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Vector Alignment and Dimensionality in Turbulence
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bd. de l’Observatoire, C.S. 34229, 06304 Nice Cedex 4, France
(Dated: February 3, 2022)

Rapid local directional alignment of different vector quantities has been observed in incompressible
turbulence, either in MHD or in fluid turbulence, in both direct numerical simulations or in Solar
wind data, and these alignments weaken the nonlinear terms with respect to those expected for
Gaussian random fields. Evidence are based on the comparison of the probability distributions of
the angle between vectors to those for independent isotropic three-dimensional vectors. We show
that this apparent alignment can also be attributed to a local reduction of the dimensionality of
the structures towards bidimensionality, leading to an increased probability of finding vectors close
to alignment, compared to the spatial three-dimensional case. This interpretation is checked in
Helios-2 Fast and Slow Solar wind data.

It has long been observed that different vector fields of
turbulence show unexpected alignment or antialignment.
This is the case for velocity v and vorticity ω ≡ ∇×v
in hydrodynamic turbulence [1–3], but also appears for
velocity v and magnetic field b [4–8], magnetic field b
and current j ≡ ∇×b, or current j and vorticity ω in
MHD turbulence [9, 10], with measurements both in nu-
merical simulations of decaying MHD turbulence [7, 8], or
in-situ observations in the Solar wind [4–6, 8, 10]. These
alignments were initially thought to be a slow relaxation
process, requiring many nonlinear eddy turnover times
to drive the turbulent system towards globally aligned
Beltrami and/or Alfvénic states that were studied and
interpreted as such in [3] or [7], but it has been shown
recently that local pointwise directional alignment also
occurs in turbulence [7–10] and is a fast process, need-
ing less than one eddy turnover time to align vectors
in near-independent spatially extended spatial patches.
Alignment is dynamically important because it will in-
hibit the nonlinear terms in the corresponding hydro-
dynamical equation [3, 11], and slow down the dynamics
with respect to what would be expected of random fields.

The main diagnostic to evidence these alignment or
antialignment effects is the computation of the proba-
bility density functions (PDFs) of the local angle cosine
between the two vector fields f and g

c ≡ cos θ =
f · g
|f | |g|

, (1)

where f and g can be v and ω in neutral fluid turbu-
lence, or v and b, j and b, or j and ω in MHD tur-
bulence. Compared to a uniform distribution often pre-
sented without justification as the one expected for Gaus-
sian uncorrelated vectors, these PDFs are found to be-
come strongly peaked around c ≈ ±1 (aligned vectors)
and depleted for c ∼ 0 (orthogonal vectors). In this Let-
ter, we show that a flat cos θ distribution is not a signa-
ture of Gaussianity, but will occur only for independent
isotropic three-dimensional vectors, and breaking any of
these conditions will produce of a departure of the uni-
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FIG. 1. PDFs of the angle cosine cos θ between random
independent isotropic vectors for spatial dimensions d = 2
to d = 5.

form distribution. Moreover, for three-dimensional vec-
tors, any anisotropy common to the two vector fields will
induce a reduced dimensionality of the vectors and pro-
duce an apparent local directional alignment, even if the
vectors are not necessarily preferentially oriented along a
common line, but maybe in a common plane. We empha-
size that the dynamical alignment effect remains a true
feature of turbulence, but its geometrical interpretation
and visualization should be done carefully, as vectors in a
plane have a higher probability of alignment than vectors
in space.

Angle PDFs for random vectors.— The PDF pd(θ) of
the angle θ between random vectors in any space dimen-
sion d can be computed analytically for the special case
of isotropic 〈fαfβ〉 = 〈gαgβ〉 = δα,β and independent
〈fαgβ〉 = 0 vectors. The latter property also implies
that this PDF is universal with respect to the distribu-
tion of the vectors components magnitude, and so the
Gaussian hypothesis is not needed, as the angle between
vectors Eq. (1) does not depend on their length. The
isotropy and independence property then implies that the
distribution of the intersection of the second vector di-
rection on the d-dimensional sphere is uniform if the first
vector direction is fixed. Using a uniform parametriza-
tion of the hypersphere with d−1 angles like in [12], and
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FIG. 2. PDF of the angle cosine cos θ between random Gaus-
sian correlated isotropic vectors for ρ = 0.5 (empty symbols)
and ρ = 0.75 (full symbols) and space dimensions d = 3 (cir-
cles) and d = 2 (squares).

