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Abstract The fast improvement of Machine-Learning

(ML) methods gives rise to new attacks in Information

System (IS). Simultaneously, ML also creates new op-

portunities for network intrusion detection. Early net-

work intrusion detection is a valuable asset for IS secu-

rity, as it fosters early deployment of countermeasures

and reduces the impact of attacks on system availabil-

ity.
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This paper proposes and studies an anomaly-based

Network Intrusion Detection System (NIDS) based on

Tangled Program Graph (TPG) ML and called Secure-

Gegelati. Secure-Gegelati learns how to detect in-

trusions from IS-produced traces and is optimised to

fit the requirements of intrusion detection. The study

evaluates the capacity of Secure-Gegelati to act as a

continuously learning, real-time, and low energy NIDS

when executed in an embedded network probe. We

show that a TPG is capable of switching between train-

ing and inference phases, new training phases enrich-

ing the probe knowledge with limited degradation of

previous intrusion detection capabilities. The Secure-

Gegelati software reaches 8× the energy efficiency

of an optimised Random Forests (RF)-based Intrusion

Detection System (IDS) on the same platform. It is ca-

pable of processing 13.2 k connections/seconds with a

peak power of less than 3.3Watts on an embedded plat-

form, and is processing in real-time the CIC-IDS 2017

dataset while detecting 84% of intrusions and raising

less than 0.2% of false alarms.

Keywords Tangled Program Graphs Intelligence ·
Network Intrusion Detection · Cyber Security ·
Network Security · Real-time Processing

1 Introduction

Intrusion detection consists of spotting the actions of

attackers attempting to compromise the integrity, con-

fidentiality, or availability of a computer resource [53].

The first Intrusion Detection System (IDS) was pro-

posed by D. Denning in 1987 [7] as a way to early

detect and prevent networking attacks and deviant be-

haviours. Intrusion detection is now used at a large scale
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and is necessary to ensure confidentiality, integrity and

availability of a resource as attackers proved their abil-

ity to bypass the protections of the resources [31,45,

35].

To enhance the security of a network, connections

need to be analysed for countermeasures to be deployed.

In a realistic information system context, the connec-

tion rate is high, making it impossible to be analysed

by a human analyst in real-time. Thus, Network In-

trusion Detection System (NIDS) have been created to

facilitate the tasks of the analyst. A real-life network is

dynamic: the traffic constantly evolves with the appear-

ance of new features, services, operating systems, net-

work topology etc. In the meantime, while the network

is evolving, cyber attacks become more complex [31,35,

45]. NIDSs work under the assumption that attacks re-

quests share a common basis and similarities. Anomaly-

based Intrusion Detection Systems (AIDSs) aim to pro-

duce a model of the network normal using and to de-

tect users’ behaviours deviating from this model. In this

context, AIDS are useful for their capacity to detect

novelty [27,32,21]. Furthermore, AIDS can be used to

create new attack signatures. Challenges for AIDS lie

in the diminution of the false-positive alert rate and

the production of ancillary information when an alert

is raised. Indeed, false alarms are usually very time con-

suming and can easily cause a detection system to be

rejected by analysts. Furthermore, AIDS are based on

statistical inference and require an (often costly) initial

training that hinders system adaptation. Finally, en-

crypted data packets can bypass the IDS and prevent

an attacker from being detected.

From the difficulties that are faced by current AIDS,
Reinforcement-Learning (RL) seems to address the de-

tection problem in an interesting way. Indeed, the RL

learning being conditioned by a reward function can

prevent the RL agent from raising too many false-

positive alerts. The reward system can be designed by

an analyst and reward the teams that does not pro-

duce false positive alerts. The Tangled Program Graph

(TPG) intelligence, as designed by Stephen Kelly [19],

is a Multi-Agent Reinforcement Learning (MARL) al-

gorithm based on Genetic Programming (GP) showing

interesting properties of emergence. This emergence re-

sults in an interaction between a set of agents and the

environment where the agents observe the environment

and get more complex (tangled) in their response to

observations. We also hypothesise that the properties

of the TPG can also bypass some of the current dif-

ficulties of AIDS. Firstly, the TPG can train continu-

ously and complex data to action behaviours have been

demonstrated to emerge from its training, making it

adapt over time to a dynamic environment. This online

training also limits the offline training time required to

obtain a correct model and the need of massive training

data as it learns on incoming data without the necessity

to store them. Finally, the TPG can be used as a classi-

fier, raising alerts and giving classification information

if needed. The current study focuses on the detection

of attacks and thus, their classification is kept out of its

scope. For making our study more realistic, we use as

training data the network flow from the CIC-IDS 2017

data-set, and not the raw packet data (PCAP format)

that would not be available and encrypted in a real

setup.

Recent studies [46,52] propose to use Random

Forests (RF) supervised classifiers to detect intrusions

in the CIC-IDS 2017 IDS dataset [42]. RF can detect

intrusions with an accuracy over 90%. However, RFs

do not support continual learning, as they need to be

retrained from scratch with a considerable amount of

labelled data for incorporating a new attack class. Fur-

thermore, the performances of the obtained models de-

grade in the first months after training and can drop by

up to 23% within a year [48] due to the changes occur-

ring on the network and to the novel attacks. K-Nearest

Neighbours (k-NN) [38,2,9] have also been used for in-

trusion detection but face the same issue. A long time

is required to make a model converge towards a good

prediction rate.

The built and studied Secure-GEGELATI real-time

monitoring system aims at progressively automating

the detection of intrusions in an Information System

(IS) by observing the incoming data. It constitutes a

Security Information and Event Management (SIEM)

device which helps a security analyst to early detect

an attack. The monitoring system is required to have

nearly perfect precision, potentially trading it off for a

low recall. Indeed, false alarms are extremely time con-

suming, as they bring analysts to finally uncover that

no attack was currently performed. Conversely, missing

intrusions is less costly, as it brings the security analyst

back to the situation where no live monitoring system

was present. To be useful in practice, a live IDS moni-

toring system must:

– keep up with the pace of the IS incoming data,

– be embeddable in an always-on device, and thus en-

ergy efficient,

– raise extremely rare false alarms in a context where

attacks are very rare events.

This paper is an extension of the conference pa-

per [8] introducing the GEGELATI TPG as a customis-

able, scalable and deterministic TPG system. It pro-

poses the following contributions:
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– we study the GEGELATI TPG learning capacities

and energy efficiency on a realistic and complex ap-

plication,

– we demonstrate that the properties of TPG are well

suited for building a learning-based NIDS. In par-

ticular, its energy efficiency and continual learning

capacities on new incoming attack flows are studied,

– we introduce the open source Secure-Gegelati

Tangled Program Graph (TPG) system for learning-

based intrusion detection.

The TPG learning method has a lightweight struc-

ture, its training and inferring processes are known

to be fast and adequate for online training [18]. This

lightweight structure helps for online training on an em-

bedded platform. The considered scenario is the follow-

ing:

– Training phase: the analyst provides tagged data

to train the real-time monitoring system, specifying

whether an attack is ongoing or not.

– Monitoring phase: the live monitoring system is

switched into a monitoring mode, continuously ob-

serves the IS and triggers an alarm when an attack

occurs. With RL, the analyst can switch back the

monitoring device into a training phase at any time

and improve its sensitivity to new attacks.

Section 2 introduces state of the art methods for

intrusion detection and situates Secure-GEGELATI

among them. In Section 3, the TPG algorithm is defined

and described. Section 4 presents the Generic Evolvable

Graphs for Efficient Learning of Artificial Tangled In-

telligence (Gegelati) TPG system and its determin-

istic and parallel execution properties. We explain in

section 5 how the TPG can be adapted into a NIDS

real-time probe. Finally, in section 6, we compare the

performance of Secure-Gegelati with an optimised RF

parallel NIDS in terms of precision, real-time processing

and energy efficiency.

2 Related Work

Network security is one of the main cyber-security

fields. We focus in this paper on the network intrusion

detection problem that consists in detecting malicious

usage of an IS network [47]. Several approaches to this

problem exist. While network intrusion prevention sys-

tems take real-time countermeasures when a malicious

behaviour is detected, NIDS aim to assist the security

analyst by raising alerts. The three main types of IDS

[6,21,27] are signature-based systems, anomaly detec-

tion systems and stateful protocol analysis.

Stateful protocol analysis systems detect deviations

of protocol states and use predetermined universal pro-

files based on “accepted definitions of benign activity”

developed by vendors and industry leaders [39]. It is

mainly used for its ability to check reasonable thresh-

olds for individual commands (min, max, length...) and

makes it possible to identify as well unsuspected se-

quences of commands.

Signature based (or misuse) intrusion detection sys-

tems filter the network frames using human-defined

signatures of the threats generally using regular

expressions[11,14,25]. The main drawback of signature

based detection is the high number of patterns that

need to be handcrafted, stored and analysed, as each

attack has a unique signature.

