

Deformation structure and peak-metamorphic temperature in Kodiak accretionary complex, Alaska

Kristijan Rajic, Hugues Raimbourg, Vincent Famin, Donald Fisher, Kristin Morell

Chugach-Prince William Terrane

- accretionary complex exposed for 2200 km (Plafker et al. 1994)
- metaturbidites and near-trench intrusions
- paleomagnetic results indicate significant northward coast parallel transport for about 2500 km along Border Ranges Fault and other strike-slip faults

Example: Ghost Rocks Formation $25 \pm 7^{\circ}$ (recent position $\sim 57^{\circ}$)

Kodiak accretionary complex

- Uyak Complex tectonic mélange (Connelly, 1978)
- Accreted units (metaturbidites):
- 1. Kodiak Formation Maastrichtian (Byrne & Fisher, 1987)
- 2. Ghost Rocks Formation Late Cretaceous to Early Paleogene (Moore et al., 1983)
- Slope sediments (separated by the unconformity with accreted units):
 - Narrow Cape Formation Middle Miocene (More et al. 1983)

- Kodiak granite 59-58 Ma
 - Younging trend towards SE

The aim of the work

- To characterize:
 - thermal structure of the Kodiak accretionary complex
 - the influence of shearing on recorded temperature
 - the influence of basalt intrusions
- To describe the deformation across the complex
 - The nature of deformation
 - unconformity between accreted units and slope sediments

Methods

- paleostress determination
 - > fieldwork
 - ➤ for data processing: Win_Tensor
- the peak metamorphic temperature estimation
 - ➤ Raman Spectroscopy of Carbonaceous Material (RSCM) 50 samples analyzed

Following Lahfid et al. (2010):

$$RA1 = ((D1 + D4) / (D1 + D4 + D3 + G + D2))$$

$$T^{\circ}C = 1217.6 * RA1 - 450.66$$

Temperature structure

- accreted units = 220-350 °C
- Kodiak Formation
 - Kodiak Landward belt = 250-285 °C
 - Kodiak Central belt = 320-340 °C
 - Kodiak Seaward belt = 300-350 °C
- Ghost Rocks Formation
 - Chiniak Area = 280-310 °C
 - Pasagshak Area = 220-260 °C
- Uyak Complex
 - 250-285 °C
- slope sediments of Narrow Cape Formation = 180 °C

RSCM results

- accreted units = 220-350 °C
- Kodiak Formation
 - Kodiak Landward belt = 250-285 °C
 - Kodiak Central belt = 320-340 °C
 - Kodiak Seaward belt = 300-350 °C
- Ghost Rocks Formation
 - Chiniak Area = 280-310 °C
 - Pasagshak Area = 220-260 °C
- Uyak Complex
 - 250-285 °C
- slope sediments of Narrow Cape Formation = 180 °C

Red Temperatures: analyzed samples in the contact with basalts

More detailed T data for each unit is presented in next several slides

The influence of intrusions and faults

- the RSCM temperature within fault rocks is higher than in surrounding rock
- basalt intrusions affect thermal structure

Uyak Complex and Landward belt

Uyak Bay

- tectonic contact between Uyak Complex and Landward belt – Uganik Thrust
- in both formations: Top-to-the-SE (trench) simple shear

Landward belt (top) and Uyak Complex (bottom)

Uyak Complex and Landward belt

Big Waterfall Bay

- Temperature is equal in both foot and hanging wall
- Hanging wall (Uyak Complex)
 - ➤ Mylonites with asymmetric folds indicating top-to-the-SE
- Foot wall (Kodiak Formation)
 - ➤ Top-to-the-SE shear bands

• Like in Uyak Bay, strong deformation in foot wall is presented only close to the Uganik Thrust

Central belt

- foliation is close to horizontal
- conjugate extensional shear bands and en echelon arrays (dominantly top-to-the-SE)

Seaward belt and Ghost Rocks Formation

- sub-vertical foliation
- conjugate thrust faults
 - ➤ indicate SE-NW shortening direction
- strike-slip faults
 - ➤ Late-stage, postdate thrust faults
 - ➤ Also in Kodiak granite (g), previously described as undeformed

- Narrow Cape Formation (f) on the figure
 - \blacktriangleright after rotation S_0 back to horizontal, all measured faults became conjugate thrust faults

Conclusions

- Central part of the prism (Central and Seaward belt) has experienced the highest metamorphic temperature
- RSCM temperature is equal in both foot wall (Kodiak Formation) and hanging wall (Uyak Complex) of the Uganik Thrust
- Middle Miocene Narrow Cape Formation experienced 180 °C, indicating vigorous vertical motion within frontal part of the prism

Temperature structure along the complex

• No monotonically increase towards the inner part of the wedge

The unconformity

• Middle Miocene Narrow Cape Formation experienced 180 °C, indicating vigorous vertical motion within frontal part of the prism

Deformation

- the nature of deformation highly differs across the complex
- from NW to SE (towards the recent trench):
 - ➤ Top-to-the-SE simple shear in Uyak Complex and Landward belt
 - > NW-SE extension in Central belt with sub-horizontal foliation
 - ➤ NW-SE compression in Seaward belt and later E-W strike-slip
- slope sediments of Narrow Cape Formation:
 - ➤ Compression predates tilting