integrating over d−2 angles gives the sought distribution
of the remaining angle θ

pd(θ) =
Γ
(
d
2

)
√
π Γ

(
d−1
2

) (sin θ)d−2
, (2)

and by a change of variable, the PDF qd(c) of the angle
cosine c

qd(c) =
Γ
(
d
2

)
√
π Γ

(
d−1
2

) (1− c2)(d−3)/2
(3)

shown in Fig. 1 (PDFs of | sin θ | = |f×g|/(|f | |g|)
can be computed similarly for any dimension d).
qd(c) and pd(θ) cannot be both uniform and it is a coinci-
dence that p2(θ) = 1/π is uniform in 2-d and q3(c) = 1/2
uniform in 3-d. In high dimensions, vectors have a higher
probability of being close to orthogonal, while in lower
dimensions vectors display a tendency for alignment and
the PDF qd(c) becomes peaked near c ≈ ±1 for d < 3,
even if the vectors are independent. We can quantify
this effect, as PDFs can be integrated for integer dimen-
sions to obtain probability distributions, giving Q2(c) ≡
P(| cos θ | ≥ c) = 2 arccos(c)/π and Q3(c) = 1 − c (sub-
stitute c ≡ cos a to obtain 2Pd(a) ≡ 2P(θ < a), for
instance P2(a) = a/π and P3(a) = (1−cos(a))/2). Near-
alignment is thus much more probable in 2-d than it is
in 3-d, and Fig. 6 of [7] showing aligned patches in a
2-d simulation is misleading as already random vectors
have a 50 % probability of having | cos θ | ≥ 0.7 in 2-d
while it would be only 30 % in 3-d. This increased align-
ment is not an artefact of looking at PDFs of cos θ in-
stead of θ, as random vectors have a 50 % probability of
having θ < π/4 or θ > 3π/4 in 2-d and only 30 % in 3-d.

Correlated random vectors.— We now check if the
alignment induced by a reduction of the vector dimen-
sionality persists if the vectors are correlated. In that
case, there is no general analytic result for PDFs of the
angle, and for nonzero value of the correlation coefficient

ρ =
〈f · g〉√
〈|f |2〉 〈|g|2〉

, (4)
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FIG. 3. PDF of the angle cosine cos θ between random in-
dependent anisotropic vectors for different anisotropic am-
plitudes ξ2 = 〈f1f1〉 = 〈g1g1〉 in space dimension d = 3.
Isotropic distributions for d = 3 (corresponding to ξ2 = 1)
and d = 2 (corresponding to ξ2 = 0) are shown for compari-
son. The bottom case ξ2 = 20� 1 displays strong alignment,
larger than for isotropic 2-d vectors and close to 1-d isotropic
random vectors.

the PDF depends on ρ, and thus on the distribution of
the vectors components magnitude. We can however re-
sort to numerical simulations to compute PDFs for corre-
lated Gaussian vectors by generating independent Gaus-
sian isotropic vectors f and h and then computing

g = ρf +
√

1− ρ2 h , (5)

that will be Gaussian, isotropic and correlated with f :
〈fαgβ〉 = ρ δα,β (see [13] for details), and then look-
ing at the PDF of Eq. (1), shown in Fig. 2 for differ-
ent values of d and ρ. The main characteristics of the
isotropic PDF are preserved, that is q3(c) goes to fi-
nite values for both c = ±1 even for strong values of ρ,
while the 2-d PDF q2(c) still diverges and becomes larger
than q3(c) for c → ±1 but is always flatter than q3(c)
around the orthogonal direction c ∼ 0.

Anisotropic random vectors.— We now ascertain that
anisotropy in the random vectors distribution can induce
a reduction in the vectors dimensionality and an appar-
ent alignment of the vectors even if the anisotropy is not
purely unidimensional. We generate numerically inde-
pendent random Gaussian 3-d vectors, with a variance
depending on the direction : ξ2 in direction 1 and unity
in the others, for both vectors

〈fαfβ〉 = 〈gαgβ〉 = δα,β [ ξ2δα,1 + (1− δα,1) ] . (6)