For their part, anomaly detection systems aim at

producing a model of the normal behaviour and to de-

tect behaviours deviating from this model. Nonethe-

less, anomaly detection is a difficult task as attackers

often make changes to already known attacks to evade

this particular detection technique. For instance, in the

first quarter of 2017, more than 55.000 attack variations

were discovered for only 15 attack families.

Stateful protocol analysis systems and anomaly de-

tection systems identify deviations from a model of nor-

mal behaviour benign activity. Anomaly-based IDS use

statistical inference with either unsupervised learning

or supervised learning.

One of the main problems in NIDS is the scarcity

of high quality labelled data-sets. This is why unsuper-

vised learning is widely used on the problem. Amongst

unsupervised traditional learning algorithms, the K-

means algorithm usually produces the best results[2,

9,38]. As stated in [38], their exists a trade-off be-

tween a high accuracy using unsupervised learning and

a time-efficient, low complexity model. While unsuper-

vised learning is convenient due to its ability to train in

real-time and to use unlabelled data, its performances

are hindered by high false-positive rates. For instance,

one can observe 21.8% of false-positives in [2] and more

than 15% of false-positives for 20000 connections anal-

ysis in [9].

These solutions are impractical, as false positives

are a consistent problem of NIDS. An analyst is able

to study between 1 and 20 threats per day, making it

important to focus on real threats and not on false posi-

tive alerts. Eventually, a NIDS that regularly generates

false positive alerts will decrease the confidence of the

analyst in the IDS and reducing recall to improve pre-

cision in this context makes a lot of sense.

Supervised learning methods have been used to cre-

ate AIDS. These methods are trained offline based on

labelled network packets or flow. A network packet is a
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formatted unit of data containing control information

and payload. Network flows sums up packet informa-

tion such as the protocol or the type of service for given

source and destination IP and ports. They have low ro-

bustness to network modifications such as any modifi-

cation of the topology of the network, the appearance

of new services, or novel threats. Indeed, experimen-

tal results in [48] show that an Machine-Learning (ML)

based IDS trained at the beginning of a year can have

an accuracy drop of up to 23% by the end of the year.

These issues are discussed in [20,22].

RL [15] is an alternative to both supervised and

unsupervised learning. RL is the problem faced by an

agent that learns behaviour through trial-and-errors in-

teractions with a complex and dynamic environment.

The actions of the RL agent have an impact on the

environment. The actions learnt as reactions to a set

of specific states of the environment is called the pol-

icy. One of the RL challenges is the exploration versus

exploitation dilemma management where exploitation

means that a learnt policy is used to infer the future re-

ward in the observed environment. Using this feature, a

RL method is able to keep including novelty in its pol-

icy and exploitation is particularly interesting for the

design of an IDS constantly facing new threats.

We address the intrusion detection problem using an

RL algorithm based on GP. RL for classification differs

from the supervised learning methods in the amount of

supervision required in the learning process. Supervised

learning method require an explicit correction through

class information while RL can learn from a batch of

implicit corrections called “rewards”.

GP has been used to assist the creation of both sig-

nature based IDS [10,26,34] and anomaly-based IDS

[43]. Particularly, authors of [43] used their “GANIDS”

architecture to decrease the amount of false positive

alerts, making the IDS qualitative for the analysts.

They showed that the use of GP helped them in re-

ducing the amount of false positive while keeping high

detection rates.

Furthermore, some RL frameworks exist that per-

form intrusion detection [5]. Several studies focus on

the use of Deep reinforcement learning (Deep Q Net-

works) [23,28,41] and fewer consider using MARL to

design their IDS [40]. The later method takes advan-

tage of MARL scalability, to observe a distributed envi-

ronment and solve the interactive problem of intrusion

detection over DoS and DDoS attacks. A limitation of

Deep Q Networks is that they remain heavily parame-

terized and energy costly methods.

As an IDS is an always-on application or device,

it is interesting for the sustainability of the solution

to set it up as a High-Performance Embedded Com-

puting (HPEC) device [50] in the form of a network

probe. Several studies pointed out this need [29,30,44,

49]. In particular, Viegas et al., [49] show how using an

embedded device implementing Decision Trees, Naive-

Bayes or K-NN algorithm allowed them to save up to

93% of energy and pointed out that the Decision tree

is the most energy-efficient algorithm among the com-

pared ones. As specified in [29], using an embedded IDS

represents a trade-off between energy consumption and

peak number of analysis per second. Indeed, the use of

a neural network here dropped the load of the IDS to

6MBps.

In this paper, we study the capacity of TPG, a

MARL framework proposed by S. Kelly [16] which

shows interesting properties in terms of emergence

and lightweight training. The TPG being fast and

lightweight makes it a good candidate for a real-time

embedded NIDS probe. TPG combines RL and GP into

a multi-agent directed graph. RL relates the learning

mechanisms of the policy strategy to action decided by

the TPG agent. GP improves the learning mechanism

with the emergence of new environmental observation

rules. The TPG is composed of teams (vertices), pro-

grams (edges) and actions (vertices). The TPG pro-

grams observe the environment and select the best path

in the graph until an action is reached.

Unlike Deep Reinforcement Learning methods

which observe the environment in its entirety, the TPG

agents select through trial and errors the relevant in-

formation for decision making.

Although it is based on the TPG intelligence,

Secure-Gegelati differs from Reinforcement Learning

in its conceptual learning approach for two reasons:

– Reinforcement Learning is normally based on se-

quential or stateful analysis were the current state

of the environment depends on its previous states.

This can hardly be simulated as the networks pack-

ets arrive from different sources.

– Reinforcement Learning states depend on the ac-

tions taken on the environment. Here, the TPG ac-

tions are classification actions and thus, do not mod-

ify the environment characteristics.

The RF algorithm, which is an extension of the De-

cision tree algorithm, is taken as a baseline. [49] stated

that Decision trees are the most energy-efficient algo-

rithm among the compared algorithms making Random

Forests a relevant candidate. Furthermore, in [42], au-

thors show that RF is one of the algorithms that per-

form best on the CICIDS-2017 dataset with a precision

of 98%, a recall of 97% and F1-score of 97%.
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3 Tangled Program Graphs

The TPG model studied in this paper, which builds

on technique from the genetic programming domain,

was introduced by Kelly and Heywood [19] as a rein-

forcement learning technique. Principles of reinforce-

ment learning and genetic programming are presented

in Section 3.1, and the TPG model is detailed in Sec-

tion 3.2.

3.1 Background: Reinforcement Learn-

ing and Genetic Programming

Reinforcement learning is a branch of machine

learning techniques where artificial intelligence learns,

through trial and error, how to interact with an en-

vironment. In reinforcement learning, artificial intelli-

gence, called the learning agent, observes the current

state of its learning environment, and interacts with it

trough a finite set of actions. As a result of these ac-

tions, or because of external phenomena such as time or

physics, the state of the learning environment evolves.

By observing the constantly evolving state of the en-

vironment, the learning agent has the possibility to re-

act and to build a meaningful sequence of actions. For

the agent to learn which sequences of actions are use-

ful, an additional reward mechanism is implemented.

By rewarding useful behaviour of the learning agent,

and penalising harmful or useless behaviour, this re-

ward mechanism helps the learning agent select the

most appropriate behaviour for each new experience.

Although TPG have originally been developed for re-

inforcement learning purposes, the possibility to adapt

them for other kinds of learning environments has al-

ready been demonstrated [18].

Genetic programming is a subset of machine

learning techniques that mimics a natural selection evo-

lution process to breed programs for a selected pur-

pose. The iterative learning process of genetic pro-

gramming can be summarised in four steps: 1/ Cre-

ate an initial population of n ∈ N∗ random programs.

Then, iteratively: 2/ Evaluate the fitness of these pro-

grams against the learning environment. 3/ Discard

the m < n,m ∈ N∗ programs of the population with

the worse fitness. 4/ Recreate m new programs from

remaining programs by using genetic operations, like

mutations or crossovers. As detailed in [19,16], TPG

add a compositional mechanism to this genetic learning

process, which favours the emergence of stable clusters

of useful programs by building a hierarchical decision

structure.

A B+>

B

(a) TPG example

Team
(Vertex)

Ac�on
(Vertex)

Program
(Edge)

(b) TPG semantics

Fig. 1: Semantics of the Tangled Program Graph (TPG)

42.0e

Fig. 2: Program from a TPG. On the left, the learning

environment state fed to the program. In the middle, the

sequence of instructions of the program. On the right,
the result produced by the program.

3.2 TPG: Model and Learning Algo-

rithm

The semantics of the Tangled Program Graph

(TPG) model, depicted in figure 1, consists of three

elements composing a direct graph: programs, teams

and actions. The teams and the actions are the ver-

tices of the graph, teams being internal vertices, and

actions being the leaves of the graph. The programs,

associated to the edges of the graph that each connects

a source team to a destination team or action vertex.

