (WT), c.1132C>T, p.(Arg378Cys) and c.1574G>A, p.(Arg525Gln) variants were expressed in *E. coli* from a pET-15b plasmid with a N-terminal 6-His tag to aid purification. *In vitro* aminoacylation activity of purified recombinant *QARS1* p.Arg378Cys and p.Arg525Gln was measured

by the incorporation of [¹⁴C]-glutamine into the cognate tRNA^{GIn} substrate as described by Zhang [4]. *QARS1* p.Arg378Cys showed no more than a two-fold reduction in aminoacylation efficiency compared to the wild-type *QARS1*, mainly due to a modest reduction in catalytic rate (*k*_{cat}), indicating the variant slightly hinders the transfer of the glutaminyl moiety to the tRNA (supplementary table 1). *QARS1* p.Arg525Gln did not have a significant effect on *in vitro* aminoacylation. However, the solubility of QARS1 p.Arg525Gln and p.Arg378Cys were drastically reduced compared to WT QARS1 in a mammalian expression system (Supplementary figure 2). While 24% of WT *QARS1* was found in the soluble fraction, about 3% of p.Arg378Cys and 4% of p.Arg525Gln could be detected in the soluble fraction. This observation suggests that the amount of mutant proteins would be reduced about 8fold compared to the WT in cells.

Supplementary table 1: Kinetic parameters for aminoacylation of human cytosolic tRNA^{Gin} transcripts by wild-type (WT) and variant QARS1.

QARS variant	K _m	k cat	k _{cat} /K _m	Loss of catalytic
	(μM)	(min⁻¹)	(min⁻¹µM⁻¹)	efficiency*
			catalytic efficiency	
WT	1.5	11.2	7.5	1.00
	(0.1)	(1.2)	(0.5)	
p.Arg378Cys	1.7	6.4	3.8	2.00
	(0.3)	(1.0)	(0.4)	
p.Arg525Gln	1.5	10.5	7.1	1.05
	(0.1)	(0.3)	(0.2)	

*Loss of catalytic efficiency calculated as a fold change relative to WT. 0.25 to 2.5 μ M tRNA^{GIn} transcripts were tested in the presence of 10 to 20 nM WT or variant QARS1. Values are shown as mean (SEM).

Supplementary figure 2 : Effect of individual variants on QARS1 solubility.

Immunoblot showing the soluble QARS1 fraction (S) obtained after centrifugation of the total protein extract (T): Mammalian Cos7 cells were co-transfected with an empty pcDNA3.1 vector (Ctrl), pcDNA3.1 encoding wild-type QARS1 (WT) or variant QARS1 (R378C and R525Q), and GFP. The membrane was probed with both anti-His Tag (QARS1) and anti-GFP antibodies (GFP). GADPH was used as a loading control. (L) shows the protein ladder, (+) shows a positive control recombinant QARS1 purified from *E. coli* cells. Image is representative of four individual immunoblots.