Fluid pressure variations recorded by quartz vein geochemistry

Hugues Raimbourg, Vincent Famin, Kristijan Rajic, Saskia Erdmann, Benjamin Moris-Muttoni, Donald Fisher, Kristin Morell

Fault-valve model (Sibson 1994): A widely model view that shows the large mechanical control of fluids on earthquakes

Introduction

Fault-valve model (Sibson 1994): A widely model view that shows the large mechanical control of fluids on earthquakes **Supporting evidences for large temporal variations in fluid pressure:**

At the surface, increase in flow rate of spring as a response to earthquakes

Introduction

Fault-valve model (Sibson 1994): A widely model view that shows the large mechanical control of fluids on earthquakes

Supporting evidences for large temporal variations in fluid pressure:

At depth, evidences are much more limited and rely mostly on fluid inclusion studies:

- -Large range of fluid inclusion density
- -Unmixing of a single fluid phase into two distinct fluid phases
- → Large range of fluid pressure conditions during trapping at depth

(e.g.: Wilkinson and Johnston, 1996, Robert and Boullier 1995)

Introduction

Fault-valve model (Sibson 1994): A widely model view that shows the large mechanical control of fluids on earthquakes Supporting evidences for large temporal variations in fluid pressure:

At depth, evidences are much more limited and rely mostly on fluid inclusion studies:

Can one find other evidences of fluid pressure variations at depth?

Geological examples

Two examples chosen: accretionary complexes in Japan (Shimanto Belt) and Alaska (Kodiak Island)
Classical examples of subduction margin, with well-constrained kinematics and geometry, as well as abundant evidences of localized deformation structures

Geological examples

Two chosen examples: accretionary complexes in Japan (Shimanto Belt) and Alaska (Kodiak Island) Classical examples of subduction margin, with well-constrained kinematics and geometry We focused here on zones of localized deformation, interpreted as reflecting plate interface, or intra-wedge, out-of-sequence thrusting, conditions.

Quartz veins at seismogenic depths: structures

Mode I cracks in the tails of sandstone lenses, formed in association with top-to-the-SE shear zones synkinematic with subduction deformation (Hyuga Coherent Formation, Japan)

Quartz veins at seismogenic depths: structures

Mode I cracks in the tails of sandstone lenses, formed in association with top-to-the-SE shear zones synkinematic with subduction deformation (Hyuga Tectonic Mélange, Japan)

Quartz veins at seismogenic depths: structures

Mode I cracks in the tails of chert lenses, during syn-subduction, layer parallel extension (Uyak Mélange, Alaska)

Quartz veins at seismogenic depths: temperature of formation

Conditions of deformation are constrained by Raman spectroscopy on carbonaceous matter, as T in the range 200-250°C, i.e. the T conditions of the seismogenic zone.

Quartz veins at seismogenic depths: microstructures

Mode I cracks contain often euhedral quartz crystals, with **growth rims** alternating (i) high, blue luminescence and high fluid inclusion density and (ii) low, brown luminescence and low fluid inclusion density.

Quartz veins at seismogenic depths: geochemistry

Growth rims are also characterized by variations in Al content. The high luminescence/high fluid inclusion density domains correspond to high Al content.

Quartz veins at seismogenic depths: geochemistry

Al content is correlated with Li content \rightarrow Li is the main charge-compensating cation for Si⁴⁺ \rightarrow Al³⁺ substitution

Quartz veins at seismogenic depths: model of formation

Incorporation of Al during experimental growth of olivine crystals (Welsch et al.,2014)

→ Al concentration is correlated with crystal growth rate

Model of quartz growth based on Al concentration

Quartz veins at seismogenic depths: model of formation

Incorporation of Al during experimental growth of olivine crystals (Welsch et al., 2014)

→ Al concentration is correlated with crystal growth rate

Model of quartz growth based on Al concentration

Al-rich growth rims reflect stages of rapid, out-of-equilibrium growth

Quartz veins at seismogenic depths: model of formation

Incorporation of Al during experimental growth of olivine crystals (Welsch et al., 2014)

→ Al concentration is correlated with crystal growth rate

Model of quartz growth based on Al concentration

At seismogenic depths, in zones of localized deformation, Al-rich growth rims records stages of large fluid pressure drop

Quartz veins at the downdip limit of the seismogenic zone: structures

Kodiak Central Belt, Alaska

Makimine Group, Shimanto Belt, Japan

Mode I cracks, with en-échelon geometry, consistent with top-to-the-trench sense of shear, form contemporaneously with the metamorphic foliation.

Quartz veins at the downdip limit of the seismogenic zone: temperature of formation

Mode I cracks, with en-échelon geometry, consistent with top-to-the-trench sense of shear, form contemporaneously with the metamorphic foliation. Temperature of deformation and veining is in the range 320-350°C.

Quartz veins at the downdip limit of the seismogenic zone: microstructures

Optical microscope 250µm

Kodiak Central Belt, Alaska

Makimine Group, Shimanto Belt, Japan

Mode I cracks, with en-échelon geometry, consistent with top-to-the-trench sense of shear, form contemporaneously with the metamorphic foliation. Temperature of deformation and veining is in the range 320-350°C. Crack-seal microstructures within the veins reflect pulses of deformation during ETS at the base of the seismogenic zone (Fisher and Brantley 2014, Ujiie et al. 2018)

Quartz veins at the downdip limit of the seismogenic zone: geochemistry

Optical microscope
Optical cathodoluminescence

The crack-seal domains, similarly to other vein quartz from the same temperature range, have a low luminescence and accordingly a low content in Al.

Contrarily to the lower temperature samples, there is **only a single type of quartz** (in terms of Al concentration and luminescence)

250µm

Conclusions

Following our interpretative scheme, we propose the following model about the record by quartz geochemistry of the variations in fluid pressure across depths:

- -At the temperature of the seismogenic zone (T<300°C), quartz growth rims enriched in Al are the record of stages of fluid pressure drops, possibly after earthquakes
- -At the higher temperatures of the brittle-viscous transition (T>300°C), deformation pulses are reflected by crack-seal microstructures, but the associated variations in fluid pressure have a much more limited amplitude

Conclusions

Get more information on these results:

Raimbourg, H., Rajic, K., Famin, V., Moris-Muttoni, B., Palazzin, G., Fisher, D. M., Morell, K., Erdmann, S., Di Carlo, I., and Montmartin, C., 2021, Quartz vein geochemistry records deformation processes in convergent zones: G-cubed, v. 22, no. 4, p. 1-35.

Application to other case studies

Montagne noire External Flank, variscan belt, France

Montagne noire External Flank, variscan belt, France

T<300°C | T>300°C