Self-loops, that is an edge connecting a team to itself,

are not allowed in TPG.

From afar, a program can be seen as a black box

that takes the current state of the learning environment

as an input, processes it, and produces a real number,
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called a bid, as a result. In more detail, a program is a se-

quence of simple arithmetic instructions, like additions

or exponents. As depicted in figure 2, each instruction

takes as an operand either data coming from the ob-

served learning environment, or the value stored in a

register by a previous instruction. The last value stored

in a specific register, generally called R0, is the result

produced by the program.

The execution of a TPG starts from its unique

root team, when a new state of the environment be-

comes available. All programs associated to outgoing

edges of the root team are executed with the current

state of the environment as their input. Once all pro-

grams have completed their execution, the edge associ-

ated to the largest bid is identified, and the execution of

the TPG continues following this edge. If another team

is pointed by this edge, its outgoing programs are exe-

cuted, still with the same input state, and the execution

continues along the edge with the largest bid1. Even-

tually, the edge with the largest bid leads to an action

vertex. In this case, the action is executed by the learn-

ing agent, a new resulting state of the environment is

received, and the TPG execution restarts from its root

team.

The genetic evolution process of a TPG relies

on a graph with several root teams. The initial TPG cre-

ated for the first generation only contains root teams

whose outgoing edges each lead directly to an action

vertex. At a given generation of the learning process,

each root team of the TPG represents a different pol-

icy whose fitness is evaluated. Evaluating a root team

consists of executing the TPG stemming from it a fixed

number of times, or until a terminal state of the learn-

ing environment is reached, like a game-over in a video

game. The rewards obtained after evaluating each root

team of the TPG are used by the genetic evolution pro-

cess. Worst-fitting root teams, which obtained the low-

est rewards, are deleted from the TPG.

To create new root teams for the next generation

of the evolution process, randomly selected remaining

teams from the TPG are duplicated with all their out-

going edges. Then, these new edges undergo a random

mutation process, possibly altering their destination

vertex, and modifying their programs by adding, re-

moving, swapping, and changing their instructions and

operands. Surviving root teams from previous gener-

ations may become the destination of an edge added

during the mutation process, thus becoming internal

vertices of the TPG. This mutation mechanism favours

the emergence of long-living valuable sub-graphs of

connected teams. Indeed, useful teams contributing to

1 If a team is visited several times, previously taken edges
are ignored to avoid infinite loops.

higher rewards have a greater chance of becoming in-

ternal vertices of the TPG which can not be discarded

unless they become root teams again. Hence, complex-

ity is added to the TPG adaptively, only if this com-

plexity leads to better rewards for the learning agent.

A detailed description of this evolution process can be

found in [16].

The capabilities of TPG have been extensively

demonstrated [19,16] on the 55 video games from the

Arcade Learning Environment (ALE) [4]. In this learn-

ing environment, the adaptive complexity leads to TPG

with diverse sizes, depending on the complexity of the

strategies developed to play each game. For exam-

ple, there are two orders of magnitude between the

smallest and largest networks built within these learn-

ing environments. On the performance side, TPG have

been shown to reach a level of competency comparable

with state-of-the-art deep-learning techniques on ALE

games, for a fraction of their computational and stor-

age cost. Compared to state-of-the-art techniques, TPG

reach comparable competency with one to three orders

of magnitude less computations, and two to ten orders

of magnitude less memory needed to store their infer-

ence model. Recently, an extension of the TPG model

supporting continuous action space was proposed in or-

der to target new learning environments, like time-series

predictions [18].

Implementations of learning frameworks for

TPG, coded in C++, Java and Python, can be found in

open-source repositories. The main motivations behind

the creation of the Gegelati library is to have an effi-

cient, embeddable, portable, parallel and deterministic

library. Because of the efficiency and embeddability ob-

jectives, C++ was a natural choice for the development

of Gegelati. Previous open-source C++ implementa-

tions, including the reference C++ code from Kelly [19],

were neither parallel nor deterministic.

4 Gegelati: Parallel, Efficient and
Embeddable framework for
TPGs

Gegelati is an open-source framework for training and

executing TPG. From its inception, the Gegelati li-

brary has been conceived to foster its adaptability to di-

verse learning environments, and its portability to var-

ious architectures, without sacrificing its performance.

To this purpose, two original contributions have be in-

tegrated to the library: the parallelization of the deter-

ministic learning process, presented in Section 4.1; and

the support for customisable instructions, detailed in

Section 4.2.
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4.1 Deterministic Parallelism and

Portability

What are the motivations?

Portability of the Gegelati library enables using it

both on general-purpose and embedded architectures.

Indeed, when training a learning agent intended to run

on an embedded system, a common design process is to

prototype the agent first on a general-purpose proces-

sor before embedding it on the embedded target. The

portability also makes it possible to train a learning

agent offline on a high-performance computing archi-

tecture, before deploying it on a less performing archi-

tecture for inference.

Parallelism of the learning process is an essen-

tial feature to accelerate the training of new learn-

ing agents, which fosters the adoption of new machine

learning techniques. Indeed, the breakthrough of deep-

learning models is largely due to the acceleration of

their training process with Multi-Processor System On

Chips (GPUs) [24]. Support for parallel computations is

useful for general-purpose and high-performance com-

puting architectures, but also for embedded systems

which nowadays widely integrate heterogeneous Multi-

Processor System-on-Chips (MPSoC).

Determinism of a learning process is the property

that ensures that given a set of initial conditions, the

learning process will always end with the same result.

Determinism can only be obtained under the assump-

tion that the state of the learning environment is itself

changing deterministically, solely depending on the se-

quence of actions applied to it. Determinism is a key

feature, especially for pseudo-stochastic learning pro-

cess such as the training of TPG. Indeed, the result of

training may partially depend on luck, which is exactly

why being able to deterministically reproduce a result

is crucial.

The determinism is antagonistic with the paral-

lelism and portability objectives, and with the stochas-

tic nature of the learning process, which makes all these

objectives challenging to implement jointly. Indeed,

parallelism is by nature a source of non-determinism as

the simultaneity of computations accessing and modify-

ing shared resources, often in an unknown order, tends

to produce variable results.

How does the deterministic and scalable parallelism

work?

During the learning process of TPG, the most compute-

intensive parts are the fitness evaluation of the policies,

and the mutations of the programs added during the

evolution process. The fitness evaluation of individual

policies can be deterministically executed in parallel, on

the conditions that: 1/ the learning environment can be

cloned to evaluate several policies concurrently, and 2/

any stochastic evolution of the learning environment

state can be controlled deterministically. Under these

conditions, the parallel evaluation of policies is pos-

sible, as the topology of the TPG, which is a shared

resource for all policies, is fixed during this evaluation

process. Similarly, the mutation of programs can be ap-

plied deterministically in parallel. Two kinds of muta-

tions are applied to the TPG: mutations affecting the

graph topology by inserting new root teams and edges;

and mutations affecting instructions of the programs as-

sociated with the new edges. While mutating the graph

topology cannot be done in parallel, the graph being a

shared resource, individual programs are independent

from each other and can be mutated in parallel.

To control a stochastic process, a Pseudo-Random

Number Generator (PRNG) must be used each time

a random number is needed. Given an initial seed, a

PRNG produces a deterministic sequence of numbers.

To ensure full determinism of the training of a TPG,

a unique PRNG should be called in a fixed order dur-

ing the whole training. Letting the parallel parts of the

training process call the PRNG directly is not possible,

as the absolute order in which parallel computations

occur is itself stochastic. It is also not possible to give

a pre-computed list of pseudo-random numbers to each

parallel task, as the number of random numbers needed

for each task is itself stochastic. For example, when mu-

tating a program, mutations are applied iteratively until

the program behaviour becomes “original” compared to

pre-existing programs in the TPG. Hence, giving a fixed

number of pre-computed random numbers for the pro-

gram mutations is not feasible.

The parallelization strategy adopted in Gegelati

is based on the master/worker principle, with a dis-

tributed PRNG. The principle of the distributed

PRNG is the use of two distinct PRNG instances: the

prngmaster and the prngworker . The prngmaster is exclu-

sively used in the sequential parts of the learning pro-

cess, which confers a deterministic nature to its usage,

given an initial seed. Besides being used for stochastic

tasks performed sequentially, like TPG topology muta-

tions for example, the prngmaster is also used to gener-

ate a seed for each parallel worker task. In each worker

task, a private prngworker is instantiated, and initialised

with the seed provided by the prngmaster . Since all calls

to the PRNG from the worker tasks exclusively use

their private prngworker , the random number sequences

generated in each parallel task are deterministic.

