

Supply-limited weathering regime in a tropical shields basin (Ogooué River basin, Gabon)

What is the variability of weathering/erosion rates with respect to lithological effect and geomorphology on two tropical basins (Ogooué and M'Bei rivers, Gabon)?

J. S. Moquet^{1,2*}, J. Bouchez¹, J.-J. Braun^{3,4,5}, S. Bogning⁶, A. P. Mbonda⁷, J. P. Bricquet⁹, S. Carretier³, V. Regard³, M.-C. Paiz⁸ and J. Gaillardet¹

.(1) Institut Physique du Globe Paris, CNRS, Paris, France; (2) Institut des Sciences de la Terre d'Orléans, CNRS, Orléans, France; (3) Géosciences Environnement Toulouse, IRD-CNRS-UPS, Toulouse France ; (4) Institut de Recherche pour le Développement, Yaoundé, Cameroon ; (5) Institut de Recherches Géologiques et Minières, Yaoundé, Cameroon ; (6) Université de Douala, Cameroon ; (7) Centre National de la Recherche Scientifique, Libreville, Gabon ; (8) Hydrosciences Montpellier/IRD, Montpellier, France ; (9) The Nature Conservancy, Libreville, Gabon

Corresponding author : <u>iean-sebastien.moquet@cnrs-orleans.fr</u>

Funding : EC2CO project « RALTERAC » (PI : JJ Braun)

Ogooué River- Gabon

What is the variability of weathering/erosion rates with respect to lithological effect and geomorphology on two tropical basins (Ogooué and M'Bei rivers, Gabon)?

Shield weathering : the Ogooué basin case

- 3 geological/geomorphological regions :
 - Plateau Bateke : sand (pure quartz) tectonically quiescent and low erosion rates.
 - Northern sub-basins : granites deep lateritic soils, tectonically quiescent, low erosion rates
 - o Southern sub-basins Mixed lithology uplift activity erosion

Sampling campaign

september 2017

24 sampling (including 18 tributaries): Water, suspended sediments, river bank sand

Data available : daily discharge at Lambaréné, rainfall (TRMM), MNT (SRTM90)

Ň

In situ measurements : pH : 4,63-7,62

Conductivity: 5-78µS.cm⁻¹ Water temperature : 22-28°C

 S Lab analyses : Major and trace elements
⁸⁷Sr/⁸⁶Sr + εNd (only sediments) (not
S areasented)

⁵ presented) ¹⁰Be on sand

Atmospheric inputs

→ Classical Cl concentration decrease from the Ocean (ex : Congo : Negrel et al., GCA, 1993)
→ No evaporites inputs → Cl is used for atmospheric correction

Lithological sources

- \rightarrow Excellent correlation between Si and HCO₃⁻
- → Homogenous silicate source for almost all samples

 \rightarrow silicate weathering dominate the solutes and CO₂ consumption

sources discrimination

Direct discrimination method

(Garrel and Mack, Marine Chemistry, 1972)

TDS (Total dissolved solids) =Na⁺ + Ca²⁺ + Mg²⁺+K⁺+HCO₃⁻+SO₄²⁻+Cl⁻+SiO₂

→ Silicate weathering ~ 80% of the Ogooué and Mbei solutes

 \rightarrow High contrasts in solutes concentration

→ Climate effect (dilution) or geomorphological effect?

Weathering control : geomorphological setting?

- → Contrasted weathering fluxes : 0,45 to 33t.km⁻².yr⁻¹
- → Lowest : Pure sand sub-basins (Plateau Batéké)
- \rightarrow Highest : Southern sub-basin \rightarrow higher relief / higher slope

 \rightarrow Erosion rate probably control weathering rate in this shield environment

Comparison with global shields basins

Ogooué basin : No relationship between weathering rate and runoff

→ Rainfall is almost homogenous and the basin is geomorphologically contrasted

Shield basin compilation :

- ightarrow Runoff is not the first order control of shields weathering
- \rightarrow Ogooué sub-basins : highest and the lowest weathering rates

 \rightarrow Shields can exhibit very contrasted weathering regime!

Denudation rate based on sand ¹⁰Be

Preliminary results The error associated to the main Ogooué channel can be > 50% due to error propagation at confluences budget

→ Oggoué mainstream : main erosion area from plateau Batéké to plain

→ Very low erosion rate in the eastern part of the northern and southern basins (< 10 t km⁻² yr⁻¹)
→ Low erosion rate in the rest of the basin but

 $E_{southern basins}$ (20-50 t km⁻² yr⁻¹) > $E_{northern basin}$ (12-20 t km⁻² yr⁻¹)

Weathering vs denudation relationship

 \rightarrow Two contrasted regimes :

- → Transport limited regime for Mbei, Northern and southern tributaries
- → Lithological effect (sandstone erosion –depleted in mobile element) for Plateau Batéké basins
 - → Ogooué mainstream : mixing behavior

Conclusion

Weathering rate (water chemistry):

- \rightarrow Shields exhibit a significant weathering budget
- \rightarrow Contrasted weathering fluxes
 - → Mainly controlled by geomorphological characteristics
 - ➔ Runoff is not the first order control

sand ¹⁰Be denudation :

- → Main area under erosion : Ogooué mainstream (river bank sedimentary material?)
- \rightarrow E northern basin < E southern basin
 - Denudation deduced from sand mainly reflect mainstream behavior

W vs D regime :

Two regimes can be distinguished :

- \rightarrow Transport limited regime in Mbei, Northern and southern sub-basins
- → Supply limited due to lithological effect in plateau Batéké and mainstream.
 - Cratonic basins do not follows a unique weathering regime