If ξ2 > 1, the anisotropy is one-dimensional, with the two
vectors pointing preferentially in direction 1, and triv-
ially aligning together in that direction, with a PDF q(c)
tending for ξ2 � 1 to the one for 1-d isotropic vec-
tors (two delta functions at c = ±1), see the bot-
tom curve of Fig. 3. Less obviously, if ξ2 < 1, the
anisotropy is two-dimensional, with the vectors lying
preferentially in the 23-plane, but there is still an ap-
parent alignment of the two vectors with respect to the
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3-d isotropic case, due to the reduced probability of or-
thogonality and the increased probability of alignment,
with the PDF q(c) changing continuously from the 3-
d isotropic form to the 2-d one when ξ2 goes from one
to zero (see again Fig. 3). This alignment occurs even
though vectors f and g are independent and in fact point
uniformly in any direction in the 23-plane, but is a pure
geometrical effect of the vectors sharing preferentially a
common plane (but not a common direction). Indeed,
it must be stressed that this alignment completely dis-
appears and the PDF q(c) is the 3-d isotropic one if the
anisotropic direction(s) are not the same for f and g. On
the other hand, if the anisotropies are in the same direc-
tion(s), both one- (ξ2 > 1) and two-dimensional (ξ2 < 1)
anisotropy will lead to an apparent alignment in 3-d.

Solar wind observations.— We check these results in
Solar wind data, using the measurements obtained by
the Helios-2 spacecraft during the year 1976. These mea-
surements have been extensively studied [5, 6, 14] and
are of a good quality, having been obtained during a
Solar minimum. Also, they were for a long time the
only data showing the evolution of Solar wind turbu-
lence as the spacecraft moved from a distance of 0.9 AU
around day 45 of 1976, down to 0.3 AU around day 110
of 1976. We use data sampled at 81 s time resolution
to have simultaneous measurements of the 3 compo-
nents of the velocity v and magnetic field b expressed
in the RTN reference frame (see [14] for definition),
where the R (radial) component points away from the
Sun and is nearly aligned with the mean velocity and
mean advected Solar magnetic field. Moving on the
ecliptic, Helios-2 encountered both Fast and Slow So-
lar wind streams, known to have different origins and
physical properties [14]. To ensure statistical station-
arity, we analyzed independently three Slow streams
(recognized by |v| � 500 km/s), namely 1976:46–48,
1976:72–74 and 1976:98–101, and three Fast streams
(|v| � 500 km/s), 1976:49–52, 1976:76–78 and 1976:105–
108. These datasets are 2–3 days long (≈ 3000 points)
and avoid streams edges and boundaries. In each of these
streams, we remove the fields means (obtained by time-
averaging · over the full stream lengths) and build the
field fluctuations δv(t) ≡ v(t)− v and δb(t) ≡ b(t)− b
and construct the local instantaneous angle

cos θ(t) =
δv(t) · δb(t)
|δv(t)| |δb(t)|

. (7)

PDFs of cos θ(t) for the three Slow and three Fast
wind streams are shown together in Fig. 4. One can
notice that they differ significantly. PDFs for Slow
streams are very similar to those for 3-d correlated ran-
dom vectors (Fig. 2), while those for Fast wind streams
are much more strongly aligned. We checked that this
alignment can be attributed to a reduced dimension-
ality of the δv and δb fields by computing the cross-
correlation matrix

〈
δv δbT

〉
/
√
〈|δv|2〉 〈|δb|2〉. In the
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FIG. 4. PDFs of the angle cosine cos θ between velocity fluc-
tuations δv and magnetic fluctuations δb in three Solar wind
Slow Streams (left ; S 72–74 histogram mirrored for consis-
tency) and three Fast Streams (right), at the same scale.

Fast stream 1976:105–108, its value is

δvα δbβ =

 −0.15 −2× 10−3 6× 10−2

−2× 10−2 −0.34 −7× 10−3

4× 10−2 −7× 10−3 −0.39

 , (8)

with similar values for the other Fast streams, and is
dominated by the T and N components, suggesting a
2-d anisotropy, a feature already observed by various au-
thors [4, 5]. To verify that this anisotropy is associated
to the nature of the stream, we compute the components
local variances δbα2 (t) ≡ (bα − bα )2 (t), where the time
average · (t) is now defined as an 8 hours moving average
centered on t. The resulting Fig. 5 shows that there is an
abrupt change in the components local variances, associ-
ated with strong inhomogeneities at the stream bound-
aries, when switching from Slow stream 1976:98–101 to
the Fast stream 1976:105–108. While the three com-
ponents local variances are nearly identical in the Slow
stream, the transverse local variances increase by a fac-
tor ∼ 3 in the Fast stream, and both fields δb and δv
(not shown) become anisotropic with stronger fluctua-
tions in the plane transverse to the R (radial) direction
associated to the mean magnetic field b and mean ve-
locity v . As pointed out before, this Fast wind bidimen-
sionalization increases the apparent 3-d alignment of the
two vector fields. However, field fluctuations δv and δb
have very strong Alfvénic (anti)correlations in all com-
ponents, and so the T and N components remain corre-
lated and display an angle PDF corresponding to a strong
(anti)alignment between δv and δb in the TN -plane with
an asymmetric PDF skewed towards cos θ ≈ −1, θ ≈ π,
this time due to the (anti)correlation ρ ' −1.