The pseudo-code of the master and worker tasks

for the policy fitness evaluation are presented in Pro-

cedures 1 and 2, respectively. Communications be-

tween the tasks and load balancing of the computa-
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Procedure 1: EvaluateAllPolicies
Input: TPG: G = 〈Teams,Edges〉
Data: PRNG: prngmaster

Job queue: JobQ
Result Queue: ResultQ

1 /* Prepare jobs */

2 idx = 0
3 for each root ∈ G.Teams do
4 seed = prngmaster .getNumber()
5 job = { idx++, seed, root }
6 jobQ.push(job)

7 endfor
8 /* Start parallel threads */

9 for i = 1 to NumPE − 1 do
10 Spawn thread: Worker(G, JobQ, ResultQ)
11 end
12 Call Worker(G, JobQ, resultQ)
13 Join all threads
14 /* Post-Process Results and Trace */

15 Sort ResultQ in result.jobId order
16 for each result ∈ resultQ do
17 Post-process result.trace // Archiving [19]
18 ...

19 endfor

Procedure 2: Worker
Input: TPG: G = 〈Teams,Edges〉

Job queue: JobQ
Result queue: ResultQ

Data: PRNG: prngworker

Learning environment twin: LE
1 /* Poll for job */

2 while JobQ.hasJob() do
3 /* Setup for policy evaluation */

4 job = jobQ.getNextJob()
5 root = job.root
6 prngworker .reset(job.seed)
7 LE.reset(prngworker .getNumber())
8 /* Evaluate policy fitness */

9 trace = evaluate(G, root, LE, prngworker)
10 result.jobId = job.id
11 result.trace = trace
12 resultQ.push(result)

13 end

tions are supported by a job queuing mechanism based

on two queues: JobQ and ResultQ. Each policy evalu-

ation job, prepared by the master procedure, encapsu-

lates a unique job identifier id, a seed provided by the

prngmaster , and a root team from the TPG. All jobs

are pushed in the JobQ queue before spawning as many

worker threads as the number of secondary Processing

Elements (PEs) in the target architecture. For each job

it acquires from the jobQ queue, the worker procedure

resets its prngworker using the seed contained in the job.

Before evaluating the fitness of the root team contained

in a job, the worker procedure resets its private copy of

the learning environment, using a number given by the

prngworker . As a result of the policy fitness evaluation,

described in details in [19], a result object encapsulat-

ing execution traces for the job is pushed in the resultQ.

When all jobs have been processed, and all workers ter-

minated, the master procedure is responsible for post-

processing the traces stored in the resultQ. To ensure

determinism of this post-processing, results stored in

the resultQ are first sorted in ascending job.id order.

The master and worker procedures used for paral-

lelising the mutations of programs are similar to the one

used for policy fitness evaluation, with the difference

that jobs encapsulate programs instead of root teams.

4.2 customisable Instruction Set

What are the motivations? In the seminal work on

TPG [19], the instructions used in the programs are

chosen exclusively among the following eight instruc-

tions: 4 binary operators {+,−,×,÷}, 3 mathemati-

cal functions {cos, ln, exp}, and 1 conditional statement

res ← (a < b)? − a : a. To further simplify the execu-

tion and mutation of programs, it was assumed that

instructions only handle double operands.

As shown in related genetic programming works [3,

36], using a broader set of instructions with diverse data

types can help improve the performance of learning

agents, at the cost of longer training time. The exten-

sion of the instruction set used in the programs of the

TPG has already been proposed in [17], where a set

of instructions for 2D images operands is added, and

in [12], with instructions accepting thirteen operands

tailored for predicting properties of the learning envi-

ronment. In Gegelati, both the number and types of
operands, and the nature of instructions used in pro-

grams can be fully customised. Besides making the

training more efficient for specific learning environ-

ments, this customisation feature may also be used to

increase the efficiency of the TPG execution on specific

hardware. Indeed, using an instruction set mirroring the

instruction set of the architecture used for its execution

may help increase the speed and the power efficiency of

the TPG execution.

How are customisable instructions supported?

The support for customisable instructions within

Gegelati is based on the three classes presented in

Figure 3. When creating a new training environment,

a developer may create her own set of instructions, by

creating new classes inheriting from the Instruction

class. With the operandTypes attribute, each instruc-

tion declares the number and type of operands it ac-

cepts when calling its execute() method. Currently,

to keep the management of registers simple during pro-

gram execution, only double results can be produced
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Instruction

+operandTypes[]

+execute(operands[])

ProgramLine

+instruction*

+operandAdresses[]

+register

DataSource

-data

+canProvide(address,type)

+getData(address,type)

+setData(address,data)

Fig. 3: Class diagrams of the data structures for cus-

tomisable instructions.

Procedure 3: ExecuteProgram

Input: Program: p
Data sources: data

1 for each line ∈ p do
2 instruction = line.instruction
3 operands[] = { ∅ }
4 nbOperands = instruction.operandTypes.size()
5 for i = 0 to nbOperands-1 do
6 type = instruction.dataTypes[i]
7 address = line.operandAdress[i]
8 if data.canProvide(type, address) then
9 operand = data.getData(type, address)

10 operands.insert(operand)

11 else
12 Exit with an error
13 end

14 end
15 result = instruction.execute(operands)
16 data.set(line.register,result)

17 endfor

by the execute() method. Each line of a program ref-

erences an instruction from the set of available in-

structions, a destination register to store the result

of its execution, and the addresses of operands to pro-

cess, selected among all available data sources. The data

sources accessible to the lines comprise both the regis-

ters used for storing instruction results, and the state

of the learning environment. Data sources classes must

inherit from the DataSource class which acts as a wrap-

per between the data and the program execution engine.

Procedure 3 presents the simplified pseudo-code for

executing a program modelled with the classes from

Figure 3. The core of the mechanism supporting cus-

tomisable instructions lies between lines 5 and 14 of

auto myInstruction = LambdaInstruction <int ,

char [2]>(

[]( int a, char [2] b)->double {return a*(b

[0] + b[1]) ;});

Listing 1: LambdaInstruction usage example

Procedure 3. For each operand of each line, the algo-

rithm checks whether the data sources can provide the

requested operand type at the requested address. If the

data type can be provided by the data sources at the

requested address, the data is fetched from the data

sources, and later used for executing the instruction

of the current line of the program. Otherwise, the pro-

gram execution is terminated, which does not occur

in practice, as the operand data types are taken into

consideration when performing program mutations in

Gegelati. It is important to note that the getData()

method may return data whose type differs from the

native data type stored within the data source. For ex-

ample, a data source storing screen pixels as char values

can automatically return an equivalent double value, or

even a neighbourhood of 3-by-3 pixels when an operand

of type char[3][3] is requested.

To ease the creation of new instructions

for each training environment, a utility class

LambdaInstruction is proposed in Gegelati.

The template class LambdaInstruction supports the

creation of instructions for any number of operands,

and for operands with primitive and non-primitive

types as well as 1D and 2D C-Style arrays. A code

snippet illustrating the creation of an instruction with

the LambdaInstruction class is given in Listing 1. In

this example, an instruction taking an int operand,

and a 1D array of char is declared, using a simple

C++ lambda function.

5 The Secure-Gegelati real-time
prototype

Secure-Gegelati is a TPG-based system that has been

designed to perform intrusion detection on an IS.

In Section 5.1, we present the changes applied to

TPGs to use them in an IDS. Section 5.2 details re-

inforcement learning in a NIDS context. Section 5.3

presents the embedded version of our system. Finally,

we describe in Section 5.4 a practical use case example

of the use of the probe.
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5.1 An Anomaly-based Intrusion De-

tection System

Secure-Gegelati is a TPG system that has been

adapted in the following ways :

1. It is tailored to perform an inference task. To build

Secure-Gegelati, the TPG has been adapted to

classification problems by increasing the probabili-

ties of mutations of programs, and increasing the di-

versity of explored solutions. In particular, the mu-

tations that cause the change of the outgoing edges

to a different action are useful to discover samples

from all the represented classes, including rare intru-

sion classes. After modification, Secure-Gegelati is

able to create a model for rare events.

2. It is tailored to produce classification with low false-

positive Rate (FPR) and continual learning. Orig-

inally, GEGELATI TPG is designed to solve RL

challenges, i.e. to choose the actions to be applied to

an environment so as to increase a reward. To for-

mulate a classification problem as a RL challenge,

the RL reward function must act as a loss function.

A NIDS requires primarily a high precision to get a

low false alarm rate, and secondarily a high recall

to detect as many intrusions as possible. To obtain

this behaviour, we chose to reward the agent with

the F1-score function. This reward helped to min-

imise the FPR.

To help in the detection of intrusions, we added

a few instructions to the original TPG instruction

set ({+,−, ∗, /,max, log, exp}). The added instructions

help in the identification of constant values such as 80

or 8080 for HTTP ports number. max and− are used to

determine whether a state value is superior to another.

Secure-Gegelati faces three mains problems:

– learn in a highly imbalanced environment

– analyse network flow logs in real-time

– learn in a dynamic environment where new threats

appear over time.

Intrusion detection is by nature a highly imbalanced

problem because intrusions are rare. Secure-Gegelati

is adapted for this problem of imbalanced learning by

tuning the reward system. The rewards obtained when

raising a correct alert is made artificially greater than

the reward obtained when no alerts are rightfully raised.

As a rule of thumb, we observe that the reward amount

shall compensate for rare presence of the class in the

dataset in a linear way. For example, the CICIDS-2017

dataset [42] is composed of 83% of benign network flow

logs and 17% of attack network flow logs. In order to

mitigate this problem, an alert raised on an attacks is

Fig. 4: In inferring Mode, Secure-Gegelati monitors

Bi-directional Network flow logs (Network flows logs

from both the request and the response) provided by

the ”CIC Flow meter” software from the raw packets

logs. The analyst receives potential alerts.

rewarded 5 times (83/17 ) more than another action

rightfully taken, making the class imbalance less prob-

lematic. As a rule of thumb, we observe that the reward

amount shall compensate for rare presence of the class

in the dataset in a linear way. Furthermore the ratio

of deleted teams at the end of a generation has been

set to 80%, less than in the original method, in order to

keep knowledge of rarely occurring events by preserving

enough root teams at the end of a generation.

To keep pace with the input data stream while train-

ing, we studied two training modes. The first one trains

each root team with the same input stream of data

and the second one stacks the network flow logs into

a FIFO and different root teams unstack data through

their learning. In the second training mode, each root

team is trained with different data making the imbal-

anced data problem more important. The two methods

will be compared in results sections on table 8.

Finally, in order to cope with changes on the net-

work (see table 5) or with the appearance of novel

threats (see table 6 and table 7), we altered the learning

process in order to switch manually between training

and inferring modes. This feature allows an analyst to

update the probe when required. Figure 4 and 5 show

the flow of data in both inferring and training mode.

5.2 A reinforcement learning-based

probe

We designed the Secure-Gegelati system as a RL

probe. RL is bound to three properties:

– taking actions on a dynamic environment
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Fig. 5: When Secure-Gegelati is in training mode, it

monitors network flows labelled by the analyst. The

analyst labels this new training set of logs based on

existing labels, expertise and other potential security

mechanisms (such as signature-based ids) already set-

up on the network. The new training logs are added to

the previous training set. Secure-Gegelati itself con-

tinues to raise alerts while training.

– evaluating the internal model (inferring) and explor-

ing of the action space (training)

– learning through rewards.

Even though Secure-Gegelati is trained from a la-

belled database, it cannot be considered a supervised

learning system. Secure-Gegelati takes action on a

dynamic environment, as we include the input data

itself directly in the environment. When an action is

taken (even though it is a classification action), the en-

vironment changes and a new line of net-flow log is

made available, enabling the agent to make new ob-

servations and update its action policy. As the Secure-

Gegelati system is a continual learning system, its

evaluation of the internal model is kept low to the

benefit of a high exploration allowing the agent to

fit to the novelty appearing on the dynamic environ-

ment. New attacks and threats can thus be detected.

Finally, Secure-Gegelati reduces the need for super-

vision of the learning environment by rewarding the

agent through batches. There is no immediate correc-

tion of the learning as in supervised learning, but in-

stead a delayed score that is given to each agent root

team at the end of a batch, fostering the selection of

the best root teams for the cloning and the mutations.

5.3 A real-time Embedded system

We use as a proof-of-concept target an octa-core Exynos

5410 SoC with four LITTLE ARM cores (A7) and four

big ARM cores (A15), providing a set of 17 clock con-

figurations from 200 MHz to 2.0 GHz for the A15 cores

and from 200MHz to 1.4GHz for the A7 cores. The TPG

graph being a highly dynamic and evolvable model, we

choose to use this versatile platform and benefit from

its high energy efficiency, optimises for running in hand-

held devices. This platform constitutes a portable base-

line for future studies on hardware acceleration and ac-

celerations of TPG programs on a SoC-FPGA is con-

sidered for future work.

Secure-Gegelati exploits the platform parallelism.

As a low-power device, the number of cores used for

the application can be adjusted at initialisation to keep

pace with the incoming data flow while functioning at

the lowest level of energy consumption. The clock fre-

quency of the A7 cluster and the A15 cluster can be set

at initialisation and updated at runtime to prevent the

probe from being flooded.

The determinism of Gegelati helps in the valida-

tion of the embedded Secure-Gegelati probe on the

octa-core Exynos 5410 SoC, ensuring that the training

is occurring properly on the embedded platform.

To keep pace with the input stream of data in a

training configuration, optimisations have been per-

formed. At training, all root teams analyse the input

data. The best root teams are selected at the end of

the generation for replication and mutation. The least

performing root teams are deleted. Online training in a

real-time context forces us to analyse each network flow

log only once. The best root team is not necessarily the

one that will analyse a network flow log. The analysis

during an online training of the probe is thus less per-

forming than while inferring. The results shown in next

sections include these modifications. Network flow logs

arrive in a stack and each root team unstacks one log

and analyses it. Each root team thus trains on differ-

ent samples. The training step requires more memory,

as several root team co-exist. In order to reduce the

memory constraints on the embedded platform while

training, the TPG parameters have been edited com-

paring with the state of the art parameters in [19]. The

number of root teams have been decreased (from 360

to 200) and the size of the training batches have been

increased (1000 to 50k). The number of outgoing edges

has been reduced (i.e. there are less programs in the

graphs) and the program size have also been increased.

5.4 Using Secure-Gegelati as an IDS

At initialisation, the analyst trains the Secure-

Gegelati probe offline providing labelled data or

online, using results from other signature-based or

anomaly-based IDSs to provide the labels. After set-

ting the parameters of the embedded device such as
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Fig. 6: After an initial training, the Secure-Gegelati

IDS runs on the network. When a new intrusion is

identified by the analyst, he updates the training set

providing new labelled data and the probe is switched

in training mode. New intrusion detection capability is

checked on a validation set before turning the probe

back in inferring mode.

started cores and frequency of the core clusters, the

probe starts training. At any time, the analyst is able

to freeze the training to use the probe in inferring mode.

To update the device, he only has to switch back into

training mode. This is illustrated in figure 6.

6 Experimental Results

This section sums up the experimental results of the

proposed protocol and evaluates the utility of the TPG

algorithm in the design of a NIDS. We chose to compare

the experimental results with the RF algorithm due to

their high detection rates on the CIC-IDS 2017 dataset

2 [46,52].

As stated in [32], the CIC-IDS 2017 data-set is rele-

vant as it includes most of the features such as realistic

network configuration, realistic network traffic, labelled

observations and different attacks that makes it useful

for a real-world scenario simulating a small IS [21,37].

We also use the CIC-IDS 2018 dataset as it is more re-

alistic in terms of rareness of malicious events and as it

sums up generated traffic on a network topology simi-

lar to a small-company. The data-sets are presented in

more details in the section 6.1

We want to show here that the TPG is a relevant

contribution to IDS design by measuring its perfor-

mances on various experiments.

– Firstly, we measure its performances on the CIC-

IDS 2017.

– Then, to demonstrate the adaptability of the

Secure-Gegelati probe, we run the following ex-

periments:

1. we measure the evaluation performances of a

TPG previously trained on CIC-IDS 2017 on the

CIC-IDS 2018 dataset and show that it performs

better than a supervised learning algorithm. We

use the RF algorithm for comparison.

2. We train a model without a category of attacks

and study the reaction of Secure-Gegelati

when we introduce this attack in the dataset.

We show that Secure-Gegelati is able to evolve

in order to discover the new attack and how it

affects the learnt model.

– We show that TPG is a relevant solution in a real-

time context and that it is able to keep pace with

the net flow of the CIC-IDS data-sets.

– We show that the TPG-based IDS is useful on an

embedded platform and measure its performance in

terms of the number of analysis per seconds. Details

on the embedded platform are available in section

5.3

– Finally, we measure the energy efficiency of the

TPG-based NIDS on the embedded platform.

6.1 Data-sets

6.1.1 The CIC-IDS 2017 dataset

The CIC-IDS 2017 dataset is one of the intrusion detec-

tion data-sets with the most diverse and realistic range

of cyber-attacks. It addresses recent attacks that are

not available in other dataset using a range of differ-

ent computers, operating systems and security features

[33]. It has been generated using two networks. The

first one, the victim Network, is a set of 5 servers and

10 computers using different operating systems (Win-

dows, Linux and Macintosh) and necessary equipment

such as routers, firewalls and switches. The attacker’s

network includes 4 computers using Windows 8.1 and

Kali operating systems, one router and one switch. The

CIC-IDS 2017 dataset is an IDS dataset that contains a

week of generated traffic network frames. In this traffic

can be found several anomalies labelled in 14 differ-

ent categories. Most of the traffic is labelled as “normal

traffic”. The attacks are highly unbalanced but this dis-

parity does not reflect a usual behaviour on an IS. In-

deed, too many attacks are in it with respect to the

amount of normal connections. Table 1 sums up the

different classes and the amount of data per class.
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Table 1: Distribution of classes in the CIC-IDS dataset

in net-flow logs. Each net-flow log corresponds to 78

fields and 312 Bytes of raw data.