Discussion and conclusions.— The image of aligned
vectors that comes naturally to mind is that of vectors
that point towards close or nearly opposite directions.
But two random vector fields in (hyper)space will also
display a higher probability of mutual alignment with
respect to the isotropic distribution, if they have been
dynamically pushed on a lower dimensional (hyper)plane
rather than on a line, even if the two fields have no par-
ticular alignment in this plane. The effect is completely
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FIG. 5. Time series of of the magnetic fluctuation δb com-

ponents local energy δbα
2 . Note the increased energy by a

factor ∼ 3 of the components transverse to the radial direction
(corresponding to the mean magnetic field), when switching
from a Slow to a Fast Stream for t ≈ 102.

geometrical and comes from the decreased probability of
orthogonality and increased likelihood of alignment when
reducing the dimension or increasing the anisotropy of
the two vector fields. This distinction between linear and
planar alignment might seem purely semantic, as lying in
a common plane is some kind of alignment between the
vectors. Also, the dynamical consequences like the re-
duction of nonlinearity due to decreased values of f×g
and increased values of f · g remain the same and do not
depend on that interpretation. It is however important
to realize and understand if the structures that appear
locally in 3-d fluid or MHD turbulence are preferentially
lines or sheets, and we showed that only the analysis of
the PDFs of cos θ cannot completely distinguish or ex-
clude the two possibilities, as both types of structures
will show an alignment of the vectors.

Also, complete dynamical local alignment of any type
won’t occur over the whole of space, and it has been
shown in [7–10] that it occurs in extended spatial patches
displaying local alignment or antialignment. The situa-
tion is easier and the analysis is simpler in the Solar wind
as the radial expansion of the wind and the advected
mean magnetic field create a constant direction on which
the fluctuations are reduced, so that the anisotropy is 2-
d with a preserved direction. In homogenous fluid or
MHD turbulence, the situation is more complex but the
spectra of both v and b are IR-divergent and dominated
by the large scales, so we can expect that the local mean
field can dynamically induce 2-d or 1-d local anisotropy
and a local directional alignment or antialignment, with a
slowly time and spatially varying direction. PDFs of cos θ
will in that case be probably a mixture of the different
cases similar to those shown in Fig. 2 and Fig. 3 as nei-
ther the correlation ρ nor the anisotropy will be uniform,
but PDFs will in any case display alignment of the vector
fields if anisotropies of both fields are similarly oriented.

Still, PDFs of cos θ can give a hint of the shape and
dimension of structures that are effectively present in the
vector fields. For instance, one can verify that

〈
cos2 θ

〉
=

1/d for isotropic independent vectors (this result is mod-
ified if vectors are correlated). This defines a kind of

“effective dimension” for isotropic or anisotropic vector
fields and for instance PDFs shown in Fig. 3 will have
a value of 1/

〈
cos2 θ

〉
that changes continuously from 3

to 2 for increasing 2-d anisotropies and down to 1 for
increasing 1-d anisotropy.

We conclude that local or global vectors alignment is
a geometrical property that depends on the vectors di-
mensionality, and that it is favored in low dimensions.
So, if dynamics drive the vectors on a lower dimensional
variety, the vectors will appear more aligned than if they
span the whole space directions. This increased align-
ment is a real effect, even if the vectors do not necessarily
point along the same line, and its consequences on the
dynamics through a reduction of the nonlinearity and a
slowdown of the nonlinear transfers are also real, so that
these aligned anisotropic states will also enjoy a higher
probability of being observed once they are realized.

It is a pleasure to thank A. Pouquet, R. Bruno, and
L. Sorriso-Valvo for many useful discussions, comments,
suggestions and insights on the properties of MHD tur-
bulence and on the many traps and pitfalls lurking in the
processing and analysis of Solar wind data.
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