Classes Amount of net-flow logs

BENIGN 2.359.087
Dos Hulk 231.072
PortScan 158.930
DDoS 41.835
Dos Goldeneye 10.293
FTP-Patator 7.938
SSH-Patator 5.897
Dos Slowloris 5.796
Dos Slow-httptest 5.499
Bot 1.966
Brute force 1.507
XSS 652
Infiltration 36
SQL-Injection 21
Heartbleed 11

The data used in the research is taken from the fully

labelled CIC-IDS 2017 dataset. It sums up in a .csv

file 78 network flow features from the captured network

traffic (PCAP files). Information such as the destination

port, the number of bytes per seconds or flags can be

found in the dataset. Those information are represented

on 32bits integers, floating-point numbers and Boolean.

More information about the 78 extracted features have

been defined and explained in the CICFlowMeter web-

page [1].

The generated data stream reaches a peak of 170

connections/s during the Denial of Service attacks and

the mean data stream is around 50 connections/sec. We

assume that it is possible to generate the same network

flow statistics as in CICIDS-2017 in real-time.

6.1.2 The CIC-IDS 2018 dataset

The CIC-IDS 2018 provides a similar dataset and is

the result of a simulation of a much bigger IS. Indeed,

the dataset generated comes from a set of 420 com-

puters divided into 5 departments and thirty servers.

The attacks are carried out from an “attacker” network

composed of 50 machines using the Windows and Kali

operating systems. The CIC-IDS 2018 dataset is com-

posed of the same categories of attacks as the CIC-IDS

2017 dataset but with slight differences due to the mod-

ernisation of some attacks or the changes in operating

system. The CIC-IDS 2018 dataset is more representa-

tive of a realistic small company-sized IS.

6.1.3 Adjustments

Some differences between the two data-sets required

pre-processing to have consistent data for training and

evaluation of the solution. In particular, the CIC-IDS

2018 dataset has two additional columns compared

to the CIC-IDS 2017 dataset, and the CIC-IDS 2017

has information about header length whereas the other

dataset does not.

6.1.4 CIC-IDS 2017 Analysis

The CIC-IDS 2017 paper [42] gives NIDS results in

terms of Precision, Recall and F1 Score using seven ML

algorithms. Those results have been reported in Table 2.

Among those 7 supervised learning algorithms, 4 stand

out. Indeed, k-nearest neighbours (KNN), RF, Itera-

tive Dichotomiser 3 (ID3) and the Quadratic Discrimi-

nant Analyser (QDA) reach F1-scores above 90%. The

Adaboost, Multi-Layer Perceptron (MLP) and Naive-

Bayes algorithm reach lower detection detection rates.

Even though the ID3 algorithm produced the best

results, we use RF to compare our results. RF have re-

sults close to the ID3 algorithm and a multi-threaded

low level implementation is available in the Ranger

framework [51]. This implementation is useful to try

the RF on the embedded platform.

Table 2: Results on the CIC-IDS 2017 dataset using

various ML Algorithms as reported in [42]

Algorithm Precision Recall F1-score
KNN 0.96 0.96 0.96
RF 0.98 0.97 0.97
ID3 0.98 0.98 0.98
Adaboost 0.77 0.84 0.77
MLP 0.77 0.83 0.76
Naive−Bayes 0.88 0.04 0.04
QDA 0.97 0.88 0.92

A comparison metric for IDS is given by the Intru-

sion Detection Capability CID [13] based on informa-

tion theory.

This CID is the result of the computation of the

mutual information (I( ~X; ~Y ) having ~X being the in-

puts log class of the IDS and ~Y being the classifica-

tions given by the IDS on the input logs ~X) normalised

by the entropy of ~X: H( ~X). An IDS has to determine

whether a log is normal or represents a threat. Secure-

Gegelati can be seen as a deterministic function that

acts on the input stream ( ~X) and produces the output
~Y ideally being identical to ~X classes (i.e. “Benign”

or “Attack”). The number of guesses represents H( ~X)
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(i.e. the information content of ~X) and the number of

correct guess represents I( ~X; ~Y ). More details on the

CID can be found in [13].

The higher the CID is, the better the IDS performs.

In practice, having a perfect model (FPR (False Posi-

tive Rate) and FNR (False Negative Rate) both value

0) leads to a CID of 1. This value helps to choose the

best trade-off between Precision and Recall.

6.2 Performance of the RF and the

TPG algorithms on the data-sets

CIC-IDS 2017 and CIC-IDS 2018

We compare the algorithms in terms of accuracy, preci-

sion, recall (or sensitivity) and F1-score. It is more in-

teresting in this study to maximise both Precision and

Recall (high F1-score) as we want to detect as many

attacks as possible (high recall) while generating as few

false-positive alerts as possible (high precision).

6.2.1 RF implementation

We use an open-source c++ implementation of RF for

high dimensional data (“Ranger”) [51] to compare with

the TPG results. Table 3 sums up the precision, recall,

F1-score and accuracy of the RF algorithm.

We can see that there are some differences with the

results given in table 2 and in [52] using a state of the

art RF algorithm. Those difference are due to a custom

RF parameters tuning to reach a 100% precision. Such a

precision is preferable because in the intrusion detection

field, false positive alerts are costly time consuming.

Table 3: Machine learning statistics using RF on the

CICIDS dataset for different training time.

Time (s) Accuracy Precision Recall F1-score
183 94.5 97.6 74.1 84.3
539 95.5 99.7 77.3 87.1
1867 94.8 99.8 73.9 84.9
3543 92.2 100.0 60.3 75.3

6.2.2 Using the TPG to analyse CICIDS

Using the Gegelati framework gives good results in

terms of accuracy, precision, recall and F1-score as

shown on Table 4. The learning curves of the TPG

highlight the discovery of new properties between the

generations. As the reward function is based on the F1-

score, precision (or recall) can drop if it leads to a final

increase of the F1-score.

Table 4: Machine learning statistics using Secure-

Gegelati on the CICIDS dataset depending on the

total time (training + evaluation time).

Comparing with table 3, we can see that for a sim-

ilar amount of time, the performances of both algo-

rithms are close. In particular, we are not able to reach

a 100% precision with Secure-Gegelati but the high

recall makes it competitive.

Time (s) Accuracy Precision Recall F1-score
363 86.27 66.65 63.05 64.80
720 91.89 97.10 61.33 75.18
1701 94.74 96.72 76.32 85.31
3847 96.68 99.12 84.18 91.04

Comparing table 4 with table 3, we can see that

for a similar amount of training time the results of

Secure-Gegelati are slightly better than the results of

the RF system. On one side, RF obtains no false posi-

tive alerts (really saving for an analyst). On the other

side, the recall of the method is quite low. The RF im-

plementation of the NIDS misses 40% of the attacks.

Secure-Gegelati is not able to detect attacks with a

100% precision but it is incorrect less than one per-

cent of the time. On the other side, Secure-Gegelati

is able to detect over 84% of the attacks of the dataset.

The learning of the RF being conditioned by statistics,

a fast RF-based IDS will difficultly be able to detect

the least represented classes. For example, Heartbleed

or SQL-injections represent less than 0.001 % of the

data available in the CICIDS-2017 dataset. A RF-based

probe able to detect those attacks could be designed by

changing learning parameters and thus increasing the

learning time of the probe.

6.3 Adaptability of Gegelati

6.3.1 Inferring the previous models to the CIC-IDS

2018 data-set

In real-world conditions, the network environment is

dynamic. The network topology can change, new ser-

vices or tools can be installed and new user-behaviour

will be discovered. Even though switching from a tiny

IS (represented by the CIC-IDS 2017 data-set) to a

company-sized IS (CIC-IDS 2018), we want our algo-

rithm to be robust and to keep detecting as many

threats as possible (low false-negative rate / high re-

call) while not generating false-positive alarms.



SECURE-GEGELATI 15

We sum up in Table 5 the evaluation of trained RF

algorithm and TPG algorithm for CIC-IDS 2018.

Table 5: Inferring models previously trained on the

CIC-IDS 2017 data-set on the CIC-IDS 2018 data-set

Algorithm Accuracy Precision Recall F1-score
RF 70.58 100 0.08 0.16
TPG 91.0 95.3 24.5 39.0

The difference between the results presented in Ta-

ble 5 comes from the learning mechanisms. In the first

case, with RF, the learning is done by studying the

whole dataset as well as selecting the discriminating

variables and thresholds that permit a classification

without false positives. When the available information

changes, that threshold and variables become less accu-

rate for the classification of the new net-flow logs and

leads to more classification errors. We keep detecting 1

threat over 4 using a TPG as the programs activates by

producing the highest return value. Even if the content

of the information changes, the TPG selects the dis-

criminating variable and applies a program on those.

The sequence of programs leading to the raise of an

alarm might still activate, even though the observed

values changed.

Although the use of RF does not generate false-

positive alerts, it raises a mean of an alert every 1250

attacks whereas the TPG is raising a positive alert

every 4 attacks with 95% of precision. We prefer the

use of a TPG-based IDS as CID(TPG) = 0.15 and

CID(RF ) = 4× 10−3.

6.3.2 Discovering new categories of attacks

To demonstrate the detection of novel attacks, we care-

fully created two new data sets from the CIC-IDS 2017

dataset. The first one is the CIC-IDS dataset without

all the attacks labelled as “Port Scan” and the traffic in

between Port Scan attacks. The second is the CIC-IDS

dataset without all DoS Slow Loris, Dos slow HTTP-

test attacks and Port Scans. We trained offline for 50

generations on both dataset and added the port scan

log to the environment while Secure-Gegelati worked

in inference mode. After a while, we decided to re-train

the probe and wrote down the results after 1 genera-

tion and after 50 generations of training. Table 6 shows

the results of the experiment were Port Scan attacks

are the novelty whereas table 7 shows the results of the

experiment where the DoS attacks (all categories) are

added to the dataset.

We can see in Table 6 that most attacks are less de-

tected after 50 re-train generations than after 1 re-train

acc
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Fig. 7: Machine learning statistics using Secure-

Gegelati on the CICIDS dataset depending on the

total time (training + evaluation time. At generation

80, the analysed connections are switched to CIC-IDS

2018 instead of CIC-IDS 2017).

Precision of the detection is kept high after the data-set

change. Secure-Gegelati trains with the new connec-

tion summaries and its recall goes up (between the 80th

and 100th generation). Due to the massive changes and

to the already existing knowledge base, it needs more

time to fit the environment and perform an accurate

detection.

generation, marginally for some, significantly for oth-

ers. This is partly due to the data imbalance described

in table1 and also to the inner reward mechanism try-

ing to prevent Secure-Gegelati to raise false positive

alerts Before the modification of the dataset, Dos Hulk

is the predominant attack class in the dataset. When

Port Scans are added, it becomes the second most repre-

sented class, making it important for Secure-Gegelati

to be detected. Port Scans are known to have a signa-

ture and thus it is more likely that Secure-Gegelati

will come out with a good set of observation to de-

tect them efficiently. Dos attacks are typically discov-

ered through their volume which is something Secure-

Gegelati is not doing. Secure-Gegelati can eventu-

ally come out with correct observations to reach back

100% of detection on the Dos-Hulk attack through an

extended training.



16 Nicolas Sourbier et al.

Table 6: This table sums up the per class true positives

when adding Port Scan attacks to the training set after

50 generations. The inferring results are very different

from the results of the offline training due to the change

of the evaluation set (required to insert the port scan

attacks in the dataset). Note that without knowing any-

thing about Port-Scans, the TPG model is able to raise

an alert for 40% of them. Retraining causes an instant

drop of the True Negative Rate and an instant raise of

the True Positive Rate (TPR). Secure-Gegelati tends

to fit the most frequently occurring data of the dataset

and thus becomes really good at detecting port-scan

while keeping a low false-positive rate. × represents ir-

relevant data as they are not part of the evaluation set.

Some attacks were not present in both evaluation sets

or never detected.

class train
(50 gen)

Inferring re-train
(1 gen)

re-train
(50 gen)

BENIGN 96.6 95.7 78.9 99.8
XSS 4.8 5.6 5.6 0
DoS slow
Loris

29.1 42.6 38.0 36.4

Dos slow
HTTP-test

58.9 66.0 63.8 59.6

Dos
hulk

94.8 100 100 76.9

Port Scan × 42.6 99.4 99.3

TPR 90.9 38.9 87.3 86

Tables 6 and 7 sum up that the TPG is agile enough

to detect new threats as they come and can be retrained

online to update its knowledge base and keep perform-

ing a precise detection without generating too many

false-positive alerts. Secure-Gegelati tends to max-

imise its rewards and thus, attacks that have only a

few samples in its dataset are more likely not to be

detected.

6.4 Real-time computation and energy

efficiency of Secure-Gegelati

The training time T of the TPG is conditioned by sev-

eral factors:

– the number of samples or number of connections

to analyse. A single policy takes a time T = t to

analyse a challenge and takes T ≈ n× t to analyse n

samples. The approximation is due to the depth of

the chosen path. The more relay-teams descended

Table 7: This table sums up the per class true positives

when adding Dos attacks to the training set after 50

generations of offline training. The inferring results are

very different from the results of the offline training due

to the change of the evaluation set (required to insert

the DoS attacks in the dataset). This time the model

is not able to detect any DoS attack in inferring mode.

Retraining causes an instant drop of the True Negative

Rate. Secure-Gegelati tends to fit the most present

data of the dataset and thus fits to detect Dos Slow-

Loris and DoS Slow-HTTP test while keeping a low

false-positive rate. × represents irrelevant data as they

are not part of the evaluation set. Some attacks were

not present in both evaluation sets or never detected.

The data imbalance is described in Table 1

class train
(50 gen)

Inferring re-train
(1 gen)

re-train
(50 gen)

BENIGN 100 100 86.1 99.9
Brute-force 75.0 67.5 67.5 67.5
XSS 86.2 94.4 94.4 94.4
DoS slow
Loris

× 0.0 20.9 20.9

Dos slow
HTTP-test

× 0.0 59.6 59.6

Port Scan × 0.0 99.7 99.4

TPR 48.2 10.3 96.3 96.1

while running the algorithm, the more time it takes

to take an action.

– The number of root-teams will have a direct in-

fluence on the training time. A root-team takes

T ≈ n × t to train and R concurrent root-teams

take T ≈ n× t×R.

To train the algorithm, we can choose to send the

same sample to each root-team (M1). In this case, the

analysis rate values: Arate(M1) ≈ n
T Or we can train

the algorithm sending samples to root-teams as they

come (M2) which results in a boost of the analysis rate:

Arate(M2) ≈ R×n
T . We sum up in Table 8 the rates ob-

tained at different stages of the training on the CIC-IDS

2017 dataset using a batch size of 50000 samples. When

training a TPG, a batch corresponds to the amount of

actions taken before receiving a reward.

Note that Table 4 was obtained using the second

method where samples are analysed as they come and

the root-teams do not learn on the same samples.

As seen in Section 6.1, the CIC-IDS 2017 dataset

produces a mean of 50 connections per seconds and

peaks to 170 connections per second. The Secure-
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Table 8: Measuring the number of connections analysis

per seconds using Secure-Gegelati. The first method

(M1) trains a TPG by sending identical data to all

teams whereas the second method (M2) stacks all the

data in a buffer and teams unstack the data one at a

time. In method M2, teams are training with different

data through time.

Gen. Training time (s) Arate(M1) Arate(M2)
1 27.29 1832 916052

20 38.53 1297 642861
40 52.89 945 472643
60 58.61 853 426577
80 66.03 757 378615

Gegelati algorithm is able to keep pace with the

dataset using a X86 architecture. Through the genera-

tions, the graphs get more complex as relay teams are

added. This is why the performance of the algorithm

decreases with time.

As the peak number of connections per seconds on

CIC-IDS values 170 connections per second, the embed-

ded design must be efficient enough to perform online

training at this rate. It is recalled that the four A7 cores

of the Exynos 5410 platform can run at a maximal fre-

quency of 1.4 GHz and the four A15 cores, at 2.0 GHz.

We present in Table 9 the training times on the Exynos

5410.

Table 9: Reachable number of connection analysis per

seconds using the Exynos 5410. We effectuate the train-

ing on TPG using 200 root-teams and training over

a batch of 500 connection summaries. The frequencies

FA7 and FA15 are in GHz.

Cores FA7 FA15 Train (s) Arate

4A7 + 4A15 1.4 2.0 7.52 13294
1A7 + 4A15 1.4 2.0 10.49 9533

4A7 1.4 - 22.88 4371
3A7 0.2 - 239.21 418
2A7 0.3 - 258.00 387
2A7 0.2 - 614.39 162
1A7 0.2 - 1286.58 77

The real-time constraint is satisfied on the embedded

platform, even in the training phase. The table 9 shox

that the rate reachable using Secure-Gegelati using 2

A7 cores at 300 MHz is superior to the connection rate

on the CIC-IDS 2017 data-set.

6.4.1 Energy efficiency of the IDS

The x86 Intel Xeon W-2145 processor used for previous

experiments in Section 6.3 has a 140 Watts peak ther-

mal dissipation power (TDP). Using this architecture,

Secure-Gegelati analyses up to 378k connections per

seconds during training and 480k connections per sec-

ond using the graph on inference.

The Energy efficiency (Eeff ) of the x86 platform

is thus : Eeff (Training) = 2 .7k connections/Watt and

Eeff (Inferring) = 3 .4k connections/Watt . As a com-

parison, the RF IDS has an energy efficiency of

Eeff (Inferring) = 400 connections/Watt using a x86

architecture on inference. We used the framework

RANGER [51], a parallel framework to train RF for

a fair comparison with a parallel TPG-based IDS. The

Secure-Gegelati software has thus 8× the energy effi-

ciency of RF-based IDS.

On the Exynos, the chosen solution (us-

ing 2 A7 cores at a 300MHz frequency) con-

sumes 0.05 W. It results in an energy efficiency

Eeff (Inferring) = 200 kconnections.W −1 .

7 Discussion

7.1 Learning algorithms

TPG and RF strongly differ in their learning mecha-

nisms. While RF ingests all the training data at once

to build a model, TPG progressively incorporate it and

can recover from badly labelled data by feeding the

system with new correctly labelled data. The training

time and performance of RF is strongly impacted by

the amount of data and the chosen learning param-

eters (tree depth, number of trees, etc) that need to

be tuned. With a fine tuning of these parameters and

large computation time, the models of predictions can

be very accurate. The drawback of RF is however that

they need to be trained and fine tuned from scratch to

incorporate a new intrusion type.

TPG take a longer time than RF to converge to

an accurate model, as their model results from trials

and errors. Parameterization of the TPG agent is rather

easy, the state of the art parameters used by Stephen

Kelly [18] suit most learning application and the sensi-

tivity of the parameters is low. Light modifications of

the parameters do not affect much the learning process

but can bring interesting properties such as light graph

structure or ability to detect rare events. However, the

positive point is that TPG are able to detect attacks

while training . Online training makes TPG more fit to

detect novelty. Even if TPG take time to converge, they

https://github.com/imbs-hl/ranger
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finally adapt and are able to detect new threats as they

arrive.

7.2 Limitations and Future Work

The Secure-Gegelati TPG algorithm in its current

form is still limited for the observation of rare events.

Indeed, rarely activated teams and programs may be

deleted, which can cause issues in real world conditions

for very rare intrusion detection. In the CICIDS 2017

dataset, there is 1 attack out of 5 connections so the test

conditions overrate intrusions and the problem does not

appear.

A false alarm rate of 0.2% is low but results in

too many false alarms in the practical context of an

IDS. The current detection system needs to be comple-

mented with temporal filtering, exploiting the multi-

connection nature of most intrusions, to reach the ex-

tremely low false alarm rates required in practice. This

objective is kept as future work [17].

The study of Secure-Gegelati has proven that

TPG are well suited for adaptive network intrusion de-

tection. However, the Secure-Gegelati TPG model

currently requires a large amount of labelled data

to converge. As a future work, we intend to reduce

the need of supervision by introducing semi-supervised

learning into the TPG framework.

8 Conclusion

This paper has introduced the Secure-Gegelati

learning-based real-time NIDS and has demonstrated

the agility and energy efficiency reached by the result-

ing network probe. Secure-Gegelati combines several

capabilities required in a NIDS: rare events detection

with very few false alarms, as Secure-Gegelati detects

more than 80% of the intrusions with a precision over

99%; high energy efficiency, as Secure-Gegelati is 8×
more energy efficient than RF in the same inference con-

ditions; high scalability as the speedup over 4 embed-

ded cores reaches 96.9% of the optimum. Furthermore,

thanks to the TPG intelligence, Secure-Gegelati is

a flexible tool that adapts to novel threats. The sys-

tem can anytime be switched into a training mode and

be fed with new labelled benign and intrusion data to

improve its capabilities. In order to advance on agile

NIDS, our short term future work will concentrate on

evaluating Secure Gegelati in a more realistic context

than the one offered by CIC-IDS 2017 dataset. To this

end, a sand-boxing infrastructure will be setup with

normal traffic and attacks simulations.
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Télécommunications, 55(7):361–378, July 2000.

7. D.E. Denning. An Intrusion-Detection Model. IEEE
Transactions on Software Engineering, SE-13(2):222–
232, February 1987. Conference Name: IEEE Transac-
tions on Software Engineering.

8. Karol Desnos, Nicolas Sourbier, Pierre-Yves Raumer,
Olivier Gesny, and Maxime Pelcat. Gegelati: Lightweight
artificial intelligence through generic and evolvable tan-
gled program graphs. In Workshop on Design and Archi-
tectures for Signal and Image Processing (14th edition),
pages 35–43, 2021.

9. Gangsong Dong, Yi Jin, Shiwen Wang, Wencui Li, Zhuo
Tao, and Shaoyong Guo. DB-Kmeans:An Intrusion De-
tection Algorithm Based on DBSCAN and K-means.
2019 20th Asia-Pacific Network Operations and Man-
agement Symposium (APNOMS), 2019.

10. Salma Elhag, Alberto Fernández, Abdullah Bawakid,
Saleh Alshomrani, and Francisco Herrera. On the com-
bination of genetic fuzzy systems and pairwise learning
for improving detection rates on Intrusion Detection Sys-
tems. Expert Systems with Applications: An Interna-
tional Journal, 42(1):193–202, January 2015.

11. Meera Gandhi and SK Srivasta. Detecting and preventing
attacks using network intrusion detection systems, 2008.

12. Olivier Gesny, Pierre-Marie Satre, and Julien Roussel.
Cbwar: Classification de binaires windows via apprentis-
sage par renforcement. In Computer & Electronics Secu-
rity Applications Rendez-vous (C&ESAR), 2018.

13. Guofei Gu, Prahlad Fogla, David Dagon, Wenke Lee, and
Boris Skoric. Measuring intrusion detection capability: an
information-theoretic approach. pages 90–101, January
2006.

14. Neminath Hubballi and Vinoth Suryanarayanan. False
alarm minimization techniques in signature-based intru-
sion detection systems: A survey. Computer Communi-
cations, 49:1–17, August 2014.

15. L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement Learning: A Survey. arXiv:cs/9605103, April
1996. arXiv: cs/9605103.

16. Stephen Kelly. Scaling Genetic Programming to Chal-
lenging Reinforcement Tasks through Emergent Modu-
larity. June 2018. Accepted: 2018-06-21T16:04:28Z.

17. Stephen Kelly and Wolfgang Banzhaf. Temporal Memory
Sharing in Visual Reinforcement Learning, pages 101–
119. Springer International Publishing, Cham, 2020.



SECURE-GEGELATI 19

18. Stephen Kelly and Malcolm I. Heywood. Multi-task
learning in Atari video games with emergent tangled pro-
gram graphs | Proceedings of the Genetic and Evolution-
ary Computation Conference, 2017.

19. Stephen Kelly, Robert J. Smith, and Malcolm I. Hey-
wood. Emergent Policy Discovery for Visual Reinforce-
ment Learning Through Tangled Program Graphs: A Tu-
torial. In Wolfgang Banzhaf, Lee Spector, and Leigh
Sheneman, editors, Genetic Programming Theory and
Practice XVI, Genetic and Evolutionary Computation,
pages 37–57. Springer International Publishing, Cham,
2019.

20. Richard A Kemmerer and Giovanni Vigna. Intrusion
detection: a brief history and overview. Computer,
35(4):supl27–supl30, 2002.

21. Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and
Joarder Kamruzzaman. Survey of intrusion detection sys-
tems: techniques, datasets and challenges. Cybersecurity,
2(1):20, July 2019.

22. Kwangjo Kim and Muhamad Erza Aminanto. Deep
learning in intrusion detection perspective: Overview and
further challenges. In 2017 International Workshop on
Big Data and Information Security (IWBIS), pages 5–
10. IEEE, 2017.

23. K. C. Krishnachalitha and C. Priya. Wireless Sensor
Network-Based Hybrid Intrusion Detection System on
Feature Extraction Deep Learning and Reinforcement
Learning Techniques. In Sheng-Lung Peng, Le Hoang
Son, G. Suseendran, and D. Balaganesh, editors, Intelli-
gent Computing and Innovation on Data Science, Lec-
ture Notes in Networks and Systems, pages 335–341, Sin-
gapore, 2020. Springer.

24. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional neu-
ral networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

25. Christopher Kruegel and Thomas Toth. Using Deci-
sion Trees to Improve Signature-Based Intrusion Detec-
tion. In Giovanni Vigna, Christopher Kruegel, and Er-
land Jonsson, editors, Recent Advances in Intrusion De-
tection, Lecture Notes in Computer Science, pages 173–
191, Berlin, Heidelberg, 2003. Springer.

26. Wei Li. Using genetic algorithm for network intrusion
detection. January 2004.

27. Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin,
and Kuang-Yuan Tung. Intrusion detection system: A
comprehensive review. Journal of Network and Com-
puter Applications, 36(1):16–24, January 2013.

28. Manuel Lopez-Martin, Belen Carro, and Antonio
Sanchez-Esguevillas. Application of deep reinforcement
learning to intrusion detection for supervised problems.
Expert Systems with Applications, 141:112963, March
2020.
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